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Decision Problems for Planning

Definition (Plan Existence)
Plan existence (PLANEX) is the following decision problem:

GIVEN:
QUESTION:

planning task Il
Is there a plan for 17

~~ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)
Bounded-cost plan existence (BCPLANEX)
is the following decision problem:

GIVEN:
QUESTION:

planning task [1, cost bound K € Ny
Is there a plan for I with cost at most K7

~ decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX)
PLANEX <, BCPLANEX

Proof.
Consider a planning task I with state variables V.

Let cmax be the maximal cost of all operators of I1.

Compute the number of states of M as N = 2/VI.

M is solvable iff there is solution with cost at most cmax - (N — 1)
because a solution need not visit any state twice.

~» map instance I1 of PLANEX to instance (1, ¢max - (N — 1))
of BCPLANEX

~> polynomial reduction
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B7.2 PSPACE-Completeness of
Planning
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Membership in PSPACE

Theorem
BCPLANEX € PSPACE

Proof.
Show BCPLANEX € NPSPACE and use Savitch's theorem.
Nondeterministic algorithm:
def plan((V,/,0,7), K):
s:=1
k=K
loop forever:
if s = v: accept
guess 0 € O
if o is not applicable in s: fail
if cost(o) > k: fail
s:=s[o]
k := k — cost(0)
October 1, 2025
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PSPACE-Hardness

Idea: generic reduction

» For an arbitrary fixed DTM M with space bound polynomial p
and input w, generate propositional planning task
which is solvable iff M accepts w in space p(|w]).

> Without loss of generality, we assume p(n) > n for all n.
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Reduction: State Variables

Let M = (X,00, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input ws ... w,, define relevant tape positions
X :={=p(n),....p(n)}
State Variables

> stateq for all g € Q

» head; for all i € X U{—p(n) —1,p(n) +1}

> content; , forall i€ X, ac ¥n

~> allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = (X,0, Q, qo, gy, 9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}
Initial State
Initially true:
> stateg,
> head;
» content;,, forall i e {1,...,n}
» content; for all i € X\ {1,...,n}
Initially false:
> all others
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Reduction: Operators

Let M = (X,0, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions

X = {=p(n)..... p(n)}

Operators
One operator for each transition rule §(q,a) = (¢', d, d)
and each cell position i € X:

> precondition: state; A head; A content; ,

> effect: —statey A —head; A —~content; ,
A statey A head;q A content;

Note that add-after-delete semantics are important here!
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Reduction: Goal

Let M = (X,0, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions
X i={=p(n).....p(n)}

Goal
stateg,
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)
PLANEX and BCPLANEX are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPLANEX was already shown.

Hardness for PLANEX follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PLANEX. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PLANEX and hardness for BCPLANEX follow
from the polynomial reduction from PLANEX to BCPLANEX. [
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B7.3 More Complexity Results
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

» different planning formalisms

> e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

» syntactic restrictions of planning tasks

> e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

P semantic restrictions of planning task

> e.g., restricting variable dependencies ( “causal graphs”)
» particular planning domains

» e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
» nondeterministic effects:
> fully observable: EXP-complete (Littman, 1997)
» unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
> partially observable: 2-EXP-complete (Rintanen, 2004)
» schematic operators:
> usually adds one exponential level to PLANEX complexity
> e.g., classical case EXPSPACE-complete (Erol et al., 1995)
» numerical state variables:
» undecidable in most variations (Helmert, 2002)
» decidable in restricted setting with at most two
numeric state variables (Helal and Lakemeyer, 2025)
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Summary

» Classical planning is PSPACE-complete.

» This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).
» The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:
> DTM configurations are encoded by state variables.
> Operators simulate transitions between DTM configurations.
» The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.
» This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

> It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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