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SAT Solvers

» SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

» Can we leverage them for classical planning?
~+ SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
~» Foundations of Artificial Intelligence Course, Ch. E4-E5
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Complexity Mismatch

» The SAT problem is NP-complete,
while PLANEX is PSPACE-complete.

~> one-shot polynomial reduction from PLANEX to SAT
not possible (unless NP = PSPACE)
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Solution: lterative Deepening

> We can generate a propositional formula that tests
if task I has a plan with horizon (length bound) T
in time O(||M||* - T) (~ pseudo-polynomial reduction).
» Use as building block of algorithm that probes
increasing horizons (a bit like IDA™).
» Can be efficient if there exist plans
that are not excessively long.
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SAT Planning: Main Loop

basic SAT planning algorithm:

SAT Planning
def satplan([):
for T€{0,1,2,...}:
¢ := build_sat_formula(I1, T)
| = sat_solver(y) > returns a model or none

if / is not none:
return extract_plan(M, T, /)

Termination criterion for unsolvable tasks?
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C5.2 Formula Overview

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 9 /30



C5. SAT Planning: Core Idea and Sequential Encoding Formula Overview

SAT Formula: CNF?

» SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

» We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

» We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.
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SAT Formula: Variables

> given propositional planning task M= (V,/,0,)
P given horizon T € Ny

Variables of the SAT Formula

P propositional variables viforallve V,0<i<T
encode state after / steps of the plan

» propositional variables o’ forallo € 0,1 <i< T
encode operator(s) applied in i-th step of the plan
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Formulas with Time Steps

Definition (Time-Stamped Formulas)
Let © be a propositional logic formula over the variables V.
Let 0 </ <T.

We write ¢’ for the formula obtained from ¢
by replacing each v € V with v'.

Example: ((a A b)V —c)® = (a3 A b3) V-3
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SAT Formula: Motivation

Formula Overview

We want to express a formula whose models

are exactly the plans/traces with T steps.

For this, the formula must express four things:
» The variables v? (v € V) define the initial state.
> The variables v (v € V) define a goal state.

> We select exactly one operator variable o' (o € O)
for each timestep 1 </ < T.

> If we select o', then variables v/~! and v/ (v € V)
describe a state transition from the (i — 1)-th state of the plan
to the i-th state of the plan (that uses operator 0).

The final formula is the conjunction of all these parts.
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C5.3 Initial State, Goal, Operator
Selection
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SAT Formula: Initial State

SAT Formula: Initial State
initial state clauses:

> 0 forall ve V with I(v) =T
» 0  forall v eV with I(v)=F
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SAT Formula: Goal

SAT Formula: Goal
goal clauses:

P'\/T

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.
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SAT Formula: Operator Selection

Let O ={o01,...,0n}.
SAT Formula: Operator Selection
operator selection clauses:
> o{\/~--\/o,"7 forall1<i<T
operator exclusion clauses:
> —|o}\/—|o,’; forall1<i<T,1<j<k<n
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C5.4 Transitions
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SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.
Key observations: if we apply operator o at time i,
> its precondition must be satisfied at time / — 1:
o' — pre(o)~1
» variable v is true at time i iff its regression is true at i — 1:
o — (v « regr(v, ef{0)) 1)

Question: Why regr(v, eff0)), not regr(v, 0)?
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Simplifications and Abbreviations

P Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

» Let us call the formula 7 (“transition”):
T=0 — (v & regr(v,effo))1).
» First, some abbreviations:
> Let e = eff{0).
> Let p = regr(v,e) (“regression”).
We have p = effcond(v, e) V (v A —effcond(—v, €)).
> Let a = effcond(v, e) (“added").
> Let § = effcond(—v,e) (“deleted”).

~ T=0 = (v < pI71) with p = a Vv (v A =)
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Picking it Apart (1)

Reminder: 7 = o — (v ++ p'=1) with p = oV (v A =)
r=0 = (v & pit
= o = (v = A (P = V7))

=0 = (v = p A = (0 = V)

~
1 T2

~> consider this two separate constraints 71 and
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Picking it Apart (2)

Reminder: 71 = o' — (v/ — p'=1) with p = a V (v A —6)

mn=o —(vi=p1
=0 — (—p' 1 = )
= (o' A—p'l) = v
E(Oi/\ﬂ(all\/(ll -671))) = v
= (o' A(=a/TEA (=T ) = v
= ((0' A= L A=V 5 SV A ((0F A =T A ST = V)
™ 2

~> consider this two separate constraints 711 and 71
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Interpreting the Constraints (1)

Can we give an intuitive description of 71 and 757
~~ Yes!
> 1= (o' A=t AAVIT) = v
“When applying o, if v is false and o does not add it,
it remains false.”
» called negative frame clause
> in clause form: —o' Vo~ v viTl v =y
> 15 = (0! A=A ST 5 v
“"When applying o, if o deletes v and does not add it,
it is false afterwards.” (Note the add-after-delete semantics.)
» called negative effect clause
» in clause form: =o'V a/~t v =8 T v v

For STRIPS tasks, these are indeed clauses. (And in general?)
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Picking it Apart (3)

Almost done!

Reminder: 7, = o' — (p'~1 — v/) with p = a V (v A =0)

m=0 = (pt = v)
=0 ApH =V
="' ATV (VTEAGT))) =V
=((o' Aa) s VYA ((0f AVITEA =TT = V)

~

N~

T21 T22

~~ consider this two separate constraints 751 and 7
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Interpreting the Constraints (2)

How about an intuitive description of 71 and 757
> 1= (0 AalT) = v
“When applying o, if o adds v, it is true afterwards.”
» called positive effect clause
» in clause form: =o' Vv =a/~t v v/
> o= (0! AVITLASSTL) = v
“"When applying o, if v is true and o does not delete it,

it remains true.”
» called positive frame clause
» in clause form: =o' vV =/l v vy

For STRIPS tasks, these are indeed clauses. (But not in general.)
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SAT Formula: Transitions

SAT Formula: Transitions
precondition clauses:

> o'V pre(o) ! forall1<i<T,0€O0
positive and negative effect clauses:

UV i VAV forall1<i<T,o0€0,veV

> olva Tty =il =y forall1<i<T,0€e0,veV

positive and negative frame clauses:
> o v-vitly sty forall1<i<T,o0€0,vevV
> o'va Tty ey forall1<i<T,0€e0,veV
where o = effcond(v, eff0)), 0 = effcond(—v, eff{ 0)).

<
<

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause —o’ v v/~! for each precondition atom v of o).
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C5.5 Summary
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Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)
initial state clauses:

> 0 forall ve V with I(v) =T
> -0 for all ve V with /(v) =F
goal clauses:
> AT
operator selection clauses:
> o{\/~--\/o,", forall1<i<T
operator exclusion clauses:
> —|oj\/—|o,’; forall 1<i<T,1<j<k<n
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Summary: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)
precondition clauses:

> o'V pre(o) ! forall1<i<T,o€O
positive and negative effect clauses:

> o' Vool forall1<i<T,0o€c0O,veV

> o valv-dlyv -y forall1<i<T,0€eO,veV

positive and negative frame clauses:
> o/ v-viTltvetlvyl o forall1<i<T,0€0,veV
> o'va Tty ey forall1<i<T,0€e0,veV
where o = effcond(v, eff0)), 0 = effcond(—v, eff{ 0)).

<
<
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Summary

» SAT planning (planning as satisfiability) expresses a sequence
of bounded-horizon planning tasks as SAT formulas.

» Plans can be extracted from satisfying assignments;
unsolvable tasks are challenging for the algorithm.

» For each time step, there are propositions encoding
which state variables are true and which operators are applied.

» We describe a basic sequential encoding
where one operator is applied at every time step.

» The encoding produces a CNF formula for STRIPS tasks.

» The encoding follows naturally (with some work) from using
regression to link state variables in adjacent time steps.
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