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How Difficult is Planning?

» Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

> However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

$

Do non-exponential planning algorithms exist?

i

What is the precise computational complexity of planning?
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Why Computational Complexity?

» understand the problem
» know what is not possible

> find interesting subproblems that are easier to solve
» distinguish essential features from syntactic sugar
> Is STRIPS planning easier than general planning?
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Reminder: Complexity Theory

Need to Catch Up?
> We assume knowledge of complexity theory:
» languages and decision problems
» Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
» complexity classes: P, NP, PSPACE
» polynomial reductions
> If you are not familiar with these topics, we recommend
Chapters B11, D1-D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
10948-main-lecture-theory-of-computer-science/
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B6.2 Turing Machines
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Turing Machines: Conceptually

infinite tape
- [Olgdlblalclalc|allc|alnjo] |-
|
read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0,Q, q0, gv, ) with the following components:
» input alphabet ¥ and blank symbol [0 ¢ &
» alphabets always nonempty and finite
> tape alphabet ¥ =X U {0}
> finite set @ of internal states with initial state gp € Q@
and accepting state gy € Q
> nonterminal states Q" := Q \ {gv}

> transition relation § : (Q' x ) — 2@xTox{-1+1}

Deterministic Turing machine (DTM):
|0(g,s)| =1 forall (g,s) € Q' x Xy
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Turing Machines: Accepted Words

» Initial configuration
> state qo
» input word on tape, all other tape cells contain [J
> head on first symbol of input word
> Step
> If in state g, reading symbol s, and (¢’,s’,d) € (g, s) then
» the NTM can transition to state q’, replacing s with s’ and
moving the head one cell to the left/right (d = —1/+1).

» Input word (€ X*) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state gv.
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B6.3 Complexity Classes
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)
Let f : Ng — Np.

A NTM accepts language L C X* in time f if it accepts each w € L
within f(|w]|) steps and does not accept any w ¢ L (in any time).

It accepts language L C X* in space f if it accepts each w € L
using at most f(|w|) tape cells and does not accept any w ¢ L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 13 /18

B6. Computational Complexity of Planning: Background

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f : Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.
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Polynomial Time and Space Classes

Let P be the set of polynomials p: Ny — Ny
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P = U,ep DTIME(p)
NP = U,cp NTIME(p)
PSPACE = J,,.p DSPACE(p)

NPSPACE = |, NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P C NP C PSPACE = NPSPACE

Proof.

P € NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch's theorem (Savitch 1970).
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B6.4 Summary
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Summary

> We recalled the definitions of the most important
complexity classes from complexity theory:

» P: decision problems solvable in polynomial time
» NP: decision problems solvable in polynomial time
by nondeterministic algorithms
» PSPACE: decision problems solvable in polynomial space
» NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

Summary

» These classes are related by P C NP C PSPACE = NPSPACE.
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