Planning and Optimization
B5. Positive Normal Form and STRIPS

Malte Helmert and Gabriele Roger

Universitat Basel

September 29, 2025

Motivation
©00

Motivation

Motivation
0e0

Example: Freecell

Example (Good and Bad Effects)

If we move K¢ to a free tableau position,
the good effect is that 4é is now accessible.
The bad effect is that we lose one free tableau position.

Motivation Po
ooe

What is a Good or Bad Effect?

lormal Form

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:
m Locking our door is good if we want to keep burglars out.
m Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.

Positive Normal Form

®0000000

Positive Normal Form

Positive Normal Form
0e000000

Content of the Course

B Transition Equivalence
Prelude Systems

!

| | Conflict-free
{ Planning Tasks ‘ Operators

Delete Relaxation | | | Computational
Complexity

Flat Operators

Abstraction

STRIPS

Constraints

il

Motivation Positive Normal Form Summar

[e]e] le]e]e]ele)

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula ¢ is positive if no negation symbols appear in (.

Note: This includes the negation symbols implied by — and <.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff{0) are positive.

.

Definition (Positive Propositional Planning Task)

A propositional planning task (V/, /1, O,) is positive
if all operators in O and the goal «y are positive.

.

Positive Normal Form
[e]e]e] lelelele]

Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked'}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike)) }
~v = lecture A bike

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked'}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike \ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture N ((bike N\ —bike-locked) > —bike))}
~v = lecture A bike

Identify state variable v occurring negatively in conditions.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}
~v = lecture A bike

Introduce new variable ¥ with complementary initial value.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}
~v = lecture A bike

Identify effects on variable v.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N\ —bike-locked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}

~v = lecture A bike

Introduce complementary effects for ¥.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike \ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N\ —bike-locked, bike-locked N\ —bike-unlocked),
(uni, lecture N ((bike N\ —bike-locked) > —bike))}
~v = lecture A bike

Identify negative conditions for v.

Motivation Positive Normal Form Summary

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike \ bike-unlocked, ~home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike A bike-unlocked) > —bike))}

~v = lecture A bike

Replace by positive condition ¥.

Motivation Positive Normal Form

[e]o]e]e] lelele)

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike \ bike-unlocked, ~home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike A\ bike-unlocked) > —bike))}

~v = lecture A bike

Positive Normal Form

[e]o]e]e]e] lele)

Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task I, there is an equivalent
propositional planning task I in positive normal form.
Moreover, I can be computed from I in polynomial time.

Note: Equivalence here means that the transition systems induced
by M and I, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)

0O00000e0

Positive Normal Form S 2S Summary

Positive Normal Form: Algorithm

Transformation of (V, [, O,~) to Positive Normal Form

Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal —v:
Let v be a variable which occurs negatively in a condition.
V.=V U{V} for some new propositional state variable ¥
15} = {F 1) =T
T ifl(v)=F
Replace the effect v by (v A =¥) in all operators o € O.
Replace the effect =v by (—v A ¥) in all operators o € O.
Replace —v by ¥ in all conditions.
Convert all operators o € O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.

Motivation Positive Normal Form STRIPS Summar

0O000000e

Why Positive Normal Form is Interesting

In the absence of conditional effects, positive normal form allows
us to distinguish good and bad effects easily:

m Effects that make state variables true
(add effects) are good.

m Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study in Part D.

(Why restriction “in the absence of conditional effects”?)

STRIPS

STRIPS
0@0000

Content of the Course

B Transition Equivalence
Prelude Systems

!

| | Conflict-free
{ Planning Tasks ‘ Operators

Approaches - Flat Operators

Delete Relaxation Computational Positive Normal

Complexity Form

Abstraction

Constraints

il

H t\ ation ’L STRIPS Summar,

[o]e] lele]e]

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)
An operator o of a prop. planning task is a STRIPS operator if

m pre(o) is a conjunction of state variables, and

m eff{0) is a conflict-free conjunction of atomic effects.

.

Definition (STRIPS Planning Task)

A propositional planning task (V/,/,0,v) is a STRIPS
planning task if all operators o € O are STRIPS operators
and «y is a conjunction of state variables.

.

Note: STRIPS operators are conflict-free and flat.
STRIPS is a special case of positive normal form.

Po rmal Form STRIPS

STRIPS Operators: Remarks

m Every STRIPS operator is of the form
(ViA- Ay N NLlp)

where v; are state variables and ¢; are atomic effects.
m Often, STRIPS operators o are described
via three sets of state variables:
m the preconditions (state variables occurring in pre(o))
m the add effects (state variables occurring positively in eff0))
m the delete effects (state variables occurring negatively in eff{0))
m Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.
m There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.

Normal Form

Why STRIPS is Interesting

STRIPS Summar,

[e]e]e]e] o]

m STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.
m In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapters B6-B7).
m Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)

ormal Form STRIPS
00000e

Transformation to STRIPS

m Not every operator is equivalent to a STRIPS operator.

m However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

m However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

m There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)

Summary

Summan
0

Summary

ormal Form S S Summary
o

Summary

A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

m A positive task with flat operators is in positive normal form.

m STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

m Both forms are expressive enough to capture
general propositional planning tasks.

m Transformation to positive normal form is possible
with polynomial size increase.

m Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

	Motivation
	

	Positive Normal Form
	

	STRIPS
	

	Summary
	

