Planning and Optimization C5. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Röger

Universität Basel

October 13, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025 1 / 30

Planning and Optimization

October 13, 2025 — C5. SAT Planning: Core Idea and Sequential Encoding

C5.1 Introduction

C5.2 Formula Overview

C5.3 Initial State, Goal, Operator Selection

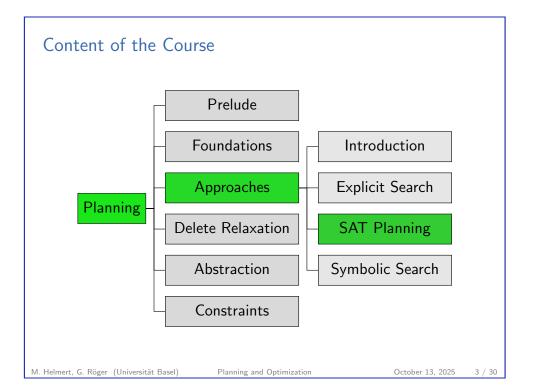
C5.4 Transitions

C5.5 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025



C5. SAT Planning: Core Idea and Sequential Encoding

Introduction

C5.1 Introduction

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Introduction

SAT Solvers

- ➤ SAT solvers (algorithms that find satisfying assignments to CNF formulas) are one of the major success stories in solving hard combinatorial problems.
- ► Can we leverage them for classical planning?
- SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:

→ Foundations of Artificial Intelligence Course, Ch. E4–E5

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

5 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

Introduction

Complexity Mismatch

- ► The SAT problem is NP-complete, while PlanEx is PSPACE-complete.
- one-shot polynomial reduction from PLANEX to SAT not possible (unless NP = PSPACE)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

C5. SAT Planning: Core Idea and Sequential Encoding

Introduction

Solution: Iterative Deepening

- ▶ We can generate a propositional formula that tests if task Π has a plan with horizon (length bound) T in time $O(\|\Pi\|^k \cdot T)$ (\leadsto pseudo-polynomial reduction).
- ► Use as building block of algorithm that probes increasing horizons (a bit like IDA*).
- ► Can be efficient if there exist plans that are not excessively long.

C5. SAT Planning: Core Idea and Sequential Encoding

Introduction

SAT Planning: Main Loop

basic SAT planning algorithm:

```
SAT Planning  \begin{split} & \operatorname{def} \, \operatorname{satplan}(\Pi) \colon \\ & \operatorname{for} \, T \in \{0,1,2,\dots\} \colon \\ & \varphi := \operatorname{build\_sat\_formula}(\Pi,T) \\ & \mathit{I} = \operatorname{sat\_solver}(\varphi) \qquad \qquad \rhd \, \operatorname{returns} \, \operatorname{a} \, \operatorname{model} \, \operatorname{or} \, \operatorname{none} \\ & \operatorname{if} \, \mathit{I} \, \operatorname{is} \, \operatorname{not} \, \operatorname{none} \colon \\ & \operatorname{return} \, \operatorname{extract\_plan}(\Pi,T,\mathit{I}) \end{split}
```

Termination criterion for unsolvable tasks?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Formula Overview

C5. SAT Planning: Core Idea and Sequential Encoding

Formula Overview

SAT Formula: CNF?

C5.2 Formula Overview

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

► SAT solvers require conjunctive normal form (CNF), i.e., formulas expressed as collection of clauses.

- ▶ We will make sure that our SAT formulas are in CNF when our input is a STRIPS task.
- ▶ We do allow fully general propositional tasks, but then the formula may need additional conversion to CNF.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

C5. SAT Planning: Core Idea and Sequential Encoding

Formula Overview

SAT Formula: Variables

- ightharpoonup given propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$
- ▶ given horizon $T \in \mathbb{N}_0$

Variables of the SAT Formula

- ▶ propositional variables v^i for all $v \in V$, $0 \le i \le T$ encode state after i steps of the plan
- **propositional variables** o^i for all $o \in O$, 1 < i < Tencode operator(s) applied in *i*-th step of the plan

C5. SAT Planning: Core Idea and Sequential Encoding

Formula Overview

Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let φ be a propositional logic formula over the variables V. Let 0 < i < T.

We write φ^i for the formula obtained from φ by replacing each $v \in V$ with v^i .

Example: $((a \land b) \lor \neg c)^3 = (a^3 \land b^3) \lor \neg c^3$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Formula Overview

SAT Formula: Motivation

We want to express a formula whose models are exactly the plans/traces with T steps.

For this, the formula must express four things:

- ▶ The variables v^0 ($v \in V$) define the initial state.
- ▶ The variables v^T ($v \in V$) define a goal state.
- We select exactly one operator variable o^i ($o \in O$) for each time step 1 < i < T.
- ▶ If we select o^i , then variables v^{i-1} and v^i ($v \in V$) describe a state transition from the (i-1)-th state of the plan to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

12 / 20

C5. SAT Planning: Core Idea and Sequential Encoding

Initial State, Goal, Operator Selection

C5.3 Initial State, Goal, Operator Selection

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

C5. SAT Planning: Core Idea and Sequential Encoding

Initial State, Goal, Operator Selection

SAT Formula: Initial State

SAT Formula: Initial State initial state clauses:

 $\triangleright v^0$ for all $v \in V$ with $I(v) = \mathbf{T}$

▶ $\neg v^0$ for all $v \in V$ with $I(v) = \mathbf{F}$

C5. SAT Planning: Core Idea and Sequential Encoding

Initial State, Goal, Operator Selection

SAT Formula: Goal

SAT Formula: Goal goal clauses:

 $\triangleright \gamma^T$

For STRIPS, this is a conjunction of unit clauses. For general goals, this may not be in clause form.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

16 / 20

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Initial State, Goal, Operator Selection

SAT Formula: Operator Selection

Let $O = \{o_1, \dots, o_n\}.$

SAT Formula: Operator Selection operator selection clauses:

operator exclusion clauses:

▶ $\neg o_i^i \lor \neg o_k^i$ for all $1 \le i \le T$, $1 \le j < k \le n$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

C5. SAT Planning: Core Idea and Sequential Encoding

C5.4 Transitions

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

Transitions

C5. SAT Planning: Core Idea and Sequential Encoding

SAT Formula: Transitions

We now get to the interesting/challenging bit: encoding the transitions.

Key observations: if we apply operator o at time i,

- \triangleright its precondition must be satisfied at time i-1: $o^i \rightarrow pre(o)^{i-1}$
- ▶ variable v is true at time i iff its regression is true at i-1: $o^i \rightarrow (v^i \leftrightarrow regr(v, eff(o))^{i-1})$

Question: Why regr(v, eff(o)), not regr(v, o)?

C5. SAT Planning: Core Idea and Sequential Encoding

Simplifications and Abbreviations

- Let us pick the last formula apart to understand it better (and also get a CNF representation along the way).
- Let us call the formula τ ("transition"): $\tau = o^i \rightarrow (v^i \leftrightarrow regr(v, eff(o))^{i-1}).$
- First, some abbreviations:
 - ightharpoonup Let e = eff(o).

M. Helmert, G. Röger (Universität Basel)

- Let $\rho = regr(v, e)$ ("regression"). We have $\rho = effcond(v, e) \lor (v \land \neg effcond(\neg v, e))$.
- Let $\alpha = effcond(v, e)$ ("added").
- Let $\delta = effcond(\neg v, e)$ ("deleted").

 $\rightarrow \tau = o^i \rightarrow (v^i \leftrightarrow \rho^{i-1}) \text{ with } \rho = \alpha \lor (v \land \neg \delta)$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

Planning and Optimization

Picking it Apart (1)

Reminder: $\tau = o^i \rightarrow (v^i \leftrightarrow \rho^{i-1})$ with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau = o^{i} \to (v^{i} \leftrightarrow \rho^{i-1})$$

$$\equiv o^{i} \to ((v^{i} \to \rho^{i-1}) \land (\rho^{i-1} \to v^{i}))$$

$$\equiv \underbrace{(o^{i} \to (v^{i} \to \rho^{i-1}))}_{\tau_{1}} \land \underbrace{(o^{i} \to (\rho^{i-1} \to v^{i}))}_{\tau_{2}}$$

 \rightsquigarrow consider this two separate constraints τ_1 and τ_2

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

21 / 3

C5. SAT Planning: Core Idea and Sequential Encoding

Transitions

Picking it Apart (2)

Reminder: $\tau_1 = o^i \rightarrow (v^i \rightarrow \rho^{i-1})$ with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau_{1} = o^{i} \to (v^{i} \to \rho^{i-1})
\equiv o^{i} \to (\neg \rho^{i-1} \to \neg v^{i})
\equiv (o^{i} \land \neg \rho^{i-1}) \to \neg v^{i}
\equiv (o^{i} \land \neg (\alpha^{i-1} \lor (v^{i-1} \land \neg \delta^{i-1}))) \to \neg v^{i}
\equiv (o^{i} \land (\neg \alpha^{i-1} \land (\neg v^{i-1} \lor \delta^{i-1}))) \to \neg v^{i}
\equiv \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \neg v^{i-1}) \to \neg v^{i})}_{\tau_{11}} \land \underbrace{((o^{i} \land \neg \alpha^{i-1} \land \delta^{i-1}) \to \neg v^{i})}_{\tau_{12}}$$

 \rightarrow consider this two separate constraints τ_{11} and τ_{12}

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

2025 22 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

Transition

Interpreting the Constraints (1)

Can we give an intuitive description of τ_{11} and τ_{12} ? \sim Yes!

 $ightharpoonup au_{11} = (o^i \wedge \neg \alpha^{i-1} \wedge \neg v^{i-1}) \rightarrow \neg v^i$

"When applying o, if v is false and o does not add it, it remains false."

- called negative frame clause
- ightharpoonup in clause form: $\neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$
- $\blacktriangleright \tau_{12} = (o^i \land \neg \alpha^{i-1} \land \delta^{i-1}) \rightarrow \neg v^i$

"When applying o, if o deletes v and does not add it, it is false afterwards." (Note the add-after-delete semantics.)

- called negative effect clause
- in clause form: $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

For STRIPS tasks, these are indeed clauses. (And in general?)

C5. SAT Planning: Core Idea and Sequential Encoding

Transitions

Picking it Apart (3)

Almost done!

Reminder: $\tau_2 = o^i \to (\rho^{i-1} \to v^i)$ with $\rho = \alpha \lor (v \land \neg \delta)$

$$\tau_{2} = o^{i} \to (\rho^{i-1} \to v^{i})
\equiv (o^{i} \wedge \rho^{i-1}) \to v^{i}
\equiv (o^{i} \wedge (\alpha^{i-1} \vee (v^{i-1} \wedge \neg \delta^{i-1}))) \to v^{i}
\equiv \underbrace{((o^{i} \wedge \alpha^{i-1}) \to v^{i})}_{\tau_{21}} \wedge \underbrace{((o^{i} \wedge v^{i-1} \wedge \neg \delta^{i-1}) \to v^{i})}_{\tau_{22}}$$

 \rightsquigarrow consider this two separate constraints τ_{21} and τ_{22}

Interpreting the Constraints (2)

How about an intuitive description of τ_{21} and τ_{22} ?

 $\blacktriangleright \tau_{21} = (o^i \wedge \alpha^{i-1}) \rightarrow v^i$

"When applying o, if o adds v, it is true afterwards."

- called positive effect clause
- ightharpoonup in clause form: $\neg o^i \lor \neg \alpha^{i-1} \lor v^i$
- $\tau_{22} = (o^i \wedge v^{i-1} \wedge \neg \delta^{i-1}) \rightarrow v^i$

"When applying o, if v is true and o does not delete it, it remains true."

- called positive frame clause
- ▶ in clause form: $\neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$

For STRIPS tasks, these are indeed clauses. (But not in general.)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

25 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

C5.5 Summary

SAT Formula: Transitions

SAT Formula: Transitions precondition clauses:

 $ightharpoonup \neg o^i \lor pre(o)^{i-1}$

for all $1 \le i \le T$, $o \in O$

positive and negative effect clauses:

 $ightharpoonup \neg o^i \lor \neg \alpha^{i-1} \lor v^i$ for all 1 < i < T, $o \in O$, $v \in V$

 $ightharpoonup \neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$ for all 1 < i < T, $o \in O$, $v \in V$

positive and negative frame clauses:

 $ightharpoonup \neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$ for all 1 < i < T, $o \in O$, $v \in V$

 $ightharpoonup \neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$ for all 1 < i < T, $o \in O$, $v \in V$

where $\alpha = effcond(v, eff(o)), \delta = effcond(\neg v, eff(o)).$

For STRIPS, all except the precondition clauses are in clause form. The precondition clauses are easily convertible to CNF (one clause $\neg o^i \lor v^{i-1}$ for each precondition atom v of o).

M. Helmert, G. Röger (Universität Basel)

October 13, 2025 26 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1) initial state clauses:

 $\triangleright v^0$

for all $v \in V$ with $I(v) = \mathbf{T}$

for all $v \in V$ with $I(v) = \mathbf{F}$

goal clauses:

 $\triangleright \gamma^T$

operator selection clauses:

 \triangleright $o_1^i \vee \cdots \vee o_n^i$

for all 1 < i < T

operator exclusion clauses:

 $ightharpoonup \neg o_i^i \lor \neg o_{\nu}^i$

for all $1 \le i \le T$, $1 \le j < k \le n$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Summary

Summary: Sequential SAT Encoding (2)

Sequential SAT Encoding (2) precondition clauses:

▶ $\neg o^i \lor pre(o)^{i-1}$ for all $1 \le i \le T$, $o \in O$ positive and negative effect clauses:

- $ightharpoonup \neg o^i \lor \neg \alpha^{i-1} \lor v^i$ for all 1 < i < T, $o \in O$, $v \in V$
- ▶ $\neg o^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$ for all $1 \le i \le T$, $o \in O$, $v \in V$ positive and negative frame clauses:
- $ightharpoonup \neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$ for all $1 \le i \le T$, $o \in O$, $v \in V$

where $\alpha = effcond(v, eff(o)), \delta = effcond(\neg v, eff(o)).$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

29 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

Summary

► SAT planning (planning as satisfiability) expresses a sequence of bounded-horizon planning tasks as SAT formulas.

- ▶ Plans can be extracted from satisfying assignments; unsolvable tasks are challenging for the algorithm.
- ► For each time step, there are propositions encoding which state variables are true and which operators are applied.
- ► We describe a basic sequential encoding where one operator is applied at every time step.
- ► The encoding produces a CNF formula for STRIPS tasks.
- ► The encoding follows naturally (with some work) from using regression to link state variables in adjacent time steps.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 13, 2025

20 / 2