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Motivation
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How Difficult is Planning?

Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

⇝ Do non-exponential planning algorithms exist?

⇝ What is the precise computational complexity of planning?
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Why Computational Complexity?

understand the problem

know what is not possible

find interesting subproblems that are easier to solve

distinguish essential features from syntactic sugar

Is STRIPS planning easier than general planning?
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Reminder: Complexity Theory

Need to Catch Up?

We assume knowledge of complexity theory:

languages and decision problems
Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
complexity classes: P, NP, PSPACE
polynomial reductions

If you are not familiar with these topics, we recommend
Chapters B11, D1–D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-fs25/

10948-main-lecture-theory-of-computer-science/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/


Motivation Turing Machines Complexity Classes Summary

Turing Machines
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Turing Machines: Conceptually

. . . □ □ □ b a c a c a c a □ □ . . .

infinite tape

read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
⟨Σ,□,Q, q0, qY, δ⟩ with the following components:

input alphabet Σ and blank symbol □ /∈ Σ

alphabets always nonempty and finite
tape alphabet Σ□ = Σ ∪ {□}

finite set Q of internal states with initial state q0 ∈ Q
and accepting state qY ∈ Q

nonterminal states Q ′ := Q \ {qY}
transition relation δ : (Q ′ × Σ□) → 2Q×Σ□×{−1,+1}

Deterministic Turing machine (DTM):
|δ(q, s)| = 1 for all ⟨q, s⟩ ∈ Q ′ × Σ□
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Turing Machines: Accepted Words

Initial configuration

state q0
input word on tape, all other tape cells contain □
head on first symbol of input word

Step

If in state q, reading symbol s, and ⟨q′, s ′, d⟩ ∈ δ(q, s) then
the NTM can transition to state q′, replacing s with s ′ and
moving the head one cell to the left/right (d = −1/+1).

Input word (∈ Σ∗) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state qY.
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Complexity Classes
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let f : N0 → N0.

A NTM accepts language L ⊆ Σ∗ in time f if it accepts each w ∈ L
within f (|w |) steps and does not accept any w /∈ L (in any time).

It accepts language L ⊆ Σ∗ in space f if it accepts each w ∈ L
using at most f (|w |) tape cells and does not accept any w /∈ L.
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f ) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f ) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f ) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f ) contains all languages
accepted in space f by some NTM.



Motivation Turing Machines Complexity Classes Summary

Polynomial Time and Space Classes

Let P be the set of polynomials p : N0 → N0

whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P =
⋃

p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.

P ⊆ NP and PSPACE ⊆ NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch’s theorem (Savitch 1970).
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Summary
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Summary

We recalled the definitions of the most important
complexity classes from complexity theory:

P: decision problems solvable in polynomial time
NP: decision problems solvable in polynomial time
by nondeterministic algorithms
PSPACE: decision problems solvable in polynomial space
NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

These classes are related by P ⊆ NP ⊆ PSPACE = NPSPACE.
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