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Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PlanEx) is the following decision problem:

Given: planning task Π
Question: Is there a plan for Π?

⇝ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPlanEx)
is the following decision problem:

Given: planning task Π, cost bound K ∈ N0

Question: Is there a plan for Π with cost at most K?

⇝ decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PlanEx to BCPlanEx)

PlanEx ≤p BCPlanEx

Proof.
Consider a planning task Π with state variables V .

Let cmax be the maximal cost of all operators of Π.

Compute the number of states of Π as N = 2|V |.

Π is solvable iff there is solution with cost at most cmax · (N − 1)
because a solution need not visit any state twice.

⇝ map instance Π of PlanEx to instance ⟨Π, cmax · (N − 1)⟩

⇝

of BCPlanEx

⇝ polynomial reduction
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Membership in PSPACE

Theorem
BCPlanEx ∈ PSPACE

Proof.
Show BCPlanEx ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(⟨V , I ,O, γ⟩, K ):
s := I
k := K
loop forever:

if s |= γ: accept
guess o ∈ O
if o is not applicable in s: fail
if cost(o) > k: fail
s := sJoK
k := k − cost(o)
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PSPACE-Hardness

Idea: generic reduction

▶ For an arbitrary fixed DTM M with space bound polynomial p
and input w , generate propositional planning task
which is solvable iff M accepts w in space p(|w |).

▶ Without loss of generality, we assume p(n) ≥ n for all n.
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Reduction: State Variables

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

State Variables
▶ stateq for all q ∈ Q

▶ headi for all i ∈ X ∪ {−p(n)− 1, p(n) + 1}
▶ contenti ,a for all i ∈ X , a ∈ Σ□

⇝ allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Initial State
Initially true:

▶ stateq0
▶ head1
▶ contenti ,wi

for all i ∈ {1, . . . , n}
▶ contenti ,□ for all i ∈ X \ {1, . . . , n}

Initially false:

▶ all others
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Reduction: Operators

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Operators

One operator for each transition rule δ(q, a) = ⟨q′, a′, d⟩
and each cell position i ∈ X :

▶ precondition: stateq ∧ headi ∧ contenti ,a
▶ effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a

∧ stateq′ ∧ headi+d ∧ contenti ,a′

Note that add-after-delete semantics are important here!
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Reduction: Goal

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Goal
stateqY
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPlanEx was already shown.

Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PlanEx and hardness for BCPlanEx follow
from the polynomial reduction from PlanEx to BCPlanEx.
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:
▶ different planning formalisms

▶ e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

▶ syntactic restrictions of planning tasks
▶ e.g., without preconditions, without conjunctive effects,

STRIPS without delete effects

▶ semantic restrictions of planning task
▶ e.g., restricting variable dependencies (“causal graphs”)

▶ particular planning domains
▶ e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
▶ nondeterministic effects:

▶ fully observable: EXP-complete (Littman, 1997)
▶ unobservable: EXPSPACE-complete (Haslum & Jonsson,

1999)
▶ partially observable: 2-EXP-complete (Rintanen, 2004)

▶ schematic operators:
▶ usually adds one exponential level to PlanEx complexity
▶ e.g., classical case EXPSPACE-complete (Erol et al., 1995)

▶ numerical state variables:
▶ undecidable in most variations (Helmert, 2002)
▶ decidable in restricted setting with at most two

numeric state variables (Helal and Lakemeyer, 2025)
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Summary

▶ Classical planning is PSPACE-complete.

▶ This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).

▶ The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:
▶ DTM configurations are encoded by state variables.
▶ Operators simulate transitions between DTM configurations.
▶ The DTM accepts an input iff there is a plan

for the corresponding STRIPS task.

▶ This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

▶ It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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