Planning and Optimization

B6. Computational Complexity of Planning: Background

Malte Helmert and Gabriele Röger

Universität Basel

October 1, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

Planning and Optimization

October 1, 2025 — B6. Computational Complexity of Planning: Background

B6.1 Motivation

B6.2 Turing Machines

B6.3 Complexity Classes

B6.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

B6. Computational Complexity of Planning: Background

Motivation

B6.1 Motivation

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

B6. Computational Complexity of Planning: Background

How Difficult is Planning?

- ► Using state-space search (e.g., using Dijkstra's algorithm on the transition system), planning can be solved in polynomial time in the number of states.
- ► However, the number of states is exponential in the number of state variables, and hence in general exponential in the size of the input to the planning algorithm.
- → Do non-exponential planning algorithms exist?
- → What is the precise computational complexity of planning?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

B6. Computational Complexity of Planning: Background

Why Computational Complexity?

- understand the problem
- know what is not possible
- find interesting subproblems that are easier to solve
- distinguish essential features from syntactic sugar
 - ▶ Is STRIPS planning easier than general planning?

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

B6. Computational Complexity of Planning: Background

Reminder: Complexity Theory

Need to Catch Up?

- ► We assume knowledge of complexity theory:
 - languages and decision problems
 - Turing machines: NTMs and DTMs; polynomial equivalence with other models of computation
 - complexity classes: P, NP, PSPACE
 - polynomial reductions
- ▶ If you are not familiar with these topics, we recommend Chapters B11, D1-D3, D6 of the Theory of Computer Science course at https://dmi.unibas.ch/en/studium/ computer-science-informatik/lehrangebot-fs25/ 10948-main-lecture-theory-of-computer-science/

B6. Computational Complexity of Planning: Background

Turing Machines

B6.2 Turing Machines

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

Planning and Optimization

October 1, 2025

Planning and Optimization

Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple $\langle \Sigma, \square, Q, q_0, q_Y, \delta \rangle$ with the following components:

- ▶ input alphabet Σ and blank symbol $\square \notin \Sigma$
 - ► alphabets always nonempty and finite
 - ▶ tape alphabet $\Sigma_{\square} = \Sigma \cup \{\square\}$
- ▶ finite set Q of internal states with initial state $q_0 \in Q$ and accepting state $q_Y \in Q$
 - ▶ nonterminal states $Q' := Q \setminus \{q_Y\}$
- ▶ transition relation $\delta: (Q' \times \Sigma_{\square}) \to 2^{Q \times \Sigma_{\square} \times \{-1,+1\}}$

Deterministic Turing machine (DTM): $|\delta(q,s)|=1$ for all $\langle q,s\rangle\in Q' imes \Sigma_{\square}$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

B6. Computational Complexity of Planning: Background

M. Helmert, G. Röger (Universität Basel)

Turing Machines

October 1, 2025

Turing Machines: Accepted Words

- ► Initial configuration
 - ightharpoonup state q_0
 - ▶ input word on tape, all other tape cells contain □
 - head on first symbol of input word
- ► Step
 - ▶ If in state q, reading symbol s, and $\langle q', s', d \rangle \in \delta(q, s)$ then
 - \blacktriangleright the NTM can transition to state g', replacing s with s' and moving the head one cell to the left/right (d = -1/+1).
- ▶ Input word $(\in \Sigma^*)$ is accepted if some sequence of transitions brings the NTM from the initial configuration into state q_Y .

B6. Computational Complexity of Planning: Background

Complexity Classes

B6.3 Complexity Classes

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

Complexity Classes

Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

A NTM accepts language $L \subseteq \Sigma^*$ in time f if it accepts each $w \in L$ within f(|w|) steps and does not accept any $w \notin L$ (in any time).

It accepts language $L \subseteq \Sigma^*$ in space f if it accepts each $w \in L$ using at most f(|w|) tape cells and does not accept any $w \notin L$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

13 / 18

B6. Computational Complexity of Planning: Background

Complexity Classes

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

Complexity class DTIME(f) contains all languages accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted in space f by some NTM.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

14 / 10

B6. Computational Complexity of Planning: Background

Complexity Classes

Polynomial Time and Space Classes

Let \mathcal{P} be the set of polynomials $p : \mathbb{N}_0 \to \mathbb{N}_0$ whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

 $P = \bigcup_{p \in \mathcal{P}} \mathsf{DTIME}(p)$

 $NP = \bigcup_{p \in \mathcal{P}} NTIME(p)$

 $PSPACE = \bigcup_{p \in \mathcal{P}} DSPACE(p)$

 $\mathsf{NPSPACE} = \bigcup_{p \in \mathcal{P}} \mathsf{NSPACE}(p)$

B6. Computational Complexity of Planning: Background

Complexity Classes

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

 $P \subseteq NP \subseteq PSPACE = NPSPACE$

Proof.

 $P \subseteq NP$ and $PSPACE \subseteq NPSPACE$ are obvious because deterministic Turing machines are a special case of nondeterministic ones.

 $NP \subseteq NPSPACE$ holds because a Turing machine can only visit polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known as Savitch's theorem (Savitch 1970).

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

16 /

B6. Computational Complexity of Planning: Background

B6.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025 17

Summarv

B6. Computational Complexity of Planning: Background

Summary

- ► We recalled the definitions of the most important complexity classes from complexity theory:
 - P: decision problems solvable in polynomial time
 - ▶ NP: decision problems solvable in polynomial time by nondeterministic algorithms
 - ► PSPACE: decision problems solvable in polynomial space
 - ► NPSPACE: decision problems solvable in polynomial space by nondeterministic algorithms
- ▶ These classes are related by $P \subseteq NP \subseteq PSPACE = NPSPACE$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 1, 2025

10 / 1