Planning and Optimization

B6. Computational Complexity of Planning: Background

Malte Helmert and Gabriele Röger

Universität Basel

October 1, 2025

Planning and Optimization

October 1, 2025 — B6. Computational Complexity of Planning: Background

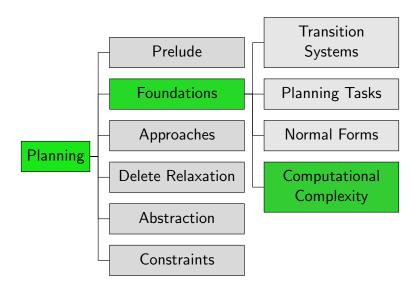
B6.1 Motivation

B6.2 Turing Machines

B6.3 Complexity Classes

B6.4 Summary

Content of the Course



B6.1 Motivation

How Difficult is Planning?

- Using state-space search (e.g., using Dijkstra's algorithm on the transition system), planning can be solved in polynomial time in the number of states.
- However, the number of states is exponential in the number of state variables, and hence in general exponential in the size of the input to the planning algorithm.
- → Do non-exponential planning algorithms exist?
- → What is the precise computational complexity of planning?

Why Computational Complexity?

- understand the problem
- know what is not possible
- find interesting subproblems that are easier to solve
- distinguish essential features from syntactic sugar
 - Is STRIPS planning easier than general planning?

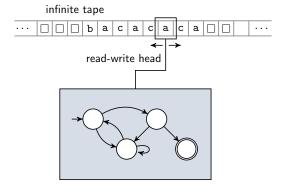
Reminder: Complexity Theory

Need to Catch Up?

- ▶ We assume knowledge of complexity theory:
 - languages and decision problems
 - Turing machines: NTMs and DTMs; polynomial equivalence with other models of computation
 - complexity classes: P, NP, PSPACE
 - polynomial reductions
- ▶ If you are not familiar with these topics, we recommend Chapters B11, D1-D3, D6 of the Theory of Computer Science course at https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/

B6.2 Turing Machines

Turing Machines: Conceptually



Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple $\langle \Sigma, \Box, Q, q_0, q_Y, \delta \rangle$ with the following components:

- ▶ input alphabet Σ and blank symbol $\square \notin \Sigma$
 - alphabets always nonempty and finite
 - ▶ tape alphabet $\Sigma_{\square} = \Sigma \cup \{\square\}$
- ▶ finite set Q of internal states with initial state $q_0 \in Q$ and accepting state $q_Y \in Q$
 - ightharpoonup nonterminal states $Q' := Q \setminus \{q_Y\}$
- ▶ transition relation $\delta: (Q' \times \Sigma_{\square}) \to 2^{Q \times \Sigma_{\square} \times \{-1, +1\}}$

Deterministic Turing machine (DTM): $|\delta(q,s)| = 1$ for all $\langle q,s \rangle \in Q' \times \Sigma_{\square}$

Turing Machines: Accepted Words

- Initial configuration
 - ightharpoonup state q_0
 - ▶ input word on tape, all other tape cells contain □
 - head on first symbol of input word
- Step
 - ▶ If in state q, reading symbol s, and $\langle q', s', d \rangle \in \delta(q, s)$ then
 - the NTM can transition to state q', replacing s with s' and moving the head one cell to the left/right (d = -1/+1).
- ▶ Input word ($\in \Sigma^*$) is accepted if some sequence of transitions brings the NTM from the initial configuration into state q_Y .

B6.3 Complexity Classes

Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

A NTM accepts language $L \subseteq \Sigma^*$ in time f if it accepts each $w \in L$ within f(|w|) steps and does not accept any $w \notin L$ (in any time).

It accepts language $L \subseteq \Sigma^*$ in space f if it accepts each $w \in L$ using at most f(|w|) tape cells and does not accept any $w \notin L$.

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let $f: \mathbb{N}_0 \to \mathbb{N}_0$.

Complexity class $\overline{\mathsf{DTIME}(f)}$ contains all languages accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted in space f by some NTM.

Polynomial Time and Space Classes

Let \mathcal{P} be the set of polynomials $p : \mathbb{N}_0 \to \mathbb{N}_0$ whose coefficients are natural numbers.

```
Definition (P, NP, PSPACE, NPSPACE)
P = \bigcup_{p \in \mathcal{P}} \mathsf{DTIME}(p)
\mathsf{NP} = \bigcup_{p \in \mathcal{P}} \mathsf{NTIME}(p)
\mathsf{PSPACE} = \bigcup_{p \in \mathcal{P}} \mathsf{DSPACE}(p)
\mathsf{NPSPACE} = \bigcup_{p \in \mathcal{P}} \mathsf{NSPACE}(p)
```

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

 $\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}=\mathsf{NPSPACE}$

Proof.

 $P \subseteq NP$ and $PSPACE \subseteq NPSPACE$ are obvious because deterministic Turing machines are a special case of nondeterministic ones.

 $NP \subseteq NPSPACE$ holds because a Turing machine can only visit polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result known as Savitch's theorem (Savitch 1970).

B6. Computational Complexity of Planning: Background

B6.4 Summary

Summary

- We recalled the definitions of the most important complexity classes from complexity theory:
 - P: decision problems solvable in polynomial time
 - NP: decision problems solvable in polynomial time by nondeterministic algorithms
 - ► PSPACE: decision problems solvable in polynomial space
 - ► NPSPACE: decision problems solvable in polynomial space by nondeterministic algorithms
- ▶ These classes are related by $P \subseteq NP \subseteq PSPACE = NPSPACE$.