
Planning and Optimization
A1. Organizational Matters

Malte Helmert and Gabriele Röger

Universität Basel

September 17, 2025

People & Coordinates Target Audience & Rules Course Content

Content of the Course

Planning

Prelude Organization

What is Planning?

Getting to Know
a Planner

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

People & Coordinates Target Audience & Rules Course Content

People & Coordinates

People & Coordinates Target Audience & Rules Course Content

People: Lecturers

Malte Helmert Gabriele Röger

Lecturers

Malte Helmert

email: malte.helmert@unibas.ch

office: room 06.004, Spiegelgasse 1

Gabriele Röger

email: gabriele.roeger@unibas.ch

office: room 04.005, Spiegelgasse 1

People & Coordinates Target Audience & Rules Course Content

People: Assistant

Tanja Schindler

Assistant

Tanja Schindler

email: tanja.schindler@unibas.ch

office: room 04.005, Spiegelgasse 1

People & Coordinates Target Audience & Rules Course Content

People: Tutors

Clemens Büchner Esther Mugdan

Tutors

Clemens Büchner

email: clemens.buechner@unibas.ch

office: room 04.001, Spiegelgasse 5

Esther Mugdan

email: esther.mugdan@unibas.ch

office: room 04.001, Spiegelgasse 5

People & Coordinates Target Audience & Rules Course Content

Time & Place

Lectures

time: Mon 14:15–16:00, Wed 14:15–16:00

place: room 00.003, Spiegelgasse 1

Exercise Sessions

time: Wed 16:15–18:00

place: room 00.003, Spiegelgasse 1

first exercise session: today

People & Coordinates Target Audience & Rules Course Content

Communication Channels

lecture sessions (Mon, Wed)

exercise sessions (Wed)

course homepage

ADAM workspace

Discord server (invitation link on ADAM workspace)

email

registration:

https://services.unibas.ch/

Please register today to receive all course-related emails!

https://services.unibas.ch/

People & Coordinates Target Audience & Rules Course Content

Planning and Optimization Course on the Web

Course Homepage

https://dmi.unibas.ch/en/studies/computer-science/

course-offer-fall-semester-25/

lecture-planning-and-optimization/

course information

slides

link to ADAM workspace

bonus materials (not relevant for the exam)

https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/

People & Coordinates Target Audience & Rules Course Content

Target Audience & Rules

People & Coordinates Target Audience & Rules Course Content

Target Audience

target audience:

M.Sc. Computer Science

Major in Machine Intelligence:
module Concepts of Machine Intelligence
module Methods of Machine Intelligence
Major in Distributed Systems:
module Applications of Distributed Systems

M.A. Computer Science (“Master-Studienfach”)
module Concepts of Machine Intelligence

M.Sc. Data Science: module Electives in Data Science

other students welcome

People & Coordinates Target Audience & Rules Course Content

Prerequisites

prerequisites:

general computer science background: good knowledge of

algorithms and data structures
complexity theory
mathematical logic
programming

background in Artificial Intelligence:

Foundations of Artificial Intelligence course (13548)
in particular chapters on state-space search

Gaps?
⇝ talk to us to discuss a self-study plan to catch up

People & Coordinates Target Audience & Rules Course Content

Exam

written examination (105 min)

date and time: January 28, 14:00–16:00

place: Biozentrum, room U1.131

8 ECTS credits

admission to exam: 50% of the exercise marks

final grade based on exam exclusively

no repeat exam (except in case of illness)

People & Coordinates Target Audience & Rules Course Content

Exercise Sheets

exercise sheets (homework assignments):

solved in groups of two or three (3 < 4), submitted in ADAM

weekly homework assignments

released Monday before the lecture
have questions or need help?
⇝ assistance provided in Wednesday exercises
not sure if you need help?
⇝ start before Wednesday!
due following Monday at 23:59

mixture of theory, programming and experiments

range from basic understanding to research-oriented

People & Coordinates Target Audience & Rules Course Content

Programming Exercises

programming exercises:

part of regular assignments

solutions that obviously do not work: 0 marks

work with existing C++ and Python code

People & Coordinates Target Audience & Rules Course Content

Exercise Sessions

exercise sessions:

ask questions about current assignments (and course)

work on homework assignments

discuss past homework assignments

People & Coordinates Target Audience & Rules Course Content

Plagiarism

Plagiarism

Plagiarism is presenting someone else’s work, ideas, or words
as your own, without proper attribution.

For example:

Using someone’s text without citation

Paraphrasing too closely

Using information from a source without attribution

Passing off AI-generated content as your own original work

Long-term impact:

You undermine your own learning.

You start to lose confidence in your ability to think, write,
and solve problems independently.

Damage to academic reputation and professional
consequences in future careers

People & Coordinates Target Audience & Rules Course Content

Plagiarism

Plagiarism

Plagiarism is presenting someone else’s work, ideas, or words
as your own, without proper attribution.

For example:

Using someone’s text without citation

Paraphrasing too closely

Using information from a source without attribution

Passing off AI-generated content as your own original work

Long-term impact:

You undermine your own learning.

You start to lose confidence in your ability to think, write,
and solve problems independently.

Damage to academic reputation and professional
consequences in future careers

People & Coordinates Target Audience & Rules Course Content

Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!

People & Coordinates Target Audience & Rules Course Content

Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!

People & Coordinates Target Audience & Rules Course Content

Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!

People & Coordinates Target Audience & Rules Course Content

Special Needs?

We (and the university) strive for equality of students
with disabilities or chronic illnesses.

Contact the lecturers for small adaptations.

Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.

People & Coordinates Target Audience & Rules Course Content

Course Content

People & Coordinates Target Audience & Rules Course Content

Learning Objectives

Learning Objectives

get to know theoretical and algorithmic foundations of
classical planning and work on practical implementations

understand fundamental concepts underlying modern planning
algorithms and theoretical relationships that connect them

become equipped to understand research papers
and conduct projects in this area

People & Coordinates Target Audience & Rules Course Content

Course Material

course material:

slides (online)

no textbook

additional material on request

People & Coordinates Target Audience & Rules Course Content

Git Repository

We use a git repository for programming exercises
and for demos during the lecture.

Setting up the repository is your first task for the exercises.

People & Coordinates Target Audience & Rules Course Content

Demo Examples

When working with the repository, go to its base directory:

Base Directory for Demos and Exercises

$ cd planopt-hs25

One-time demo set-up (from the base directory)
if the necessary software is installed on your machine:

Demo Set-Up

$ cd demo/fast-downward

$./build.py

People & Coordinates Target Audience & Rules Course Content

Under Construction. . .

Advanced courses are close to the frontiers of research
and therefore constantly change.

We are always happy about feedback,
corrections and suggestions!

Planning and Optimization
A2. What is Planning?

Malte Helmert and Gabriele Röger

Universität Basel

September 17, 2025

Planning Task Examples How Hard is Planning? Summary

Content of the Course

Planning

Prelude Organization

What is Planning?

Getting to Know
a Planner

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Planning Task Examples How Hard is Planning? Summary

Before We Start. . .

Prelude (Chapters A1–A3): very high-level intro to planning

our goal: give you a little feeling what planning is about

preface to the actual course

⇝ main course content (beginning with Chapter B1)
will be mathematically formal and rigorous

You can ignore the prelude when preparing for the exam.

Planning Task Examples How Hard is Planning? Summary

Planning

Planning Task Examples How Hard is Planning? Summary

General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created
in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell
intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle,
by GPS. [. . .]

GPS was the first computer program which separated its
knowledge of problems (rules represented as input data) from its
strategy of how to solve problems (a generic solver engine).

⇝ these days called “domain-independent automated planning”
⇝ this is what the course is about

Planning Task Examples How Hard is Planning? Summary

So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)

“Planning is the art and practice of thinking before acting.”
— Patrik Haslum

Automated Planning (More Technical Definition)

“Selecting a goal-leading course of action
based on a high-level description of the world.”

— Jörg Hoffmann

Domain-Independence of Automated Planning

Create one planning algorithm that performs sufficiently well
on many application domains (including future ones).

Planning Task Examples How Hard is Planning? Summary

General Perspective on Planning

Planning Task Examples How Hard is Planning? Summary

General Perspective on Planning

Planning Task Examples How Hard is Planning? Summary

General Perspective on Planning

Planning Task Examples How Hard is Planning? Summary

Example: Earth Observation

satellite takes images of patches on Earth

use weather forecast to optimize probability
of high-quality images

Planning Task Examples How Hard is Planning? Summary

Example: Termes

Harvard TERMES robots, based on termites

Planning Task Examples How Hard is Planning? Summary

Example: Cybersecurity

CALDERA automated adversary emulation system

Planning Task Examples How Hard is Planning? Summary

Example: Intelligent Greenhouse

photo © LemnaTec GmbH

Planning Task Examples How Hard is Planning? Summary

Example: Red-finned Blue-eye

Picture by Iadine Chadès

red-finned blue-eye population threatened by gambusia

springs connected probabilistically during rain season

find strategy to save red-finned blue-eye from extinction

Planning Task Examples How Hard is Planning? Summary

Classical Planning

Planning Task Examples How Hard is Planning? Summary

Model-based vs. Data-driven Approaches

Model-based approaches know
the “inner workings” of the world
⇝ reasoning

Data-driven approaches rely only
on collected data from a black-box world
⇝ learning

We focus on model-based approaches.

Planning Task Examples How Hard is Planning? Summary

Planning Tasks

input to a planning algorithm: planning task

initial state of the world

actions that change the state

goal to be achieved

output of a planning algorithm:

plan: sequence of actions taking initial state to a goal state

or confirmation that no plan exists

⇝ formal definitions later in the course

Planning Task Examples How Hard is Planning? Summary

The Planning Research Landscape

one of the major subfields of Artificial Intelligence (AI)

represented at major AI conferences (IJCAI, AAAI, ECAI)

annual specialized conference ICAPS (≈ 250 participants)

major journals: general AI journals (AIJ, JAIR)

Planning Task Examples How Hard is Planning? Summary

Classical Planning

This course covers classical planning:

offline (static)

discrete

deterministic

fully observable

single-agent

sequential (plans are action sequences)

domain-independent

This is just one facet of planning.

Many others are studied in AI. Algorithmic ideas often
(but not always) translate well to more general problems.

Planning Task Examples How Hard is Planning? Summary

More General Planning Topics

More general kinds of planning include:

offline: online planning; planning and execution

discrete: continuous planning (e.g., real-time/hybrid systems)

deterministic: FOND planning; probabilistic planning

single-agent: multi-agent planning; general game playing;
game-theoretic planning

fully observable: POND planning; conformant planning

sequential: e.g., temporal planning

Domain-dependent planning problems in AI include:

pathfinding, including grid-based and multi-agent (MAPF)

continuous motion planning

Planning Task Examples How Hard is Planning? Summary

Planning Task Examples

Planning Task Examples How Hard is Planning? Summary

Example: The Seven Bridges of Königsberg

image credits: Bogdan Giuşcă (public domain)

Demo

$ ls demo/koenigsberg

Planning Task Examples How Hard is Planning? Summary

Example: Intelligent Greenhouse

photo © LemnaTec GmbH

Demo

$ ls demo/ipc/scanalyzer-08-strips

Planning Task Examples How Hard is Planning? Summary

Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Demo Material

$ ls demo/ipc/freecell

Planning Task Examples How Hard is Planning? Summary

Many More Examples

Demo

$ ls demo/ipc

agricola-opt18-strips

agricola-sat18-strips

airport

airport-adl

assembly

barman-mco14-strips

barman-opt11-strips

barman-opt14-strips

. . .

⇝ (most) benchmarks of planning competitions IPC since 1998

Planning Task Examples How Hard is Planning? Summary

How Hard is Planning?

Planning Task Examples How Hard is Planning? Summary

Classical Planning as State-Space Search

classical planning as state-space search:

⇝ much more on this later in the course

Planning Task Examples How Hard is Planning? Summary

Is Planning Difficult?

Classical planning is computationally challenging:

number of states grows exponentially with description size
when using (propositional) logic-based representations

provably hard (PSPACE-complete)

⇝ we prove this later in the course

problem sizes:

Seven Bridges of Königsberg: 64 reachable states

Rubik’s Cube: 4.325 · 1019 reachable states
⇝ consider 2 billion/second ⇝ 1 billion years

standard benchmarks: some with > 10200 reachable states

Planning Task Examples How Hard is Planning? Summary

Summary

Planning Task Examples How Hard is Planning? Summary

Summary

planning = thinking before acting

major subarea of Artificial Intelligence

domain-independent planning = general problem solving

classical planning = the “easy case”
(deterministic, fully observable etc.)

still hard enough!
⇝ PSPACE-complete because of huge number of states

often solved by state-space search

number of states grows exponentially with input size

Planning and Optimization
A3. Getting to Know a Planner

Malte Helmert and Gabriele Röger

Universität Basel

September 22, 2025

Fast Downward and VAL 15-Puzzle Summary

Content of the Course

Planning

Prelude Organization

What is Planning?

Getting to Know
a Planner

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Fast Downward and VAL 15-Puzzle Summary

Fast Downward and VAL

Fast Downward and VAL 15-Puzzle Summary

Getting to Know a Planner

We now play around a bit with a planner and its input:

look at problem formulation

run a planner (= planning system/planning algorithm)

validate plans found by the planner

Fast Downward and VAL 15-Puzzle Summary

Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

because we know it well (developed by our research group)

because it implements many search algorithms and heuristics

because it is the classical planner most commonly used
as a basis for other planners

⇝ https://www.fast-downward.org

https://www.fast-downward.org

Fast Downward and VAL 15-Puzzle Summary

Validator: VAL

VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

very useful debugging tool

https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL

Fast Downward and VAL 15-Puzzle Summary

15-Puzzle

Fast Downward and VAL 15-Puzzle Summary

Illustrating Example: 15-Puzzle

9 2 12 7

5 6 14 13

3 11 1

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Fast Downward and VAL 15-Puzzle Summary

Solving the 15-Puzzle

Demo

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzle01.pddl

$./fast-downward.py \

tile/puzzle.pddl tile/puzzle01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

$ validate tile/puzzle.pddl tile/puzzle01.pddl \

sas_plan

. . .

Fast Downward and VAL 15-Puzzle Summary

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:

moving different tiles has different cost

cost of moving tile x = number of prime factors of x

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzle01.pddl tile/weight01.pddl

$./fast-downward.py \

tile/weight.pddl tile/weight01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Fast Downward and VAL 15-Puzzle Summary

Variation: Glued 15-Puzzle

Glued 15-Puzzle:

some tiles are glued in place and cannot be moved

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/glued.pddl

$ meld tile/puzzle01.pddl tile/glued01.pddl

$./fast-downward.py \

tile/glued.pddl tile/glued01.pddl \

--heuristic "h=cg()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Note: different heuristic used!

Fast Downward and VAL 15-Puzzle Summary

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzle01.pddl tile/cheat01.pddl

$./fast-downward.py \

tile/cheat.pddl tile/cheat01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Fast Downward and VAL 15-Puzzle Summary

Summary

Fast Downward and VAL 15-Puzzle Summary

Summary

We saw planning tasks modeled in the PDDL language.

We ran the Fast Downward planner and VAL plan validator.

We made some modifications to PDDL problem formulations
and checked the impact on the planner.

Planning and Optimization
B1. Transition Systems and Propositional Logic

Malte Helmert and Gabriele Röger

Universität Basel

September 22, 2025

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Next Steps

Our next steps are to formally define our problem:

introduce a mathematical model for planning tasks:
transition systems
⇝ Chapter B1

introduce compact representations for planning tasks
suitable as input for planning algorithms
⇝ Chapter B2

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition Systems

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Example

Transition systems are often depicted as directed arc-labeled
graphs with decorations to indicate the initial state and goal states.

ℓ1

ℓ1

ℓ1

ℓ1

ℓ3
ℓ3

ℓ2

ℓ4

ℓ3

ℓ4

ℓ4

ℓ4

ℓ2 ℓ2

c(ℓ1) = 1, c(ℓ2) = 1, c(ℓ3) = 5, c(ℓ4) = 0

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = ⟨S , L, c ,T , s0, S⋆⟩ where
S is a finite set of states,

L is a finite set of (transition) labels,

c : L → R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s ′⟩ if ⟨s, ℓ, s ′⟩ ∈ T .

We also write this as s
ℓ−→ s ′, or s → s ′ when not interested in ℓ.

Note: Transition systems are also called state spaces.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Deterministic Transition Systems

Definition (Deterministic Transition System)

A transition system is called deterministic if for all states s

and all labels ℓ, there is at most one state s ′ with s
ℓ−→ s ′.

Example: previously shown transition system

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (1)

We use common terminology from graph theory:

s ′ successor of s if s → s ′

s predecessor of s ′ if s → s ′

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (2)

We use common terminology from graph theory:

s ′ reachable from s if there exists a sequence of transitions

s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn s.t. s0 = s and sn = s ′

Note: n = 0 possible; then s = s ′

s0, . . . , sn is called (state) path from s to s ′

ℓ1, . . . , ℓn is called (label) path from s to s ′

s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn is called trace from s to s ′

length of path/trace is n
cost of label path/trace is

∑n
i=1 c(ℓi)

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Transition System Terminology (3)

We use common terminology from graph theory:

s ′ reachable (without reference state) means
reachable from initial state s0
solution or goal path from s: path from s to some s ′ ∈ S⋆

if s is omitted, s = s0 is implied

transition system solvable if a goal path from s0 exists

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Example: Blocks World

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Running Example: Blocks World

Throughout the course, we occasionally use
the blocks world domain as an example.

In the blocks world, a number of different blocks
are arranged on a table.

Our job is to rearrange them according to a given goal.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Rules (1)

Location on the table does not matter.

≡

Location on a block does not matter.

≡

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Computational Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

Finding a shortest solution is NP-complete
given a compact description of the problem.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

The Need for Compact Descriptions

We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

We therefore need compact descriptions of transition systems.

For this purpose, we will use propositional logic,
which allows expressing information about 2n states
as logical formulas over n state variables.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Reminder: Propositional Logic

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

More on Propositional Logic

Need to Catch Up?

This section is a reminder. We assume you are already
well familiar with propositional logic.

If this is not the case, we recommend Chapters D1–D4
of the Discrete Mathematics in Computer Science course:
https://dmi.unibas.ch/en/studies/
computer-science/course-offer-hs24/
lecture-discrete-mathematics-in-computer-science/

Videos for these chapters are available on request.

https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Syntax of Propositional Logic

Definition (Logical Formula)

Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

⊤ and ⊥ are logical formulas (truth and falsity).

For all a ∈ A, a is a logical formula (atom).

If φ is a logical formula, then so is ¬φ (negation).

If φ and ψ are logical formulas, then so are
(φ ∨ ψ) (disjunction) and (φ ∧ ψ) (conjunction).

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Syntactical Conventions for Propositional Logic

Abbreviations:

(φ→ ψ) is short for (¬φ ∨ ψ) (implication)

(φ↔ ψ) is short for ((φ→ ψ) ∧ (ψ → φ)) (equijunction)

parentheses omitted when not necessary:

(¬) binds more tightly than binary connectives
(∧) binds more tightly than (∨),
which binds more tightly than (→),
which binds more tightly than (↔)

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Semantics of Propositional Logic

Definition (Interpretation, Model)

An interpretation of propositions A is a function I : A → {T,F}.

Define the notation I |= φ (I satisfies φ; I is a model of φ;
φ is true under I) for interpretations I and formulas φ by

I |= ⊤
I ̸|= ⊥
I |= a iff I (a) = T (for all a ∈ A)

I |= ¬φ iff I ̸|= φ

I |= (φ ∨ ψ) iff (I |= φ or I |= ψ)

I |= (φ ∧ ψ) iff (I |= φ and I |= ψ)

Note: Interpretations are also called valuations

Note:

or truth assignments.

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Propositional Logic Terminology (1)

A logical formula φ is satisfiable
if there is at least one interpretation I such that I |= φ.

Otherwise it is unsatisfiable.

A logical formula φ is valid or a tautology
if I |= φ for all interpretations I .

A logical formula ψ is a logical consequence
of a logical formula φ, written φ |= ψ,
if I |= ψ for all interpretations I with I |= φ.

Two logical formulas φ and ψ are logically equivalent,
written φ ≡ ψ, if φ |= ψ and ψ |= φ.

Question: How to phrase these in terms of models?

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Propositional Logic Terminology (2)

A logical formula that is a proposition a or a negated
proposition ¬a for some atomic proposition a ∈ A is a literal.

A formula that is a disjunction of literals is a clause.
This includes unit clauses ℓ consisting of a single literal
and the empty clause ⊥ consisting of zero literals.

A formula that is a conjunction of literals is a monomial.
This includes unit monomials ℓ consisting of a single literal
and the empty monomial ⊤ consisting of zero literals.

Normal forms:

negation normal form (NNF)

conjunctive normal form (CNF)

disjunctive normal form (DNF)

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Summary

Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Summary

Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.

Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.

Planning and Optimization
B2. Introduction to Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

September 24, 2025

Introduction State Variables State Formulas Operators and Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Introduction State Variables State Formulas Operators and Effects Summary

Introduction

Introduction State Variables State Formulas Operators and Effects Summary

The State Explosion Problem

We saw in blocks world:
n blocks ⇝ number of states exponential in n

same is true everywhere we look

known as the state explosion problem

To represent transitions systems compactly,
need to tame these exponentially growing aspects:

states

goal states

transitions

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Transition System

s0 s2

s1

s3

s4

s5

s6

s7

s8

s9

s10

s11

s13

s12

s14

s15

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u
m

2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

c(m1) = 5, c(m2) = 5, c(l1) = 1, c(l2) = 1, c(u) = 1

Introduction State Variables State Formulas Operators and Effects Summary

State Variables

Introduction State Variables State Formulas Operators and Effects Summary

Compact Descriptions of Transition Systems

How to specify huge transition systems
without enumerating the states?

represent different aspects of the world
in terms of different (propositional) state variables

individual state variables are atomic propositions
⇝ a state is an interpretation of state variables

n state variables induce 2n states
⇝ exponentially more compact than “flat” representations

Example: n2 variables suffice for blocks world with n blocks

Introduction State Variables State Formulas Operators and Effects Summary

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

A
B

C

⇝ 9 variables for 3 blocks

Introduction State Variables State Formulas Operators and Effects Summary

Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V , i.e.,
a truth assignment s : V → {T,F}.

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Compact State Descriptions

In the running example, we describe 16 states
with 4 propositional state variables (24 = 16).

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Opaque States

s0 s2

s1

s3

s4

s5

s6

s7

s8

s9

s10

s11

s13

s12

s14

s15

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u
m

2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Using State Variables

state variables V = {i ,w , t1, t2}

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u
m

2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

states shown by true literals
example: {i 7→ T,w 7→ F, t1 7→ T, t2 7→ F}⇝ i ¬w t1 ¬t2

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R

transition labels:

m1/m2: move first/second truck

l1/l2: load package into first/second truck

u: unload package from a truck

state variables:

t1 true if first truck is at location L (else at R)

t2 true if second truck is at location L (else at R)

i true if package is inside a truck

w encodes where exactly the package is:

if i is true, w true if package in first truck
if i is false, w true if package at location L

Introduction State Variables State Formulas Operators and Effects Summary

State Formulas

Introduction State Variables State Formulas Operators and Effects Summary

Representing Sets of States

How do we compactly represent sets of states,
for example the set of goal states?

Idea: formula φ over the state variables represents the models of φ.

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Representing Goal States

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

goal formula γ = ¬i ∧ ¬w represents goal states S⋆

Introduction State Variables State Formulas Operators and Effects Summary

Operators and Effects

Introduction State Variables State Formulas Operators and Effects Summary

Operators Representing Transitions

How do we compactly represent transitions?

most complex aspect of a planning task

central concept: operators

Idea: one operator o for each transition label ℓ, describing

in which states s a transition s
ℓ−→ s ′ exists (precondition)

how state s ′ differs from state s (effect)

what the cost of ℓ is

Introduction State Variables State Formulas Operators and Effects Summary

Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

a precondition pre(o), a formula over V

an effect eff(o) over V , defined later in this chapter

a cost cost(o) ∈ R+
0

Notes:

Operators are also called actions.

Operators are often written as triples ⟨pre(o), eff(o), cost(o)⟩.
This can be abbreviated to pairs ⟨pre(o), eff(o)⟩
when the cost of the operator is irrelevant.

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(m1) = ⊤

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m 1

m 1

m
1

m
1

m
1

m
1m 1

m 1

m
1

m
1

m
1

m
1

m
1

m
1

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(m2) = ⊤

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2
m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(u) = i

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

u

u

u

u

u

u

u

u

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(l1) = ¬i ∧ (w ↔ t1)

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
t1 t2

¬i w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

l1

l1

l1

l1

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(l2) = ¬i ∧ (w ↔ t2)

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
t1 t2

¬i w
¬t1 t2

¬i ¬w
¬t1¬t2

¬i ¬w
t1 ¬t2

l2

l2

l2

l2

Introduction State Variables State Formulas Operators and Effects Summary

Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that ((e ∧ e ′) ∧ e ′′) behaves identically

Example:

to (e ∧ (e ′ ∧ e ′′)) and will write this as e ∧ e ′ ∧ e ′′.

Introduction State Variables State Formulas Operators and Effects Summary

Effects: Intuition

Intuition for effects:

The empty effect ⊤ changes nothing.

Atomic effects can be understood as assignments
that update the value of a state variable.

v means “v := T”
¬v means “v := F”

A conjunctive effect e = (e ′ ∧ e ′′) means that both subeffects
e and e ′ take place simultaneously.

A conditional effect e = (χ ▷ e ′) means that subeffect e ′

takes place iff χ is true in the state where e takes place.

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Effects

eff(l1) = (i ∧ w)

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
t1 t2

¬i w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i w
¬t1 t2

i w
¬t1¬t2l1

l1

l1

l1

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Effects

eff(l2) = (i ∧ ¬w)

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
t1 t2

¬i w
¬t1 t2

¬i ¬w
¬t1¬t2

¬i ¬w
t1 ¬t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

l2

l2

l2

l2

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Effects

eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1))

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m 1

m 1

m
1

m
1

m
1

m
1m 1

m 1

m
1

m
1

m
1

m
1

m
1

m
1

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Effects

eff(m2) = ((t2 ▷ ¬t2) ∧ (¬t2 ▷ t2))

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2
m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2

Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Effects

eff(u) = ¬i ∧ (w ▷ ((t1 ▷ w) ∧ (¬t1 ▷ ¬w)))
∧ (¬w ▷ ((t2 ▷ w) ∧ (¬t2 ▷ ¬w)))

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

u

u

u

u

u

u

u

u

Introduction State Variables State Formulas Operators and Effects Summary

Summary

Introduction State Variables State Formulas Operators and Effects Summary

Summary

Propositional state variables let us compactly describe
properties of large transition systems.

A state is an assignment to a set of state variables.

Sets of states are represented as formulas over state variables.

Operators describe when (precondition), how (effect)
and at which cost the state of the world can be changed.

Effects are structured objects including
empty, atomic, conjunctive and conditional effects.

Planning and Optimization
B3. Formal Definition of Planning

Malte Helmert and Gabriele Röger

Universität Basel

September 24, 2025

Semantics of Effects and Operators Planning Tasks Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Semantics of Effects and Operators Planning Tasks Summary

Semantics of Effects and Operators

Semantics of Effects and Operators Planning Tasks Summary

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)

Let ℓ be an atomic effect, and let e be an effect.

The effect condition effcond(ℓ, e) under which ℓ triggers
given the effect e is a propositional formula defined as follows:

effcond(ℓ,⊤) = ⊥
effcond(ℓ, e) = ⊤ for the atomic effect e = ℓ

effcond(ℓ, e) = ⊥ for all atomic effects e = ℓ′ ̸= ℓ

effcond(ℓ, (e ∧ e ′)) = (effcond(ℓ, e) ∨ effcond(ℓ, e ′))

effcond(ℓ, (χ ▷ e)) = (χ ∧ effcond(ℓ, e))

Intuition: effcond(ℓ, e) represents the condition that must be true
in the current state for the effect e to lead to the atomic effect ℓ

Semantics of Effects and Operators Planning Tasks Summary

Effect Condition: Example (1)

Example

Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).

Under which conditions does it set t1 to false?

effcond(¬t1, eff(m1)) = effcond(¬t1, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))

= effcond(¬t1, (t1 ▷ ¬t1)) ∨

=

effcond(¬t1, (¬t1 ▷ t1))

= (t1 ∧ effcond(¬t1,¬t1)) ∨

=

(¬t1 ∧ effcond(¬t1, t1))
= (t1 ∧ ⊤) ∨ (¬t1 ∧ ⊥)

≡ t1 ∨ ⊥
≡ t1

Semantics of Effects and Operators Planning Tasks Summary

Effect Condition: Example (2)

Example

Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).

Under which conditions does it set i to true?

effcond(i , eff(m1)) = effcond(i , ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))

= effcond(i , (t1 ▷ ¬t1)) ∨

=

effcond(i , (¬t1 ▷ t1))

= (t1 ∧ effcond(i ,¬t1)) ∨

=

(¬t1 ∧ effcond(i , t1))

= (t1 ∧ ⊥) ∨ (¬t1 ∧ ⊥)

≡ ⊥ ∨⊥
≡ ⊥

Semantics of Effects and Operators Planning Tasks Summary

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written sJeK,
is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e)

∧ ¬effcond(v , e)

s(v) otherwise

What is the problem with this definition?

Semantics of Effects and Operators Planning Tasks Summary

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written sJeK,
is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)
s(v) otherwise

What is the problem with this definition?

Semantics of Effects and Operators Planning Tasks Summary

Add-after-Delete Semantics

Note:

The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

This is called add-after-delete semantics.

This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.

Semantics of Effects and Operators Planning Tasks Summary

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V , and let o be an operator over V .

Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state sJeff(o)K.

Semantics of Effects and Operators Planning Tasks Summary

Planning Tasks

Semantics of Effects and Operators Planning Tasks Summary

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple Π = ⟨V , I ,O, γ⟩ where
V is a finite set of propositional state variables,

I is an interpretation of V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.

Semantics of Effects and Operators Planning Tasks Summary

Running Example: Planning Task

Example

From the previous chapter, we see that the running example
can be represented by the task Π = ⟨V , I ,O, γ⟩ with

V = {i ,w , t1, t2}
I = {i 7→ F,w 7→ T, t1 7→ F, t2 7→ F}
O = {m1,m2, l1, l2, u} where

m1 = ⟨⊤, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)), 5⟩
m2 = ⟨⊤, ((t2 ▷ ¬t2) ∧ (¬t2 ▷ t2)), 5⟩
l1 = ⟨¬i ∧ (w ↔ t1), (i ∧ w), 1⟩
l2 = ⟨¬i ∧ (w ↔ t2), (i ∧ ¬w), 1⟩
u = ⟨i ,¬i ∧ (w ▷ ((t1 ▷ w) ∧ (¬t1 ▷ ¬w)))

∧ (¬w ▷ ((t2 ▷ w) ∧ (¬t2 ▷ ¬w))), 1⟩
γ = ¬i ∧ ¬w

Semantics of Effects and Operators Planning Tasks Summary

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.

Semantics of Effects and Operators Planning Tasks Summary

Planning Tasks: Terminology

Terminology for transitions systems is also applied
to the planning tasks Π that induce them.

For example, when we speak of the states of Π,
we mean the states of T (Π).

A sequence of operators that forms a solution of T (Π)
is called a plan of Π.

Semantics of Effects and Operators Planning Tasks Summary

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π,

or unsolvable if no plan for Π exists

Semantics of Effects and Operators Planning Tasks Summary

Summary

Semantics of Effects and Operators Planning Tasks Summary

Summary

Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

A planning task consists of a set of state variables and an
initial state, operators and goal over these state variables.

We gave formal definitions for these concepts.

In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

Planning and Optimization
B4. Equivalent Operators and Normal Forms

Malte Helmert and Gabriele Röger

Universität Basel

September 29, 2025

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder & Motivation

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
e.g. c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷ ¬a)

⇝ Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Semantics of Effects

effcond(ℓ, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ℓ

add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v , e) and s |= effcond(¬v , e),
then s ′(v) = T in the resulting state s ′.

This is a very subtle detail.
⇝ Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Notation: Applying Operator Sequences

Existing notation:

We already write sJoK for the resulting state
after applying operator o in state s.

New extended notation:

For a sequence π = ⟨o1, . . . , on⟩ of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.
This includes the case of an empty operator sequence:
sJ⟨⟩K = s

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and e ′ over state variables V are equivalent,
written e ≡ e ′, if sJeK = sJe ′K for all states s.

Definition (Equivalent Operators)

Two operators o and o ′ over state variables V are equivalent,
written o ≡ o ′, if cost(o) = cost(o ′) and for all states s, s ′ over V ,

o induces the transition s
o−→ s ′ iff o ′ induces the transition s

o′
−→ s ′.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Theorem

Theorem

Let o and o ′ be operators with pre(o) ≡ pre(o ′), eff(o) ≡ eff(o ′)
and cost(o) = cost(o ′). Then o ≡ o ′.

Note: The converse is not true. (Why not?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations for Effects

e ∧ e′ ≡ e′ ∧ e (1)

(e ∧ e′) ∧ e′′ ≡ e ∧ (e′ ∧ e′′) (2)

⊤ ∧ e ≡ e (3)

χ ▷ e ≡ χ′ ▷ e if χ ≡ χ′ (4)

⊤ ▷ e ≡ e (5)

⊥ ▷ e ≡ ⊤ (6)

χ ▷ (χ′ ▷ e) ≡ (χ ∧ χ′) ▷ e (7)

χ ▷ (e ∧ e′) ≡ (χ ▷ e) ∧ (χ ▷ e′) (8)

(χ ▷ e) ∧ (χ′ ▷ e) ≡ (χ ∨ χ′) ▷ e (9)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Operators

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Freeness: Motivation

The add-after-delete semantics makes effects like
(a ▷ c) ∧ (b ▷ ¬c) somewhat unintuitive to interpret.

⇝ What happens in states where a ∧ b is true?

It would be nicer if effcond(ℓ, e) always were the condition
under which the atomic effect ℓ actually materializes
(because of add-after-delete, it is not)

⇝ introduce normal form where “complicated case” never arises

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v , e) ∧ effcond(¬v , e)
is unsatisfiable for all v ∈ V .

An operator o is called conflict-free if eff(o) is conflict-free.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Making Operators Conflict-Free

In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)

However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.

Algorithm: given operator o, replace all atomic effects
of the form ¬v by (¬effcond(v , eff(o)) ▷ ¬v).
The resulting operator o ′ is conflict-free and o ≡ o ′. (Why?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects: Motivation

CNF and DNF limit the nesting of connectives
in propositional logic.

For example, a CNF formula is

a conjunction of 0 or more subformulas,
each of which is a disjunction of 0 or more subformulas,
each of which is a literal.

Similarly, we can define a normal form that limits
the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect
or of the form (χ ▷ e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff(o) is flat.

Notes: analogously to CNF, we consider

a single simple effect as a conjunction of 1 simple effect

the empty effect as a conjunction of 0 simple effects

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect: Example

Example

Consider the effect

c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷¬a)

An equivalent flat (and conflict-free) effect is

c ∧
((a ∧ ¬c) ▷ ¬b) ∧
((a ∧ c) ▷ b) ∧
((a ∧ c) ▷ ¬d) ∧

((¬b ∨ (a ∧ c)) ▷ ¬a)

Note: if we want, we can write c as (⊤ ▷ c) to make the structure
even more uniform, with each simple effect having a condition.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators

Theorem

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators: Proof

Proof Sketch.

Replace the effect e over variables V by∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V (effcond(¬v , e) ▷ ¬v),

which is an equivalent flat effect.

To additionally obtain conflict-freeness, use∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V ((effcond(¬v , e) ∧ ¬effcond(v , e)) ▷ ¬v)

instead.

(Conjuncts of the form (χ ▷ e) where χ ≡ ⊥
can be omitted to simplify the effect.)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Equivalences can be used to simplify operators and effects.

In conflict-free operators, the “complicated case”
of operator semantics does not arise.

For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.

Planning and Optimization
B5. Positive Normal Form and STRIPS

Malte Helmert and Gabriele Röger

Universität Basel

September 29, 2025

Motivation Positive Normal Form STRIPS Summary

Motivation

Motivation Positive Normal Form STRIPS Summary

Example: Freecell

Example (Good and Bad Effects)

If we move K♢ to a free tableau position,
the good effect is that 4♣ is now accessible.
The bad effect is that we lose one free tableau position.

Motivation Positive Normal Form STRIPS Summary

What is a Good or Bad Effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:

Locking our door is good if we want to keep burglars out.

Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form

Motivation Positive Normal Form STRIPS Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Motivation Positive Normal Form STRIPS Summary

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula φ is positive if no negation symbols appear in φ.

Note: This includes the negation symbols implied by → and ↔.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff(o) are positive.

Definition (Positive Propositional Planning Task)

A propositional planning task ⟨V , I ,O, γ⟩ is positive
if all operators in O and the goal γ are positive.

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify state variable v occurring negatively in conditions.

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce new variable v̂ with complementary initial value.

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify effects on variable v .

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce complementary effects for v̂ .

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify negative conditions for v .

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Replace by positive condition v̂ .

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task Π, there is an equivalent
propositional planning task Π′ in positive normal form.
Moreover, Π′ can be computed from Π in polynomial time.

Note: Equivalence here means that the transition systems induced
by Π and Π′, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)

Motivation Positive Normal Form STRIPS Summary

Positive Normal Form: Algorithm

Transformation of ⟨V , I ,O, γ⟩ to Positive Normal Form

Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬v :

Let v be a variable which occurs negatively in a condition.
V := V ∪ {v̂} for some new propositional state variable v̂

I (v̂) :=

{
F if I (v) = T

T if I (v) = F

Replace the effect v by (v ∧ ¬v̂) in all operators o ∈ O.
Replace the effect ¬v by (¬v ∧ v̂) in all operators o ∈ O.
Replace ¬v by v̂ in all conditions.

Convert all operators o ∈ O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.

Motivation Positive Normal Form STRIPS Summary

Why Positive Normal Form is Interesting

In the absence of conditional effects, positive normal form allows
us to distinguish good and bad effects easily:

Effects that make state variables true
(add effects) are good.

Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study in Part D.

(Why restriction “in the absence of conditional effects”?)

Motivation Positive Normal Form STRIPS Summary

STRIPS

Motivation Positive Normal Form STRIPS Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Motivation Positive Normal Form STRIPS Summary

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)

An operator o of a prop. planning task is a STRIPS operator if

pre(o) is a conjunction of state variables, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task ⟨V , I ,O, γ⟩ is a STRIPS
planning task if all operators o ∈ O are STRIPS operators
and γ is a conjunction of state variables.

Note: STRIPS operators are conflict-free and flat.

Note:

STRIPS is a special case of positive normal form.

Motivation Positive Normal Form STRIPS Summary

STRIPS Operators: Remarks

Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vn, ℓ1 ∧ · · · ∧ ℓm⟩

where vi are state variables and ℓj are atomic effects.

Often, STRIPS operators o are described
via three sets of state variables:

the preconditions (state variables occurring in pre(o))
the add effects (state variables occurring positively in eff(o))
the delete effects (state variables occurring negatively in eff(o))

Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.

There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.

Motivation Positive Normal Form STRIPS Summary

Why STRIPS is Interesting

STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapters B6–B7).

Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STRIPS

STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)

Motivation Positive Normal Form STRIPS Summary

Transformation to STRIPS

Not every operator is equivalent to a STRIPS operator.

However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)

Motivation Positive Normal Form STRIPS Summary

Summary

Motivation Positive Normal Form STRIPS Summary

Summary

A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

A positive task with flat operators is in positive normal form.

STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

Both forms are expressive enough to capture
general propositional planning tasks.

Transformation to positive normal form is possible
with polynomial size increase.

Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

Planning and Optimization
B6. Computational Complexity of Planning: Background

Malte Helmert and Gabriele Röger

Universität Basel

October 1, 2025

Motivation Turing Machines Complexity Classes Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Motivation Turing Machines Complexity Classes Summary

Motivation

Motivation Turing Machines Complexity Classes Summary

How Difficult is Planning?

Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

⇝ Do non-exponential planning algorithms exist?

⇝ What is the precise computational complexity of planning?

Motivation Turing Machines Complexity Classes Summary

Why Computational Complexity?

understand the problem

know what is not possible

find interesting subproblems that are easier to solve

distinguish essential features from syntactic sugar

Is STRIPS planning easier than general planning?

Motivation Turing Machines Complexity Classes Summary

Reminder: Complexity Theory

Need to Catch Up?

We assume knowledge of complexity theory:

languages and decision problems
Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
complexity classes: P, NP, PSPACE
polynomial reductions

If you are not familiar with these topics, we recommend
Chapters B11, D1–D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-fs25/

10948-main-lecture-theory-of-computer-science/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/

Motivation Turing Machines Complexity Classes Summary

Turing Machines

Motivation Turing Machines Complexity Classes Summary

Turing Machines: Conceptually

. . . □ □ □ b a c a c a c a □ □ . . .

infinite tape

read-write head

Motivation Turing Machines Complexity Classes Summary

Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
⟨Σ,□,Q, q0, qY, δ⟩ with the following components:

input alphabet Σ and blank symbol □ /∈ Σ

alphabets always nonempty and finite
tape alphabet Σ□ = Σ ∪ {□}

finite set Q of internal states with initial state q0 ∈ Q
and accepting state qY ∈ Q

nonterminal states Q ′ := Q \ {qY}
transition relation δ : (Q ′ × Σ□) → 2Q×Σ□×{−1,+1}

Deterministic Turing machine (DTM):
|δ(q, s)| = 1 for all ⟨q, s⟩ ∈ Q ′ × Σ□

Motivation Turing Machines Complexity Classes Summary

Turing Machines: Accepted Words

Initial configuration

state q0
input word on tape, all other tape cells contain □
head on first symbol of input word

Step

If in state q, reading symbol s, and ⟨q′, s ′, d⟩ ∈ δ(q, s) then
the NTM can transition to state q′, replacing s with s ′ and
moving the head one cell to the left/right (d = −1/+1).

Input word (∈ Σ∗) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state qY.

Motivation Turing Machines Complexity Classes Summary

Complexity Classes

Motivation Turing Machines Complexity Classes Summary

Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let f : N0 → N0.

A NTM accepts language L ⊆ Σ∗ in time f if it accepts each w ∈ L
within f (|w |) steps and does not accept any w /∈ L (in any time).

It accepts language L ⊆ Σ∗ in space f if it accepts each w ∈ L
using at most f (|w |) tape cells and does not accept any w /∈ L.

Motivation Turing Machines Complexity Classes Summary

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

Motivation Turing Machines Complexity Classes Summary

Polynomial Time and Space Classes

Let P be the set of polynomials p : N0 → N0

whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P =
⋃

p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)

Motivation Turing Machines Complexity Classes Summary

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.

P ⊆ NP and PSPACE ⊆ NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch’s theorem (Savitch 1970).

Motivation Turing Machines Complexity Classes Summary

Summary

Motivation Turing Machines Complexity Classes Summary

Summary

We recalled the definitions of the most important
complexity classes from complexity theory:

P: decision problems solvable in polynomial time
NP: decision problems solvable in polynomial time
by nondeterministic algorithms
PSPACE: decision problems solvable in polynomial space
NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

These classes are related by P ⊆ NP ⊆ PSPACE = NPSPACE.

Planning and Optimization
B7. Computational Complexity of Planning: Results

Malte Helmert and Gabriele Röger

Universität Basel

October 1, 2025

Plan Existence PSPACE-Completeness More Complexity Results Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Plan Existence PSPACE-Completeness More Complexity Results Summary

(Bounded-Cost) Plan Existence

Plan Existence PSPACE-Completeness More Complexity Results Summary

Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PlanEx) is the following decision problem:

Given: planning task Π
Question: Is there a plan for Π?

⇝ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPlanEx)
is the following decision problem:

Given: planning task Π, cost bound K ∈ N0

Question: Is there a plan for Π with cost at most K?

⇝ decision problem analogue of optimal planning

Plan Existence PSPACE-Completeness More Complexity Results Summary

Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PlanEx to BCPlanEx)

PlanEx ≤p BCPlanEx

Proof.

Consider a planning task Π with state variables V .

Let cmax be the maximal cost of all operators of Π.

Compute the number of states of Π as N = 2|V |.

Π is solvable iff there is solution with cost at most cmax · (N − 1)
because a solution need not visit any state twice.

⇝ map instance Π of PlanEx to instance ⟨Π, cmax · (N − 1)⟩

⇝

of BCPlanEx

⇝ polynomial reduction

Plan Existence PSPACE-Completeness More Complexity Results Summary

PSPACE-Completeness of Planning

Plan Existence PSPACE-Completeness More Complexity Results Summary

Membership in PSPACE

Theorem

BCPlanEx ∈ PSPACE

Proof.

Show BCPlanEx ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(⟨V , I ,O, γ⟩, K):
s := I
k := K
loop forever:

if s |= γ: accept
guess o ∈ O
if o is not applicable in s: fail
if cost(o) > k : fail
s := sJoK
k := k − cost(o)

Plan Existence PSPACE-Completeness More Complexity Results Summary

PSPACE-Hardness

Idea: generic reduction

For an arbitrary fixed DTM M with space bound polynomial p
and input w , generate propositional planning task
which is solvable iff M accepts w in space p(|w |).
Without loss of generality, we assume p(n) ≥ n for all n.

Plan Existence PSPACE-Completeness More Complexity Results Summary

Reduction: State Variables

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

State Variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {−p(n)− 1, p(n) + 1}
contenti ,a for all i ∈ X , a ∈ Σ□

⇝ allows encoding a Turing machine configuration

Plan Existence PSPACE-Completeness More Complexity Results Summary

Reduction: Initial State

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Initial State

Initially true:

stateq0
head1

contenti ,wi
for all i ∈ {1, . . . , n}

contenti ,□ for all i ∈ X \ {1, . . . , n}
Initially false:

all others

Plan Existence PSPACE-Completeness More Complexity Results Summary

Reduction: Operators

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Operators

One operator for each transition rule δ(q, a) = ⟨q′, a′, d⟩
and each cell position i ∈ X :

precondition: stateq ∧ headi ∧ contenti ,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a
∧ stateq′ ∧ headi+d ∧ contenti ,a′

Note that add-after-delete semantics are important here!

Plan Existence PSPACE-Completeness More Complexity Results Summary

Reduction: Goal

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Goal

stateqY

Plan Existence PSPACE-Completeness More Complexity Results Summary

PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.

Membership for BCPlanEx was already shown.

Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PlanEx and hardness for BCPlanEx follow
from the polynomial reduction from PlanEx to BCPlanEx.

Plan Existence PSPACE-Completeness More Complexity Results Summary

More Complexity Results

Plan Existence PSPACE-Completeness More Complexity Results Summary

More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

different planning formalisms

e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

syntactic restrictions of planning tasks

e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

semantic restrictions of planning task

e.g., restricting variable dependencies (“causal graphs”)

particular planning domains

e.g., Blocksworld, Logistics, FreeCell

Plan Existence PSPACE-Completeness More Complexity Results Summary

Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:

nondeterministic effects:

fully observable: EXP-complete (Littman, 1997)
unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
partially observable: 2-EXP-complete (Rintanen, 2004)

schematic operators:

usually adds one exponential level to PlanEx complexity
e.g., classical case EXPSPACE-complete (Erol et al., 1995)

numerical state variables:

undecidable in most variations (Helmert, 2002)
decidable in restricted setting with at most two
numeric state variables (Helal and Lakemeyer, 2025)

Plan Existence PSPACE-Completeness More Complexity Results Summary

Summary

Plan Existence PSPACE-Completeness More Complexity Results Summary

Summary

Classical planning is PSPACE-complete.

This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).

The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:

DTM configurations are encoded by state variables.
Operators simulate transitions between DTM configurations.
The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.

This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.

Planning and Optimization
C1. Overview of Classical Planning Algorithms (Part 1)

Malte Helmert and Gabriele Röger

Universität Basel

October 6, 2025

The Big Three Explicit Search Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

The Big Three Explicit Search Summary

The Big Three

The Big Three Explicit Search Summary

Classical Planning Algorithms

Let’s start solving planning tasks!

This Chapter and the Next

very high-level overview of classical planning algorithms

bird’s eye view: no details, just some very brief ideas

The Big Three Explicit Search Summary

The Big Three

Of the many planning approaches, three techniques stand out:

explicit search ⇝ Chapters C3–C4, Parts D–F

SAT planning ⇝ Chapters C5–C6

symbolic search ⇝ Chapters C7–C8

also: many algorithm portfolios

The Big Three Explicit Search Summary

Satisficing or Optimal Planning?

must carefully distinguish:

satisficing planning: any plan is OK (cheaper ones preferred)

optimal planning: plans must have minimum cost

solved by similar techniques, but:

details very different

almost no overlap between best techniques for satisficing
planning and best techniques for optimal planning

many tasks that are trivial for satisficing planners
are impossibly hard for optimal planners

The Big Three Explicit Search Summary

Explicit Search

The Big Three Explicit Search Summary

Explicit Search

You know this one already! (Hopefully.)

The Big Three Explicit Search Summary

Reminder: State-Space Search

Need to Catch Up?

We assume prior knowledge of basic search algorithms:

uninformed vs. informed (heuristic)
satisficing vs. optimal
heuristics and their properties
specific algorithms: e.g., breadth-first search,
greedy best-first search, A∗

If you are not familiar with them, we recommend Part B
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/

computer-science-informatik/lehrangebot-fs25/

13548-lecture-foundations-of-artificial-intelligence/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/

The Big Three Explicit Search Summary

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ⇝ returns initial state

is goal(s) ⇝ tests if s is a goal state

succ(s) ⇝ returns all pairs ⟨a, s ′⟩ with s
a−→ s ′

cost(a) ⇝ returns cost of action a

h(s) ⇝ returns heuristic value for state s

⇝ Foundations of Artificial Intelligence course, Chap. B2 and B9

The Big Three Explicit Search Summary

State Space vs. Search Space

Planning tasks induce transition systems (a.k.a. state spaces)
with an initial state, labeled transitions and goal states.

State-space search searches state spaces with an initial state,
a successor function and goal states.

⇝ looks like an obvious correspondence

However, in planning as search, the state space being searched
can be different from the state space of the planning task.

When we need to make a distinction, we speak of

the state space of the planning task
whose states are called world states vs.
the search space of the search algorithm
whose states are called search states.

The Big Three Explicit Search Summary

Design Choice: Search Direction

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Direction

progression: forward from initial state to goal

regression: backward from goal states to initial state

bidirectional search

⇝ Chapters C3–C4

The Big Three Explicit Search Summary

Design Choice: Search Algorithm

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Algorithm

uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

heuristic search (systematic):
greedy best-first, A∗, weighted A∗, IDA∗, . . .

heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .

The Big Three Explicit Search Summary

Design Choice: Search Control

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Control

heuristics for informed search algorithms

pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, . . .

How do we find good heuristics in a domain-independent way?

⇝ one of the main focus areas of classical planning research

⇝ Parts D–F

The Big Three Explicit Search Summary

Summary

The Big Three Explicit Search Summary

Summary

(Joint summary follows after next chapter.)

Planning and Optimization
C2. Overview of Classical Planning Algorithms (Part 2)

Malte Helmert and Gabriele Röger

Universität Basel

October 6, 2025

SAT Planning Symbolic Search Planning System Examples Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

SAT Planning Symbolic Search Planning System Examples Summary

The Big Three (Repeated from Last Chapter)

Of the many planning approaches, three techniques stand out:

explicit search ⇝ Chapters C3–C4, Parts D–F

SAT planning ⇝ Chapters C5–C6

symbolic search ⇝ Chapters C7–C8

also: many algorithm portfolios

SAT Planning Symbolic Search Planning System Examples Summary

SAT Planning

SAT Planning Symbolic Search Planning System Examples Summary

SAT Planning: Basic Idea

formalize problem of finding plan with a given horizon
(length bound) as a propositional satisfiability problem
and feed it to a generic SAT solver

to obtain a (semi-) complete algorithm,
try with increasing horizons until a plan is found
(= the formula is satisfiable)

important optimization: allow applying several non-conflicting
operators “at the same time” so that a shorter horizon suffices

SAT Planning Symbolic Search Planning System Examples Summary

SAT Encodings: Variables

given propositional planning task ⟨V , I ,O, γ⟩
given horizon T ∈ N0

Variables of SAT Encoding

propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan

SAT Planning Symbolic Search Planning System Examples Summary

Design Choice: SAT Encoding

Again, there are several important design choices.

Design Choice: SAT Encoding

sequential or parallel

many ways of modeling planning semantics in logic

⇝ main focus of research on SAT planning

SAT Planning Symbolic Search Planning System Examples Summary

Design Choice: SAT Solver

Again, there are several important design choices.

Design Choice: SAT Solver

out-of-the-box like Glucose, CaDiCal, MiniSAT

planning-specific modifications

SAT Planning Symbolic Search Planning System Examples Summary

Design Choice: Evaluation Strategy

Again, there are several important design choices.

Design Choice: Evaluation Strategy

always advance horizon by +1 or more aggressively

possibly probe multiple horizons concurrently

SAT Planning Symbolic Search Planning System Examples Summary

Symbolic Search

SAT Planning Symbolic Search Planning System Examples Summary

Symbolic Search Planning: Basic Ideas

search processes sets of states at a time

operators, goal states, state sets reachable with a given cost
etc. represented by binary decision diagrams (BDDs)
(or similar data structures)

hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

perform symbolic breadth-first search (or something
more sophisticated) on these set representations

SAT Planning Symbolic Search Planning System Examples Summary

Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

⇝ If we can implement operations models, {I}, ∩, ̸= ∅, ∪,

⇝

apply and = efficiently, this is a reasonable algorithm.

SAT Planning Symbolic Search Planning System Examples Summary

Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

⇝ If we can implement operations models, {I}, ∩, ̸= ∅, ∪,

⇝

apply and = efficiently, this is a reasonable algorithm.

SAT Planning Symbolic Search Planning System Examples Summary

Design Choice: Symbolic Data Structure

Again, there are several important design choices.

Design Choice: Symbolic Data Structure

BDDs

ADDs

EVMDDs

SDDs

SAT Planning Symbolic Search Planning System Examples Summary

Other Design Choices

additionally, same design choices as for explicit search:

search direction
search algorithm
search control (incl. heuristics)

in practice, hard to make heuristics and other
advanced search control efficient for symbolic search
⇝ rarely used

SAT Planning Symbolic Search Planning System Examples Summary

Planning System Examples

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: FF

FF (Hoffmann & Nebel, 2001)

problem class: satisficing

algorithm class: explicit search

search direction: forward search

search algorithm: enforced hill-climbing

heuristic: FF heuristic (inadmissible)

other aspects: helpful action pruning; goal agenda manager

⇝ breakthrough for heuristic search planning;

⇝

winner of IPC 2000

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: LAMA

LAMA (Richter & Westphal, 2008)

problem class: satisficing

algorithm class: explicit search

search direction: forward search

search algorithm: restarting Weighted A* (anytime)

heuristic: FF heuristic and landmark heuristic (inadmissible)

other aspects: preferred operators; deferred heuristic
evaluation; multi-queue search

⇝ still one of the leading satisficing planners;

⇝

winner of IPC 2008 and IPC 2011 (satisficing tracks)

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: Madagascar-pC

Madagascar (Rintanen, 2014)

problem class: satisficing

algorithm class: SAT planning

encoding: parallel ∃-step encoding

SAT solver: using planning-specific action variable selection

evaluation strategy: exponential horizons, parallelized probing

other aspects: invariants

⇝ second place at IPC 2014 (agile track)

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: SymBA∗

SymBA∗ (Torralba, 2015)

problem class: optimal

algorithm class: symbolic search

symbolic data structure: BDDs

search direction: bidirectional

search algorithm: mixture of (symbolic) Dijkstra and A∗

heuristic: perimeter abstractions/blind

⇝ winner of IPC 2014 (optimal track)

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: Scorpion

Scorpion 2023 (Seipp, 2023)

problem class: optimal

algorithm class: explicit search

search direction: forward search

search algorithm: A∗

heuristic: abstraction heuristics and cost partitioning

⇝ runner-up of IPC 2023 (optimal track)

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: Fast Downward Stone Soup

Fast Downward Stone Soup 2023, optimal version
(Büchner et al., 2023)

problem class: optimal

algorithm class: (portfolio of) explicit search

search direction: forward search

search algorithm: A∗

heuristic: all admissible heuristics considered in the course

⇝ winner of IPC 2011 (optimal track);

⇝

various awards in IPC 2011–2023

SAT Planning Symbolic Search Planning System Examples Summary

Planning Systems: SymK

SymK (Speck et al., 2025)

problem class: optimal

algorithm class: symbolic search

symbolic data structure: BDDs

search direction: bidirectional

search algorithm: symbolic Dijkstra algorithm

heuristic: blind

SAT Planning Symbolic Search Planning System Examples Summary

Summary

SAT Planning Symbolic Search Planning System Examples Summary

Summary

big three classes of algorithms for classical planning:

explicit search

design choices: search direction, search algorithm,
search control (incl. heuristics)

SAT planning

design choices: SAT encoding, SAT solver, evaluation strategy

symbolic search

design choices: symbolic data structure
+ same ones as for explicit search

Planning and Optimization
C3. Progression and Regression Search

Malte Helmert and Gabriele Röger

Universität Basel

October 8, 2025

Introduction Progression Regression Regression for STRIPS Tasks Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Introduction Progression Regression Regression for STRIPS Tasks Summary

Introduction

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Direction

Search direction

one dimension for classifying search algorithms

forward search from initial state to goal based on progression

backward search from goal to initial state based on regression

bidirectional search

In this chapter we look into progression and regression planning.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ⇝ returns initial state

is goal(s) ⇝ tests if s is a goal state

succ(s) ⇝ returns all pairs ⟨a, s ′⟩ with s
a−→ s ′

cost(a) ⇝ returns cost of action a

h(s) ⇝ returns heuristic value for state s

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression

Introduction Progression Regression Regression for STRIPS Tasks Summary

Planning by Forward Search: Progression

Progression: Computing the successor state sJoK of a state s
with respect to an operator o.

Progression planners find solutions by forward search:

start from initial state

iteratively pick a previously generated state and progress it
through an operator, generating a new state

solution found when a goal state generated

pro: very easy and efficient to implement

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space for Progression

Search Space for Progression

search space for progression in a planning task Π = ⟨V , I ,O, γ⟩
(search states are world states s of Π;
actions of search space are operators o ∈ O)

init() ⇝ returns I

is goal(s) ⇝ tests if s |= γ

succ(s) ⇝ returns all pairs ⟨o, sJoK⟩

⇝

where o ∈ O and o is applicable in s

cost(o) ⇝ returns cost(o) as defined in Π

h(s) ⇝ estimates cost from s to γ (⇝ Parts D–F)

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression

Introduction Progression Regression Regression for STRIPS Tasks Summary

Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states

when applying an operator o in a state s in forward direction,
there is a unique successor state s ′;
if we just applied operator o and ended up in state s ′,
there can be several possible predecessor states s

⇝ in most natural representation for backward search in planning,

⇝

each search state corresponds to a set of world states

Introduction Progression Regression Regression for STRIPS Tasks Summary

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S ′, o)
of a set of states S ′ (“subgoal”) given the last operator o
that was applied.

⇝ formal definition in next chapter

Regression planners find solutions by backward search:

start from set of goal states

iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

each search state corresponds to a set of world states
(“subgoal”)

each search state is represented by a logical formula:
φ represents {s ∈ S | s |= φ}
many basic search operations like detecting duplicates
are NP-complete or coNP-complete

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space for Regression

Search Space for Regression

search space for regression in a planning task Π = ⟨V , I ,O, γ⟩
(search states are formulas φ describing sets of world states;
actions of search space are operators o ∈ O)

init() ⇝ returns γ

is goal(φ) ⇝ tests if I |= φ

succ(φ) ⇝ returns all pairs ⟨o, regr(φ, o)⟩

⇝

where o ∈ O and regr(φ, o) is defined

cost(o) ⇝ returns cost(o) as defined in Π

h(φ) ⇝ estimates cost from I to φ (⇝ Parts D–F)

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γ

φ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→)

φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression for STRIPS Tasks

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

Consider subgoal φ that is conjunction of atoms a1 ∧ · · · ∧ an
(e.g., the original goal γ of the planning task).

First step: Choose an operator o that deletes no ai .

Second step: Remove any atoms added by o from φ.

Third step: Conjoin pre(o) to φ.

⇝ Outcome of this is regression of φ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one ai

Introduction Progression Regression Regression for STRIPS Tasks Summary

STRIPS Regression

Definition (STRIPS Regression)

Let φ = φ1 ∧ · · · ∧ φn be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms a1, . . . , ak
and deletes the atoms d1, . . . , dl .

The STRIPS regression of φ with respect to o is

sregr(φ, o) :=

{
⊥ if φi = dj for some i , j

pre(o) ∧
∧
({φ1, . . . , φn} \ {a1, . . . , ak}) else

Note: sregr(φ, o) is again a conjunction of atoms, or ⊥.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ,
all states s and all STRIPS operators o,

s |= sregr(φ, o) iff sJoK |= φ.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Summary

Introduction Progression Regression Regression for STRIPS Tasks Summary

Summary

Progression search proceeds forward from the initial state.

In progression search, the search space is identical
to the state space of the planning task.

Regression search proceeds backwards from the goal.

Each search state corresponds to a set of world states,
for example represented by a formula.

Regression is simple for STRIPS operators.

The theory for general regression is more complex.
This is the topic of the following chapter.

Planning and Optimization
C4. General Regression

Malte Helmert and Gabriele Röger

Universität Basel

October 8, 2025

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regression for General Planning Tasks

With disjunctions and conditional effects, things become more
tricky. How to regress a ∨ (b ∧ c) with respect to ⟨q, d ▷ b⟩?
In this chapter, we show how to regress general sets of states
through general operators.

We extensively use the idea of representing sets of states
as formulas.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Motivation

Key question for general regression:

Assume we are applying an operator with effect e.

What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s ′.

Propositional state variable v is true in s ′ iff

effect e makes it true, or

it remains true, i.e., it is true in s and not made false by e.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v , e),
is defined as the following logical formula:

regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).

Does this capture add-after-delete semantics correctly?

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Example

Example

Let e = (b ▷ a) ∧ (c ▷ ¬a) ∧ b ∧ ¬d .

v effcond(v , e) effcond(¬v , e) regr(v , e)

a b c b ∨ (a ∧ ¬c)
b ⊤ ⊥ ⊤ ∨ (b ∧ ¬⊥) ≡ ⊤
c ⊥ ⊥ ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ⊤ ⊥ ∨ (d ∧ ¬⊤) ≡ ⊥

Reminder: regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v , e))

Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v , e) iff sJeK |= v.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Idea

We can now generalize regression from state variables
to general formulas over state variables.

The basic idea is to replace every occurrence of every state
variable v by regr(v , e) as defined in the previous section.

The following definition makes this more formal.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,
and let φ be a formula over propositional state variables.

The regression of φ through e, written regr(φ, e),
is defined as the following logical formula:

regr(⊤, e) = ⊤
regr(⊥, e) = ⊥
regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))

regr(¬ψ, e) = ¬regr(ψ, e)
regr(ψ ∨ χ, e) = regr(ψ, e) ∨ regr(χ, e)

regr(ψ ∧ χ, e) = regr(ψ, e) ∧ regr(χ, e).

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Example

Example

Let e = (b ▷ a) ∧ (c ▷ ¬a) ∧ b ∧ ¬d .
Recall:

regr(a, e) ≡ b ∨ (a ∧ ¬c)
regr(b, e) ≡ ⊤
regr(c , e) ≡ c

regr(d , e) ≡ ⊥
We get:

regr((a ∨ d) ∧ (c ∨ d), e) ≡ ((b ∨ (a ∧ ¬c)) ∨ ⊥) ∧ (c ∨ ⊥)

≡ (b ∨ (a ∧ ¬c)) ∧ c

≡ b ∧ c

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(φ, e))

Let φ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s |= regr(φ, e) iff sJeK |= φ.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case φ = ¬ψ:
s |= regr(¬ψ, e) iff s |= ¬regr(ψ, e)

iff s ̸|= regr(ψ, e)
iff sJeK ̸|= ψ
iff sJeK |= ¬ψ

Inductive case φ = ψ ∨ χ:
s |= regr(ψ ∨ χ, e) iff s |= regr(ψ, e) ∨ regr(χ, e)

iff s |= regr(ψ, e) or s |= regr(χ, e)
iff sJeK |= ψ or sJeK |= χ
iff sJeK |= ψ ∨ χ

Inductive case φ = ψ ∧ χ:
Like previous case, replacing “∨” by “∧”
and replacing “or” by “and”.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case φ = ¬ψ:
s |= regr(¬ψ, e) iff s |= ¬regr(ψ, e)

iff s ̸|= regr(ψ, e)
iff sJeK ̸|= ψ
iff sJeK |= ¬ψ

Inductive case φ = ψ ∨ χ:
s |= regr(ψ ∨ χ, e) iff s |= regr(ψ, e) ∨ regr(χ, e)

iff s |= regr(ψ, e) or s |= regr(χ, e)
iff sJeK |= ψ or sJeK |= χ
iff sJeK |= ψ ∨ χ

Inductive case φ = ψ ∧ χ:
Like previous case, replacing “∨” by “∧”
and replacing “or” by “and”.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case φ = ¬ψ:
s |= regr(¬ψ, e) iff s |= ¬regr(ψ, e)

iff s ̸|= regr(ψ, e)
iff sJeK ̸|= ψ
iff sJeK |= ¬ψ

Inductive case φ = ψ ∨ χ:
s |= regr(ψ ∨ χ, e) iff s |= regr(ψ, e) ∨ regr(χ, e)

iff s |= regr(ψ, e) or s |= regr(χ, e)
iff sJeK |= ψ or sJeK |= χ
iff sJeK |= ψ ∨ χ

Inductive case φ = ψ ∧ χ:
Like previous case, replacing “∨” by “∧”
and replacing “or” by “and”.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through
Operators

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Operators: Idea

We can now regress arbitrary formulas
through arbitrary effects.

The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula φ.

There are two requirements:

The operator o must be applicable in the state s.
The resulting state sJoK must satisfy φ.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let φ be a formula over state variables.

The regression of φ through o, written regr(φ, o),
is defined as the following logical formula:

regr(φ, o) = pre(o) ∧ regr(φ, eff(o)).

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(φ, o))

Let φ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s |= regr(φ, o) iff o is applicable in s and sJoK |= φ.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(φ, o) = pre(o) ∧ regr(φ, eff(o))

Proof.

Case 1: s |= pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(φ, e) iff sJeK |= φ, where e = eff(o).
This was proved in the previous lemma.

Case 2: s ̸|= pre(o).

Then s ̸|= regr(φ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(φ, o) = pre(o) ∧ regr(φ, eff(o))

Proof.

Case 1: s |= pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(φ, e) iff sJeK |= φ, where e = eff(o).
This was proved in the previous lemma.

Case 2: s ̸|= pre(o).

Then s ̸|= regr(φ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regression Examples (1)

Examples: compute regression and simplify to DNF

regr(b, ⟨a, b⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥))
≡ a

regr(b ∧ c ∧ d , ⟨a, b⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥))
≡ a ∧ c ∧ d

regr(b ∧ ¬c , ⟨a, b ∧ c⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥)) ∧ ¬(⊤ ∨ (c ∧ ¬⊥))
≡ a ∧ ⊤ ∧ ⊥
≡ ⊥

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regression Examples (2)

Examples: compute regression and simplify to DNF

regr(b, ⟨a, c ▷ b⟩)
≡ a ∧ (c ∨ (b ∧ ¬⊥))
≡ a ∧ (c ∨ b)
≡ (a ∧ c) ∨ (a ∧ b)

regr(b, ⟨a, (c ▷ b) ∧ ((d ∧ ¬c) ▷ ¬b)⟩)
≡ a ∧ (c ∨ (b ∧ ¬(d ∧ ¬c)))
≡ a ∧ (c ∨ (b ∧ (¬d ∨ c)))
≡ a ∧ (c ∨ (b ∧ ¬d) ∨ (b ∧ c))
≡ a ∧ (c ∨ (b ∧ ¬d))
≡ (a ∧ c) ∨ (a ∧ b ∧ ¬d)

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Summary

Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Summary

Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

state variables made true (by add effects)
state variables remaining true (by absence of delete effects)

Regression of propositional state variables can be generalized
to arbitrary formulas φ by replacing each occurrence
of a state variable in φ by its regression.

Regressing a formula φ through an operator involves
regressing φ through the effect and enforcing the precondition.

Planning and Optimization
C5. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Röger

Universität Basel

October 13, 2025

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Introduction

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Solvers

SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

Can we leverage them for classical planning?

⇝ SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
⇝ Foundations of Artificial Intelligence Course, Ch. E4–E5

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Complexity Mismatch

The SAT problem is NP-complete,
while PlanEx is PSPACE-complete.

⇝ one-shot polynomial reduction from PlanEx to SAT
not possible (unless NP = PSPACE)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Solution: Iterative Deepening

We can generate a propositional formula that tests
if task Π has a plan with horizon (length bound) T
in time O(∥Π∥k · T) (⇝ pseudo-polynomial reduction).

Use as building block of algorithm that probes
increasing horizons (a bit like IDA∗).

Can be efficient if there exist plans
that are not excessively long.

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Planning: Main Loop

basic SAT planning algorithm:

SAT Planning

def satplan(Π):
for T ∈ {0, 1, 2, . . . }:

φ := build sat formula(Π,T)
I = sat solver(φ) ▷ returns a model or none
if I is not none:

return extract plan(Π,T , I)

Termination criterion for unsolvable tasks?

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Formula Overview

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: CNF?

SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Variables

given propositional planning task Π = ⟨V , I ,O, γ⟩
given horizon T ∈ N0

Variables of the SAT Formula

propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let φ be a propositional logic formula over the variables V .
Let 0 ≤ i ≤ T .

We write φi for the formula obtained from φ
by replacing each v ∈ V with v i .

Example: ((a ∧ b) ∨ ¬c)3 = (a3 ∧ b3) ∨ ¬c3

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Motivation

We want to express a formula whose models
are exactly the plans/traces with T steps.

For this, the formula must express four things:

The variables v0 (v ∈ V) define the initial state.

The variables vT (v ∈ V) define a goal state.

We select exactly one operator variable o i (o ∈ O)
for each time step 1 ≤ i ≤ T .

If we select o i , then variables v i−1 and v i (v ∈ V)
describe a state transition from the (i − 1)-th state of the plan
to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Initial State, Goal, Operator Selection

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Initial State

SAT Formula: Initial State

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Goal

SAT Formula: Goal

goal clauses:

γT

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Operator Selection

Let O = {o1, . . . , on}.

SAT Formula: Operator Selection

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Transitions

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.

Key observations: if we apply operator o at time i ,

its precondition must be satisfied at time i − 1:
o i → pre(o)i−1

variable v is true at time i iff its regression is true at i − 1:
o i → (v i ↔ regr(v , eff(o))i−1)

Question: Why regr(v , eff(o)), not regr(v , o)?

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Simplifications and Abbreviations

Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

Let us call the formula τ (“transition”):
τ = o i → (v i ↔ regr(v , eff(o))i−1).

First, some abbreviations:

Let e = eff(o).
Let ρ = regr(v , e) (“regression”).
We have ρ = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Let α = effcond(v , e) (“added”).
Let δ = effcond(¬v , e) (“deleted”).

⇝ τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (1)

Reminder: τ = o i → (v i ↔ ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ = o i → (v i ↔ ρi−1)

≡ o i → ((v i → ρi−1) ∧ (ρi−1 → v i))

≡ (o i → (v i → ρi−1))︸ ︷︷ ︸
τ1

∧ (o i → (ρi−1 → v i))︸ ︷︷ ︸
τ2

⇝ consider this two separate constraints τ1 and τ2

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (2)

Reminder: τ1 = o i → (v i → ρi−1) with ρ = α ∨ (v ∧ ¬δ)

τ1 = o i → (v i → ρi−1)

≡ o i → (¬ρi−1 → ¬v i)
≡ (o i ∧ ¬ρi−1) → ¬v i

≡ (o i ∧ ¬(αi−1 ∨ (v i−1 ∧ ¬δi−1))) → ¬v i

≡ (o i ∧ (¬αi−1 ∧ (¬v i−1 ∨ δi−1))) → ¬v i

≡ ((o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i)︸ ︷︷ ︸
τ11

∧ ((o i ∧ ¬αi−1 ∧ δi−1) → ¬v i)︸ ︷︷ ︸
τ12

⇝ consider this two separate constraints τ11 and τ12

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (1)

Can we give an intuitive description of τ11 and τ12?
⇝ Yes!

τ11 = (o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i

“When applying o, if v is false and o does not add it,

“

it remains false.”

called negative frame clause
in clause form: ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i

τ12 = (o i ∧ ¬αi−1 ∧ δi−1) → ¬v i

“When applying o, if o deletes v and does not add it,

“

it is false afterwards.” (Note the add-after-delete semantics.)

called negative effect clause
in clause form: ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i

For STRIPS tasks, these are indeed clauses. (And in general?)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (1)

Can we give an intuitive description of τ11 and τ12?
⇝ Yes!

τ11 = (o i ∧ ¬αi−1 ∧ ¬v i−1) → ¬v i

“When applying o, if v is false and o does not add it,

“

it remains false.”

called negative frame clause
in clause form: ¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i

τ12 = (o i ∧ ¬αi−1 ∧ δi−1) → ¬v i

“When applying o, if o deletes v and does not add it,

“

it is false afterwards.” (Note the add-after-delete semantics.)

called negative effect clause
in clause form: ¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i

For STRIPS tasks, these are indeed clauses. (And in general?)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (3)

Almost done!

Reminder: τ2 = o i → (ρi−1 → v i) with ρ = α ∨ (v ∧ ¬δ)

τ2 = o i → (ρi−1 → v i)

≡ (o i ∧ ρi−1) → v i

≡ (o i ∧ (αi−1 ∨ (v i−1 ∧ ¬δi−1))) → v i

≡ ((o i ∧ αi−1) → v i)︸ ︷︷ ︸
τ21

∧ ((o i ∧ v i−1 ∧ ¬δi−1) → v i)︸ ︷︷ ︸
τ22

⇝ consider this two separate constraints τ21 and τ22

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Picking it Apart (3)

Almost done!

Reminder: τ2 = o i → (ρi−1 → v i) with ρ = α ∨ (v ∧ ¬δ)

τ2 = o i → (ρi−1 → v i)

≡ (o i ∧ ρi−1) → v i

≡ (o i ∧ (αi−1 ∨ (v i−1 ∧ ¬δi−1))) → v i

≡ ((o i ∧ αi−1) → v i)︸ ︷︷ ︸
τ21

∧ ((o i ∧ v i−1 ∧ ¬δi−1) → v i)︸ ︷︷ ︸
τ22

⇝ consider this two separate constraints τ21 and τ22

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (2)

How about an intuitive description of τ21 and τ22?

τ21 = (o i ∧ αi−1) → v i

“When applying o, if o adds v , it is true afterwards.”

called positive effect clause
in clause form: ¬o i ∨ ¬αi−1 ∨ v i

τ22 = (o i ∧ v i−1 ∧ ¬δi−1) → v i

“When applying o, if v is true and o does not delete it,

“

it remains true.”

called positive frame clause
in clause form: ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i

For STRIPS tasks, these are indeed clauses. (But not in general.)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Interpreting the Constraints (2)

How about an intuitive description of τ21 and τ22?

τ21 = (o i ∧ αi−1) → v i

“When applying o, if o adds v , it is true afterwards.”

called positive effect clause
in clause form: ¬o i ∨ ¬αi−1 ∨ v i

τ22 = (o i ∧ v i−1 ∧ ¬δi−1) → v i

“When applying o, if v is true and o does not delete it,

“

it remains true.”

called positive frame clause
in clause form: ¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i

For STRIPS tasks, these are indeed clauses. (But not in general.)

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

SAT Formula: Transitions

SAT Formula: Transitions

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause ¬o i ∨ v i−1 for each precondition atom v of o).

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F

goal clauses:

γT

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

Introduction Formula Overview Initial State, Goal, Operator Selection Transitions Summary

Summary

SAT planning (planning as satisfiability) expresses a sequence
of bounded-horizon planning tasks as SAT formulas.

Plans can be extracted from satisfying assignments;
unsolvable tasks are challenging for the algorithm.

For each time step, there are propositions encoding
which state variables are true and which operators are applied.

We describe a basic sequential encoding
where one operator is applied at every time step.

The encoding produces a CNF formula for STRIPS tasks.

The encoding follows naturally (with some work) from using
regression to link state variables in adjacent time steps.

Planning and Optimization
C6. SAT Planning: Parallel Encoding

Malte Helmert and Gabriele Röger

Universität Basel

October 13, 2025

Introduction Adapting the SAT Encoding Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Introduction Adapting the SAT Encoding Summary

Introduction

Introduction Adapting the SAT Encoding Summary

Efficiency of SAT Planning

All other things being equal, the most important aspect
for efficient SAT solving is the number of propositional
variables in the input formula.

For sufficiently difficult inputs, runtime scales
exponentially in the number of variables.

⇝ Can we make SAT planning more efficient
by using fewer variables?

Introduction Adapting the SAT Encoding Summary

Number of Variables

Reminder:

given propositional planning task Π = ⟨V , I ,O, γ⟩
given horizon T ∈ N0

Variables of the SAT Formula

propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan

⇝ |V | · (T + 1) + |O| · T variables

⇝ SAT solving runtime usually exponential in T

Introduction Adapting the SAT Encoding Summary

Parallel Plans and Commutativity

Can we get away with shorter horizons?

Idea:

allow parallel plans in the SAT encoding:
multiple operators can be applied in the same step
if they do not interfere

Definition (commutative, interfere)

Let O ′ = {o1, . . . , on} be a set of operators applicable in state s.

We say that O ′ is commutative in s if

for all permutations π of O ′, sJπK is defined, and

for all permutations π, π′ of O ′, sJπK = sJπ′K.
We say that the set O ′ interferes in s if it is not commutative in s.

Introduction Adapting the SAT Encoding Summary

Parallel Plan Extraction

If we can guarantee commutativity, we can allow multiple
operators at the same time in the SAT encoding.

A parallel plan (with multiple o i used for the same i)
extracted from the SAT formula can then be converted
into a “regular” plan by ordering the operators
within each time step arbitrarily.

Introduction Adapting the SAT Encoding Summary

Challenges for Parallel SAT Encodings

Two challenges remain:

our current SAT encoding does not allow concurrent operators

how do we ensure that concurrent operators are commutative?

Introduction Adapting the SAT Encoding Summary

Adapting the SAT Encoding

Introduction Adapting the SAT Encoding Summary

Reminder: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F

goal clauses:

γT

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

⇝ operator exclusion clauses must be adapted

Introduction Adapting the SAT Encoding Summary

Reminder: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

v0 for all v ∈ V with I (v) = T

¬v0 for all v ∈ V with I (v) = F

goal clauses:

γT

operator selection clauses:

o i1 ∨ · · · ∨ o in for all 1 ≤ i ≤ T

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

⇝ operator exclusion clauses must be adapted

Introduction Adapting the SAT Encoding Summary

Reminder: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

⇝ rewrite clauses as implications

Introduction Adapting the SAT Encoding Summary

Reminder: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

¬o i ∨ pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

¬o i ∨ ¬αi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ ¬δi−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

¬o i ∨ ¬v i−1 ∨ δi−1 ∨ v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

¬o i ∨ αi−1 ∨ v i−1 ∨ ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

⇝ rewrite clauses as implications

Introduction Adapting the SAT Encoding Summary

Sequential SAT Encoding (2) Rewritten as Implications

Sequential SAT Encoding (2) Rewritten

precondition clauses:

o i → pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

(o i ∧ αi−1) → v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

(o i ∧ δi−1 ∧ ¬αi−1) → ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

(o i ∧ v i−1 ∧ ¬v i) → δi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

(o i ∧ ¬v i−1 ∧ v i) → αi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

⇝ frame clauses must be adapted

Introduction Adapting the SAT Encoding Summary

Sequential SAT Encoding (2) Rewritten as Implications

Sequential SAT Encoding (2) Rewritten

precondition clauses:

o i → pre(o)i−1 for all 1 ≤ i ≤ T , o ∈ O

positive and negative effect clauses:

(o i ∧ αi−1) → v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

(o i ∧ δi−1 ∧ ¬αi−1) → ¬v i for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

positive and negative frame clauses:

(o i ∧ v i−1 ∧ ¬v i) → δi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

(o i ∧ ¬v i−1 ∧ v i) → αi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

where α = effcond(v , eff(o)), δ = effcond(¬v , eff(o)).

⇝ frame clauses must be adapted

Introduction Adapting the SAT Encoding Summary

Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses ¬o i
j ∨ ¬o i

k

Reminder:

for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

Ideally: replace with clauses that express “for all states s,
the operators selected at time i are commutative in s”

but: testing if a given set of operators interferes
in any state is itself an NP-complete problem

⇝ use something less heavy: a sufficient condition
for commutativity can be expressed
at the level of pairs of operators

Introduction Adapting the SAT Encoding Summary

Conflicting Operators

Intuitively, two operators conflict if

one can disable the precondition of the other,
one can override an effect of the other, or
one can enable or disable an effect condition of the other.

If no two operators in a set O ′ conflict,
then O ′ is commutative in all states.

This is still difficult to test, so we restrict attention
to the STRIPS case in the following.

Definition (Conflicting STRIPS Operator)

Operators o and o ′ of a STRIPS task Π conflict if

o deletes a precondition of o ′ or vice versa, or

o deletes an add effect of o ′ or vice versa.

Introduction Adapting the SAT Encoding Summary

Adapting the Operator Exclusion Clauses: Solution

Reminder: operator exclusion clauses ¬o i
j ∨ ¬o i

k

Reminder:

for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n

Solution:

Parallel SAT Formula: Operator Exclusion Clauses

operator exclusion clauses:

¬o ij ∨ ¬o ik for all 1 ≤ i ≤ T , 1 ≤ j < k ≤ n
such that oj and ok conflict

Introduction Adapting the SAT Encoding Summary

Adapting the Frame Clauses: Idea

Reminder: frame clauses

Reminder:

(o i ∧ v i−1 ∧ ¬v i) → δi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

Reminder:

(o i ∧ ¬v i−1 ∧ v i) → αi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

What is the problem?

These clauses express that if o is applied at time i
and the value of v changes, then o caused the change.

This is no longer true if we want to be able
to apply two operators concurrently.

⇝ Instead, say “If the value of v changes,
then some operator must have caused the change.”

Introduction Adapting the SAT Encoding Summary

Adapting the Frame Clauses: Solution

Reminder: frame clauses

Reminder:

(o i ∧ v i−1 ∧ ¬v i) → δi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

Reminder:

(o i ∧ ¬v i−1 ∧ v i) → αi−1 for all 1 ≤ i ≤ T , o ∈ O, v ∈ V

Solution:

Parallel SAT Formula: Frame Clauses

positive and negative frame clauses:

(v i−1 ∧ ¬v i) → ((o i1 ∧ δi−1
o1) ∨ · · · ∨ (o in ∧ δi−1

on))

for all 1 ≤ i ≤ T , v ∈ V

(¬v i−1 ∧ v i) → ((o i1 ∧ αi−1
o1) ∨ · · · ∨ (o in ∧ αi−1

on))

for all 1 ≤ i ≤ T , v ∈ V

where αo = effcond(v , eff(o)), δo = effcond(¬v , eff(o)),

where

O = {o1, . . . , on}.

For STRIPS, these are in clause form.

Introduction Adapting the SAT Encoding Summary

Summary

Introduction Adapting the SAT Encoding Summary

Summary

As a rule of thumb, SAT solvers generally perform better
on formulas with fewer variables.

Parallel encodings reduce the number of variables
by shortening the horizon needed to solve a planning task.

Parallel encodings replace the constraint that
operators are not applied concurrently by the constraint that
conflicting operators are not applied concurrently.

To make parallelism possible, the frame clauses
also need to be adapted.

Planning and Optimization
C7. Symbolic Search: Binary Decision Diagrams

Malte Helmert and Gabriele Röger

Universität Basel

October 15, 2025

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Motivation

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Symbolic Search Planning: Basic Ideas

come up with a good data structure for sets of states

hope: (at least some) exponentially large state sets
can be represented as polynomial-size data structures

simulate a standard search algorithm like
breadth-first search using these set representations

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Symbolic Breadth-First Progression Search

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

⇝ If we can implement operations models, {I}, ∩, ̸= ∅, ∪,

⇝

apply and = efficiently, this is a reasonable algorithm.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Data Structures for State Sets

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Representing State Sets

We need to represent and manipulate state sets (again)!

How about an explicit representation, like a hash table?

And how about our good old friend, the formula?

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Time Complexity: Explicit Representations vs. Formulas

Let k be the number of state variables,
|S | the number of states in S and
∥S∥ the size of the representation of S .

Hash table Formula

s ∈ S? O(k) O(∥S∥)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S ′ O(k|S |+ k|S ′|) O(1)
S ∩ S ′ O(k|S |+ k|S ′|) O(1)
S \ S ′ O(k|S |+ k|S ′|) O(1)

S O(k2k) O(1)
{s | s(v) = T} O(k2k) O(1)
S = ∅? O(1) co-NP-complete
S = S ′? O(k|S |) co-NP-complete
|S | O(1) #P-complete

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Which Operations are Important?

Explicit representations such as hash tables
are unsuitable because their size grows linearly
with the number of represented states.

Formulas are very efficient for some operations,
but not for other important operations
needed by the breadth-first search algorithm.

Examples: S ̸= ∅?, S = S ′?

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Canonical Representations

One of the problems with formulas is that they allow
many different representations for the same set.

For example, all unsatisfiable formulas represent ∅.
This makes equality tests expensive.

We would like data structures with a canonical representation,
i.e., with only one possible representation for every state set.

Reduced ordered binary decision diagrams (BDDs)
are an example of such a canonical representation.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Time Complexity: Formulas vs. BDDs

Let k be the number of state variables,
|S | the number of states in S and
∥S∥ the size of the representation of S .

Formula BDD

s ∈ S? O(∥S∥) O(k)
S := S ∪ {s} O(k) O(k)
S := S \ {s} O(k) O(k)
S ∪ S ′ O(1) O(∥S∥∥S ′∥)
S ∩ S ′ O(1) O(∥S∥∥S ′∥)
S \ S ′ O(1) O(∥S∥∥S ′∥)
S O(1) O(∥S∥)
{s | s(v) = T} O(1) O(1)
S = ∅? co-NP-complete O(1)
S = S ′? co-NP-complete O(1)
|S | #P-complete O(∥S∥)

Remark: Optimizations allow BDDs with complementation (S)

Remark:

in constant time, but we will not discuss this here.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Binary Decision Diagrams

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

BDD Example

Example

Possible BDD for (u ∧ v) ∨ w

u

v

w w

0 1 0 1

0

1

0 1

0

1

01

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Binary Decision Diagrams: Definition

Definition (BDD)

Let V be a set of propositional variables.

A binary decision diagram (BDD) over V is a directed acyclic
graph with labeled arcs and labeled vertices such that:

There is exactly one node without incoming arcs.

All sinks (nodes without outgoing arcs) are labeled 0 or 1.

All other nodes are labeled with a variable v ∈ V
and have exactly two outgoing arcs, labeled 0 and 1.

A note on notation:

In BDDs, 1 stands for T and 0 for F.

We follow this customary notation in BDDs,
but stick to T and F when speaking of logic.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Binary Decision Diagrams: Terminology

BDD Terminology

The node without incoming arcs is called the root.

The labeling variable of an internal node
is called the decision variable of the node.

The nodes reached from node n via the arc labeled i ∈ {0, 1}
is called the i-successor of n.

The BDDs which only consist of a single sink
are called the zero BDD and one BDD.

Observation: If B is a BDD and n is a node of B, then the
subgraph induced by all nodes reachable from n is also a BDD.

This BDD is called the BDD rooted at n.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

BDD Semantics

Testing whether a BDD Includes a Variable Assignment

def bdd-includes(B: BDD, I : variable assignment):
Set n to the root of B.
while n is not a sink:

Set v to the decision variable of n.
Set n to the 1-successor of n if I (v) = T and
to the 0-successor of n if I (v) = F.

return true if n is labeled 1, false if it is labeled 0.

Definition (Set Represented by a BDD)

Let B be a BDD over variables V .

The set represented by B, in symbols r(B),
consists of all variable assignments I : V → {T,F}
for which bdd-includes(B, I) returns true.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

BDDs as Canonical Representations

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Ordered BDDs: Motivation

In general, BDDs are not a canonical representation for sets of
interpretations. Here is a simple counter-example (V = {u, v}):

Example (BDDs for u ∧ ¬v with Different Variable Order)

u

v

0 1

0

1

01

v

u

1 0

0

1

01

Both BDDs represent the same state set, namely the singleton set
{{u 7→ T, v 7→ F}}.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Ordered BDDs: Definition

As a first step towards a canonical representation,
we now require that the set of variables is totally ordered
by some ordering ≺.

In particular, we will only use variables v1, v2, v3, . . .
and assume the ordering vi ≺ vj iff i < j .

Definition (Ordered BDD)

A BDD is ordered (w.r.t. ≺) iff for each arc from a node
with decision variable u to a node with decision variable v ,
we have u ≺ v .

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Ordered BDDs: Example

Example (Ordered and Unordered BDD)

v1

v2

0 1

0

1

01

v2

v1

1 0

0

1

01

The left BDD is ordered w.r.t. the ordering we use in this chapter,
the right one is not.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Are Ordered BDDs Canonical?

Example (Two equivalent BDDs that can be reduced)

v1

v2

v3 v3

0 1 0 1

0

1

0 1

0

1

01

v1

v2

v3 v3

0 1

0

1

0
1

0 1

0 1

Ordered BDDs are still not canonical:
both ordered BDDs represent the same set.

However, ordered BDDs can easily be made canonical.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (1)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Isomorphism Reduction)

If the BDDs rooted at two different nodes n and n′ are isomorphic,
then all incoming arcs of n′ can be redirected to n,
and all BDD nodes unreachable from the root can be removed.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1
v3

0

01

0

1

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

0

1

1
v3

0

01

0

v3

0 1

0 1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

v3

1 0

01

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

v3

0

0

0

1

1

0

1

1 1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

v1

v2

1

v3

0

0

0

1

1

0

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (3)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Shannon Reduction)

If both outgoing arcs of an internal node n of a BDD lead to
the same node m, then n can be removed from the BDD,
with all incoming arcs of n going to m instead.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

v3

0 1

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0

0

1

0
1

0

v3

1

0 1

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

v1

v2

v3

0 1

0

1

0
1

0

1

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Reduced Ordered BDDs: Definition

Definition (Reduced Ordered BDD)

An ordered BDD is reduced iff it does not admit
any isomorphism reduction or Shannon reduction.

Theorem (Bryant 1986)

For every state set S and a fixed variable ordering,
there exists exactly one reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced
ordered BDD can be computed in linear time in the size of B.

⇝ Reduced ordered BDDs are the canonical representation
⇝ we are looking for.

From now on, we simply say BDD for reduced ordered BDD.

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Summary

Motivation Data Structures for State Sets Binary Decision Diagrams BDDs as Canonical Representations Summary

Summary

Symbolic search is based on the idea of performing a
state-space search where many states are considered “at once”
by operating on sets of states rather than individual states.

Binary decision diagrams are a data structure to compactly
represent and manipulate sets of variable assignments.

Reduced ordered BDDs are a canonical representation
of such sets.

Planning and Optimization
C8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Röger

Universität Basel

October 15, 2025

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Introduction

Explicit Search

SAT Planning

Symbolic Search

Delete Relaxation

Abstraction

Constraints

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Devising a Symbolic Search Algorithm

We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.

use BDDs as a black box data structure:

care about provided operations and their time complexity
do not care about their internal implementation

Efficient implementations are available as libraries, e.g.:

CUDD, a high-performance BDD library
libbdd, shipped with Ubuntu Linux

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Basic BDD Operations

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations: Preliminaries

All BDDs work on a fixed and totally ordered
set of propositional variables.

Complexity of operations given in terms of:

k , the number of BDD variables
∥B∥, the number of nodes in the BDD B

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (1)

BDD operations: logical/set atoms

bdd-fullset(): build BDD representing all assignments

in logic: ⊤
time complexity: O(1)

bdd-emptyset(): build BDD representing ∅
in logic: ⊥
time complexity: O(1)

bdd-atom(v): build BDD representing {s | s(v) = T}
in logic: v
time complexity: O(1)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (2)

BDD operations: logical/set connectives

bdd-complement(B): build BDD representing r(B)

in logic: ¬φ
time complexity: O(∥B∥)

bdd-union(B, B ′): build BDD representing r(B) ∪ r(B ′)

in logic: (φ ∨ ψ)
time complexity: O(∥B∥ · ∥B ′∥)

bdd-intersection(B, B ′): build BDD representing r(B)∩ r(B ′)

in logic: (φ ∧ ψ)
time complexity: O(∥B∥ · ∥B ′∥)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (3)

BDD operations: Boolean tests

bdd-includes(B, I): return true iff I ∈ r(B)

in logic: I |= φ?
time complexity: O(k)

bdd-equals(B, B ′): return true iff r(B) = r(B ′)

in logic: φ ≡ ψ?
time complexity: O(1) (due to canonical representation)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula φ to T or F,
written φ[T/v] or φ[F/v], means restricting v
to a particular truth value:

Examples:

(A ∧ (B ∨ ¬C))[T/B] = (A ∧ (⊤ ∨ ¬C)) ≡ A

(A ∧ (B ∨ ¬C))[F/B] = (A ∧ (⊥ ∨ ¬C)) ≡ A ∧ ¬C

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S :
S [F/v] and S [T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ S [T/B] = {{A 7→ T,C 7→ F},

S [T/B] = {

{A 7→ T,C 7→ T}}

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as ∃v φ (for formulas) and ∃v S (for sets).

Formally:

∃v φ = φ[T/v] ∨ φ[F/v]
∃v S = S [T/v] ∪ S [F/v]

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Forgetting: Example

Examples:

S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
⇝ ∃B S = {{A 7→ F,C 7→ F},

∃B S = {

{A 7→ T,C 7→ F},

∃B S = {

{A 7→ T,C 7→ T}}
⇝ ∃C S = {{A 7→ F,B 7→ F},

∃C S = {

{A 7→ T,B 7→ T}}

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (4)

BDD operations: conditioning and forgetting

bdd-condition(B, v , t) where t ∈ {T,F}:
build BDD representing r(B)[t/v]

in logic: φ[t/v]
time complexity: O(∥B∥)

bdd-forget(B, v):
build BDD representing ∃v r(B)

in logic: ∃v φ (= φ[T/v] ∨ φ[F/v])
time complexity: O(∥B∥2)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Formulas and Singletons

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Formulas to BDDs

With the logical/set operations, we can convert propositional
formulas φ into BDDs representing the models of φ.

We denote this computation with bdd-formula(φ).

Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2n) time.
(How is this possible?)

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Singleton BDDs

We can convert a single truth assignment I
into a BDD representing {I} by computing
the conjunction of all literals true in I
(using bdd-atom, bdd-complement and bdd-intersection).

We denote this computation with bdd-singleton(I).

When done in the correct order, this takes time O(k).

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Renaming

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula φ, written φ[X → Y],
means replacing all occurrences of X by Y in φ.

We require that Y is not present in φ initially.

Example:

φ = (A ∧ (B ∨ ¬C))

⇝ φ[A → D] = (D ∧ (B ∨ ¬C))

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

How Hard Can That Be?

For formulas, renaming is a simple (linear-time) operation.

For a BDD B, it is equally simple (O(∥B∥)) when renaming
between variables that are adjacent in the variable order.

In general, it requires O(∥B∥2), using the equivalence
φ[X → Y] ≡ ∃X (φ ∧ (X ↔ Y))

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Symbolic Breadth-first Search

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Planning Task State Variables vs. BDD Variables

Consider propositional planning task ⟨V , I ,O, γ⟩ with states S .

In symbolic planning, we have two BDD variables v and v ′

for every state variable v ∈ V of the planning task.

use unprimed variables v to describe sets of states:
{s ∈ S | some property}
use combinations of unprimed and primed variables v , v ′

to describe sets of state pairs:
{⟨s, s ′⟩ | some property}

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-formula.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-singleton.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-intersection, bdd-emptyset, bdd-equals.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-union.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-equals.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

How to do this?

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (1)

We need an operation that

for a set of states reached (given as a BDD)

and a set of operators O

computes the set of states (as a BDD) that result from
applying some operator o ∈ O in some state s ∈ reached.

We have seen something similar already. . .

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.

Define τV (o) := pre(o) ∧
∧

v∈V (regr(v , eff(o)) ↔ v ′).

States that o is applicable and describes how

the new value of v , represented by v ′,

must relate to the old state, described by variables V .

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (2)

The formula τV (o) describes all transitions s
o−→ s ′

induced by a single operator o
in terms of variables V describing s
and variables V ′ describing s ′.

The formula
∨

o∈O τV (o) describes state transitions
by any operator in O.

We can translate this formula to a BDD
(over variables V ∪ V ′) with bdd-formula.

The resulting BDD is called the transition relation
of the planning task, written as TV (O).

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s in terms of variables V ∪ V ′.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs ⟨s, s ′⟩ where s ′ is a successor
of s and s ∈ reached in terms of variables V ∪ V ′.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V ′.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V .

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Discussion

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Discussion

This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Variable Orders

For good performance, we need a good variable ordering.

Variables that refer to the same state variable
before and after operator application (v and v ′)
should be neighbors in the transition relation BDD.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Extensions

Symbolic search can be extended to. . .

regression and bidirectional search:
this is very easy and often effective

uniform-cost search:
requires some work, but not too difficult in principle

heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Literature (1)

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677–691, 1986.
Reduced ordered BDDs.

Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Literature (2)

Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

David Speck, Jendrik Seipp and Álvaro Torralba.
Symbolic Search for Cost-Optimal Planning
with Expressive Model Extensions.
Journal of Artificial Intelligence Research 82,
pp. 1349–1405, 2025.
More general classes of planning tasks.

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Summary

Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Summary

Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

State sets and transition relations can be represented
as BDDs.

Based on this, we can implement a blind breadth-first search
in an efficient way.

A good variable ordering is crucial for performance.

Planning and Optimization
D1. Delete Relaxation: Relaxed Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

October 20, 2025

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Heuristics

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Planning as Heuristic Search

Heuristic search is the most common approach to planning.

ingredients: general search algorithm + heuristic

heuristic estimates cost from a given state to a given goal

progression: from varying states s to fixed goal γ
regression: from fixed initial state I to varying subgoals φ

Over the next weeks, we study the main ideas
behind heuristics for planning tasks.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Reminder: Heuristics

Need to Catch Up?

We assume familiarity with heuristics and their properties:

heuristic h : S → R+
0 ∪ {∞}

perfect heuristic h∗: h∗(s) cost of optimal solution from s
(∞ if unsolvable)
properties of heuristics h:

safe: (h(s) = ∞ ⇒ h∗(s) = ∞) for all states s
goal-aware: h(s) = 0 for all goal states s
admissible: h(s) ≤ h∗(s) for all states s

consistent: h(s) ≤ cost(o) + h(s ′) for all transitions s
o−→ s ′

connections between these properties

If you are not familiar with these, we recommend Ch. B9–B10
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/

computer-science-informatik/lehrangebot-fs25/

13548-lecture-foundations-of-artificial-intelligence/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Coming Up with Heuristics

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

A Simple Heuristic for Propositional Planning Tasks

STRIPS (Fikes & Nilsson, 1971) used the number of state variables
that differ in current state s and a STRIPS goal v1 ∧ · · · ∧ vn:

h(s) := |{i ∈ {1, . . . , n} | s ̸|= vi}|.

Intuition: more satisfied goal atoms ⇝ closer to the goal

⇝ STRIPS heuristic (a.k.a. goal-count heuristic)

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Criticism of the STRIPS Heuristic

What is wrong with the STRIPS heuristic?

quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate

very sensitive to reformulation:
can easily transform any planning task into an equivalent one
where h(s) = 1 for all non-goal states (how?)

ignores almost all problem structure:
heuristic value does not depend on the set of operators!

⇝ need a better, principled way of coming up with heuristics

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

Simplify the problem, for example by removing
problem constraints.

Solve the simplified problem (ideally optimally).

Use the solution cost for the simplified problem
as a heuristic for the real problem.

As heuristic values are computed for every generated search state,
it is important that they can be computed efficiently.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Relaxing a Problem: Example

Example (Route Planning in a Road Network)

The road network is formalized as a weighted graph over points
in the Euclidean plane. The weight of an edge is the road distance
between two locations.

Example (Relaxation for Route Planning)

Use the Euclidean distance
√
|x1 − x2|2 + |y1 − y2|2

as a heuristic for the road distance between ⟨x1, y1⟩ and ⟨x2, y2⟩
This is a lower bound on the road distance (⇝ admissible).

⇝ We drop the constraint of having to travel on roads.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

delete relaxation

⇝ Part D

abstraction

⇝ Part E

critical paths

⇝ not considered in this course

landmarks

⇝ Part F

network flows

⇝ Part F

potential heuristics

⇝ Part F

We will consider most of them in this course.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

delete relaxation ⇝ Part D

abstraction ⇝ Part E

critical paths ⇝ not considered in this course

landmarks ⇝ Part F

network flows ⇝ Part F

potential heuristics ⇝ Part F

We will consider most of them in this course.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Relaxed Planning Tasks

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Delete Relaxation: Idea

In positive normal form (Chapter B5, remember?),
good and bad effects are easy to distinguish∗:

Effects that make state variables true are good
(add effects).

Effects that make state variables false are bad
(delete effects).

Idea of delete relaxation heuristics: ignore all delete effects.

(*) with a small caveat regarding conditional effects

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Delete-Relaxed Planning Tasks

Definition (Delete Relaxation of Operators)

The delete relaxation o+ of an operator o in positive normal form
is the operator obtained by replacing all negative effects ¬a
within eff(o) by the do-nothing effect ⊤.

Definition (Delete Relaxation of Propositional Planning Tasks)

The delete relaxation Π+ of a propositional planning task
Π = ⟨V , I ,O, γ⟩ in positive normal form is the planning task
Π+ := ⟨V , I , {o+ | o ∈ O}, γ⟩.

Definition (Delete Relaxation of Operator Sequences)

The delete relaxation of an operator sequence π = ⟨o1, . . . , on⟩
is the operator sequence π+ := ⟨o+1 , . . . , o+n ⟩.

Note: “delete” is often omitted: relaxation, relaxed

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Relaxed Planning Tasks: Terminology

Planning tasks in positive normal form without delete effects
are called relaxed planning tasks.

Plans for relaxed planning tasks are called relaxed plans.

If Π is a planning task in positive normal form and π+

is a plan for Π+, then π+ is called a relaxed plan for Π.

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Summary

Heuristics Coming Up with Heuristics Relaxed Planning Tasks Summary

Summary

A general way to come up with heuristics:
solve a simplified version of the real problem,
for example by removing problem constraints.

delete relaxation: given a task in positive normal form,
discard all delete effects

Planning and Optimization
D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

October 20, 2025

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

The Domination Lemma

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

On-Set and Dominating States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional
variables that are true in s, i.e., on(s) = s−1({T}).

⇝ for states of propositional planning tasks:

⇝

states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s ′ dominates an interpretation s if
on(s) ⊆ on(s ′).

⇝ all state variables true in s are also true in s ′

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Domination Lemma (1)

Lemma (Domination)

Let s and s ′ be interpretations of a set of propositional variables V ,
and let χ be a propositional formula over V
which does not contain negation symbols.

If s |= χ and s ′ dominates s, then s ′ |= χ.

Proof.

Proof by induction over the structure of χ.

Base case χ = ⊤: then s ′ |= ⊤.

Base case χ = ⊥: then s ̸|= ⊥.

. . .

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Domination Lemma (2)

Proof (continued).

Base case χ = v ∈ V : if s |= v , then v ∈ on(s).
With on(s) ⊆ on(s ′), we get v ∈ on(s ′) and hence s ′ |= v .

Inductive case χ = χ1 ∧ χ2: by induction hypothesis, our
claim holds for the proper subformulas χ1 and χ2 of χ.

s |= χ =⇒ s |= χ1 ∧ χ2

=⇒ s |= χ1 and s |= χ2

I.H. (twice)
=⇒ s ′ |= χ1 and s ′ |= χ2

=⇒ s ′ |= χ1 ∧ χ2

=⇒ s ′ |= χ.

Inductive case χ = χ1 ∨ χ2: analogous

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

The Relaxation Lemma

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V .
Let e be an effect over V , and let s be a state over V .
The add set of e in s, written addset(e, s),
and the delete set of e in s, written delset(e, s),
are defined as the following sets of state variables:

addset(e, s) = {v ∈ V | s |= effcond(v , e)}
delset(e, s) = {v ∈ V | s |= effcond(¬v , e)}

Note: For all states s and operators o applicable in s, we have
on(sJoK) = (on(s) \ delset(eff(o), s)) ∪ addset(eff(o), s).

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s ′ be a state that dominates s.

1 If o is an operator applicable in s,
then o+ is applicable in s ′ and s ′Jo+K dominates sJoK.

2 If π is an operator sequence applicable in s,
then π+ is applicable in s ′ and s ′Jπ+K dominates sJπK.

3 If additionally π leads to a goal state from state s,
then π+ leads to a goal state from state s ′.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Proof of Relaxation Lemma (1)

Proof.

Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s |= pre(o).

Because pre(o) is negation-free and s ′ dominates s,
we get s ′ |= pre(o) from the domination lemma.

Because pre(o+) = pre(o), this shows that o+ is applicable in s ′.
. . .

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s ′Jo+K dominates sJoK,
we first compare the relevant add sets:

addset(eff(o), s) = {v ∈ V | s |= effcond(v , eff(o))}
= {v ∈ V | s |= effcond(v , eff(o+))} (1)

⊆ {v ∈ V | s ′ |= effcond(v , eff(o+))} (2)

= addset(eff(o+), s ′),

where (1) uses effcond(v , eff(o)) ≡ effcond(v , eff(o+))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form). . . .

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(sJoK) = (on(s) \ delset(eff(o), s)) ∪ addset(eff(o), s)

⊆ on(s) ∪ addset(eff(o), s)

⊆ on(s ′) ∪ addset(eff(o+), s ′)

= on(s ′Jo+K),

and thus s ′Jo+K dominates sJoK.

This concludes the proof of Part 1. . . .

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |π|

Base case: π = ⟨⟩
The empty plan is trivially applicable in s ′, and
s ′J⟨⟩+K = s ′ dominates sJ⟨⟩K = s by prerequisite.

Inductive case: π = ⟨o1, . . . , on+1⟩
By the induction hypothesis, ⟨o+1 , . . . , o+n ⟩ is applicable in s ′,
and t ′ = s ′J⟨o+1 , . . . , o+n ⟩K dominates t = sJ⟨o1, . . . , on⟩K.
Also, on+1 is applicable in t.

Using Part 1, o+n+1 is applicable in t ′ and s ′Jπ+K = t ′Jo+n+1K
dominates sJπK = tJon+1K.

This concludes the proof of Part 2. . . .

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let γ be the goal formula.

From Part 2, we obtain that t ′ = s ′Jπ+K dominates t = sJπK.
By prerequisite, t is a goal state and hence t |= γ.

Because the task is in positive normal form, γ is negation-free,
and hence t ′ |= γ because of the domination lemma.

Therefore, t ′ is a goal state.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Consequences

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Consequences of the Relaxation Lemma

The relaxation lemma is the main technical result
that we will use to study delete relaxation.

Next, we show two further properties of delete relaxation
that will be useful for us.

They are direct consequences of the relaxation lemma.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let π be an operator sequence that is applicable in state s.
Then π+ is applicable in s and sJπ+K dominates sJπK.
If π is a plan for Π, then π+ is a plan for Π+.

Proof.

Apply relaxation lemma with s ′ = s.

⇝ Relaxations of plans are relaxed plans.

⇝ Delete relaxation is no harder to solve than original task.

⇝ Optimal relaxed plans are never more expensive
than optimal plans for original tasks.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s ′ be a state that dominates s,
and let π+ be a relaxed operator sequence applicable in s.

Then π+ is applicable in s ′ and s ′Jπ+K dominates sJπ+K.

Proof.

Apply relaxation lemma with π+ for π,
noting that (π+)+ = π+.

⇝ If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s ′.

⇝ Dominating states are always “better” in relaxed tasks.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Monotonicity

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o+ is applicable.
Then sJo+K dominates s.

Proof.

Since relaxed operators only have positive effects,
we have on(s) ⊆ on(s) ∪ addset(eff(o+), s) = on(sJo+K).

⇝ Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

⇝ next chapter

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Summary

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

Summary

With positive normal form, having more true variables is good.

We can formalize this as dominance between states.

It follows that delete relaxation is a simplification:
it is never harder to solve a relaxed task than the original one.

In delete-relaxed tasks, applying an operator always takes us
to a dominating state and therefore never hurts.

Planning and Optimization
D3. Delete Relaxation: Finding Relaxed Plans

Malte Helmert and Gabriele Röger

Universität Basel

October 22, 2025

Greedy Algorithm Optimal Relaxed Plans Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm

Greedy Algorithm Optimal Relaxed Plans Summary

The Story So Far

A general way to come up with heuristics is to solve
a simplified version of the real problem.

delete relaxation: given a task in positive normal form,
discard all delete effects

relaxation lemma: solutions for a state s
also work for any dominating state s ′

monotonicity lemma: sJoK dominates s

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for ⟨V , I ,O+, γ⟩
s := I
π+ := ⟨⟩
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with sJo+K ̸= s:

Append such an operator o+ to π+.
s := sJo+K

else:
return unsolvable

Greedy Algorithm Optimal Relaxed Plans Summary

Correctness of the Greedy Algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable

Upon termination, there clearly is no relaxed plan from s.
By iterated application of the monotonicity lemma,
s dominates I .
By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).

This guarantees termination after at most |V | iterations.
Thus, the algorithm can clearly be implemented
to run in polynomial time.

A good implementation runs in O(∥Π∥).

Greedy Algorithm Optimal Relaxed Plans Summary

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

When evaluating a subgoal φ in regression search,
solve relaxation of planning task with goal φ.

Set h(s) to the cost of the generated relaxed plan.

in general not well-defined:
different choices of o+ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?

Greedy Algorithm Optimal Relaxed Plans Summary

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxed Plans

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxation Heuristic

Definition (h+ heuristic)

Let Π = ⟨V , I ,O, γ⟩ be a planning task in positive normal form
with states S .

The optimal delete relaxation heuristic h+ for Π
is the function h : S → R+

0 ∪ {∞}
where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for Π+

s = ⟨V , s,O+, γ⟩.

(can analogously define a heuristic for regression)

admissible/safe/goal-aware/consistent?

Greedy Algorithm Optimal Relaxed Plans Summary

The Set Cover Problem

Can we compute h+ efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.

Greedy Algorithm Optimal Relaxed Plans Summary

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .

Greedy Algorithm Optimal Relaxed Plans Summary

Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance ⟨U,C ,K ⟩, we generate the following
relaxed planning task Π+ = ⟨V , I ,O+, γ⟩:

V = U

I = {v 7→ F | v ∈ V }
O+ = {⟨⊤,

∧
v∈Ci

v , 1⟩ | Ci ∈ C}
γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

However, the solution quality of this algorithm is poor.

For an informative heuristic, we would ideally want to find
optimal relaxed plans.

The solution cost of an optimal relaxed plan
is the estimate of the h+ heuristic.

However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

Planning and Optimization
D4. Delete Relaxation: AND/OR Graphs

Malte Helmert and Gabriele Röger

Universität Basel

October 22, 2025

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

AND/OR Graphs

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
⇝ h+ heuristic

Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
⇝ hmax heuristic, hadd heuristic, hLM-cut heuristic

Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
⇝ hFF heuristic

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

AND/OR Graphs: Motivation

Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

We now introduce AND/OR graphs and study
some of their major properties.

In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

AND/OR Graph Example

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

AND/OR Graphs

Definition (AND/OR Graph)

An AND/OR graph ⟨N,A, type⟩ is a directed graph ⟨N,A⟩ with
a node label function type : N → {∧,∨} partitioning nodes into

AND nodes (type(v) = ∧) and
OR nodes (type(v) = ∨).

We write succ(n) for the successors of node n ∈ N, i.e.,
succ(n) = {n′ ∈ N | ⟨n, n′⟩ ∈ A}.

Note: We draw AND nodes as squares and OR nodes as circles.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)

Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is an interpretation
α : N → {T,F}, treating the nodes as propositional variables.

We say that α is consistent if

for all AND nodes n ∈ N: α |= n iff α |=
∧

n′∈succ(n) n
′.

for all OR nodes n ∈ N: α |= n iff α |=
∨

n′∈succ(n) n
′.

Note that
∧

n′∈∅ n
′ = ⊤ and

∨
n′∈∅ n

′ = ⊥.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: A Consistent Valuation

F F F

FT T F

T F

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Another Consistent Valuation

T T F

FT T F

T F

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: An Inconsistent Valuation

F F T

TT F T

T T

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: An Inconsistent Valuation

F F T

TT F E T

T T E

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

Do consistent valuations exist for every AND/OR graph?

Are they unique?

If not, how are different consistent valuations related?

Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no”.
In the rest of this chapter, we address the remaining questions.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Forced Nodes

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Forced Nodes

Definition (Forced True/False Nodes)

Let G be an AND/OR graph.

A node n of G is called forced true
if α(n) = T for all consistent valuations α of G .

A node n of G is called forced false
if α(n) = F for all consistent valuations α of G .

How can we efficiently determine that nodes are forced true/false?

⇝ We begin by looking at some simple rules.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)

Let n be a node in an AND/OR graph.

Rule T-(∧): If n is an AND node and all
of its successors are forced true, then n is forced true.

Rule T-(∨): If n is an OR node and at least one
of its successors is forced true, then n is forced true.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)

Let n be a node in an AND/OR graph.

Rule F-(∧): If n is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(∨): If n is an OR node and all
of its successors are forced false, then n is forced false.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

T (1)

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

T(2)

T (1)

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

T(2) T (3)

T (1)

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

T(2) T (3)

T (1) F (1)

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Example: Applying the Rules for Forced Nodes

T(2) T (3) F (2)

T (1) F (1)

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Completeness of Rules for Forced Nodes

Theorem

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(∧) and Rule T-(∨).

Theorem

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(∧) and Rule F-(∨).

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Completeness of Rules for Forced Nodes: Proof (1)

Proof.

Let α be a valuation where α(n) = T iff there exists
a sequence ρn of applications of Rules T-(∧)
and Rule T-(∨) that derives that n is forced true.

Because the rules are monotonic, there exists a sequence ρ
of rule applications that derives that n is forced true
for all n ∈ on(α). (Just concatenate all ρn to form ρ.)

By the correctness of the rules, we know that all nodes
reached by ρ are forced true. It remains to show
that none of the nodes not reached by ρ is forced true.

We prove this by showing that α is consistent,
and hence no nodes with α(n) = F can be forced true.

. . .

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).

Case 1: nodes n with α(n) = T

In this case, ρ must have reached n in one of
the derivation steps. Consider this derivation step.

If n is an AND node, ρ must have reached
all successors of n in previous steps,
and hence α(n′) = T for all successors n′.

If n is an OR node, ρ must have reached
at least one successor of n in a previous step,
and hence α(n′) = T for at least one successor n′.

In both cases, α is consistent for node n.

. . .

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).

Case 2: nodes n with α(n) = F

In this case, by definition of α no sequence of derivation steps
reaches n. In particular, ρ does not reach n.

If n is an AND node, there must exist
some n′ ∈ succ(n) which ρ does not reach.
Otherwise, ρ could be extended using Rule T-(∧) to reach n.
Hence, α(n′) = F for some n′ ∈ succ(n).

If n is an OR node, there cannot exist
any n′ ∈ succ(n) which ρ reaches.
Otherwise, ρ could be extended using Rule T-(∨) to reach n.
Hence, α(n′) = F for all n′ ∈ succ(n).

In both cases, α is consistent for node n.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Remarks on Forced Nodes

Notes:

The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

The proof of the theorem also shows that every
AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Most/Least Conservative Valuations

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)

Let G be an AND/OR graph with nodes N.

The most conservative valuation αG
mcv : N → {T,F} and

the least conservative valuation αG
lcv : N → {T,F}

of G are defined as:

αG
mcv(n) =

{
T if n is forced true

F otherwise

αG
lcv(n) =

{
F if n is forced false

T otherwise

Note: αG
mcv is the valuation constructed in the previous proof.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)

Let G be an AND/OR graph. Then:

1 αG
mcv is consistent.

2 αG
lcv is consistent.

3 For all consistent valuations α of G,
on(αG

mcv) ⊆ on(α) ⊆ on(αG
lcv).

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Properties of MCV/LCV: Proof

Proof.

Part 1. was shown in the preceding proof. We showed that
the valuation α considered in this proof is consistent
and satisfies α(n) = T iff n is forced true, which implies α = αG

mcv.

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, αG

mcv and αG
lcv.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Properties of MCV/LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

Consistent valuations always exist
and can be efficiently computed.

All consistent valuations lie between
the most and least conservative one.

There is a unique consistent valuation iff αG
mcv = αG

lcv,
or equivalently iff each node is forced true or forced false.

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Summary

AND/OR Graphs Forced Nodes Most/Least Conservative Valuations Summary

Summary

AND/OR graphs are directed graphs
with AND nodes and OR nodes.

We can assign truth values to AND/OR graph nodes.

Such valuations are called consistent if they match
the intuitive meaning of “AND” and “OR”.

Consistent valuations always exist.

Consistent valuations can be computed efficiently.

All consistent valuations fall between two extremes:

the most conservative valuation, where only nodes
that are forced to be true are true
the least conservative valuation, where all nodes
that are not forced to be false are true

Planning and Optimization
D5. Delete Relaxation: Relaxed Task Graphs

Malte Helmert and Gabriele Röger

Universität Basel

October 27, 2025

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Relaxed Task Graphs

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Relaxed Task Graphs

Let Π+ be a relaxed planning task.

The relaxed task graph of Π+, in symbols RTG(Π+),
is an AND/OR graph that encodes

which state variables can become true
in an applicable operator sequence for Π+,

which operators of Π+ can be included
in an applicable operator sequence for Π+,

if the goal of Π+ can be reached,

and how these things can be achieved.

We present its definition in stages.

Note: Throughout this chapter, we assume flat operators.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Running Example

As a running example, consider the relaxed planning task
⟨V , I , {o1, o2, o3, o4}, γ⟩ with

V = {a, b, c , d , e, f , g , h}
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ T,

e 7→ F, f 7→ F, g 7→ F, h 7→ F}
o1 = ⟨c ∨ (a ∧ b), c ∧ ((c ∧ d) ▷ e), 1⟩
o2 = ⟨⊤, f , 2⟩
o3 = ⟨f , g , 1⟩
o4 = ⟨f , h, 1⟩
γ = e ∧ (g ∧ h)

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Construction

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Components of Relaxed Task Graphs

A relaxed task graph has four kinds of components:

Variable nodes represent the state variables.

The initial node represent the initial state.

Operator subgraphs represent the preconditions
and effects of operators.

The goal subgraph represents the goal.

The idea is to construct the graph in such a way that all nodes
representing reachable aspects of the task are forced true.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Variable Nodes

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task.

For each v ∈ V , RTG(Π+) contains an OR node nv .
These nodes are called variable nodes.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Variable Nodes: Example

V = {a, b, c , d , e, f , g , h}

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Initial Node

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task.

RTG(Π+) contains an AND node nI .
This node is called the initial node.

For all v ∈ V with I (v) = T, RTG(Π+) has an arc
from nv to nI . These arcs are called initial state arcs.

The initial node has no successor nodes.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Initial Node and Initial State Arcs: Example

V = {a, b, c , d , e, f , g , h}

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Initial Node and Initial State Arcs: Example

I = {a 7→ T, b 7→ T, c 7→ F, d 7→ T, e 7→ F, f 7→ F, g 7→ F, h 7→ F}

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task.

For each operator o+ ∈ O+, RTG(Π+) contains
an operator subgraph with the following parts:

for each formula φ that occurs as a subformula
of the precondition or of some effect condition of o+,
a formula node nφ (details follow)

for each conditional effect (χ ▷ v) that occurs
in the effect of o+, an effect node nχo+ (details follow);
unconditional effects are treated as (⊤ ▷ v)

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Formula Nodes

Formula nodes nφ are defined as follows:

If φ = v for some state variable v , nφ is the variable node nv
(so no new node is introduced).

If φ = ⊤, nφ is an AND node without outgoing arcs.

If φ = ⊥, nφ is an OR node without outgoing arcs.

If φ = (φ1 ∧ φ2), nφ is an AND node
with outgoing arcs to nφ1 and nφ2 .

If φ = (φ1 ∨ φ2), nφ is an OR node
with outgoing arcs to nφ1 and nφ2 .

Note: identically named nodes are identical,
so if the same formula occurs multiple times in the task,
the same node is reused.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Effect Nodes

Effect nodes nχo+ are defined as follows:

nχo+ is an AND node

It has an outgoing arc to the formula nodes npre(o+)

(precondition arcs) and nχ (effect condition arcs).

Exception: if χ = ⊤, there is no effect condition arc.
(This makes our pictures cleaner.)

For every conditional effect (χ ▷ v) in the operator,
there is an arc from variable node nv to nχo+ (effect arcs).

Note: identically named nodes are identical,
so if the same effect condition occurs multiple times
in the same operator, this only induces one node.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs: Example

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs: Example

o1 = ⟨c ∨ (a ∧ b), c ∧ ((c ∧ d) ▷ e), 1⟩

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs: Example

o2 = ⟨⊤, f , 2⟩

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs: Example

o3 = ⟨f , g , 1⟩

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤

o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Operator Subgraphs: Example

o4 = ⟨f , h, 1⟩

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Goal Subgraph

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task.

RTG(Π+) contains a goal subgraph, consisting of formula nodes
for the goal γ and its subformulas, constructed in the same way
as formula nodes for preconditions and effect conditions.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Goal Subgraph and Final Relaxed Task Graph: Example

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Goal Subgraph and Final Relaxed Task Graph: Example

γ = e ∧ (g ∧ h)

a b c d e f g h

I

o1,⊤ o1, c ∧ d

o2,⊤

o3,⊤ o4,⊤

γ

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

How Can We Use Relaxed Task Graphs?

We are now done with the definition of relaxed task graphs.

Now we want to use them to derive information
about planning tasks.

In the following chapter, we will use them
to compute heuristics for delete-relaxed planning tasks.

Here, we start with something simpler: reachability analysis.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Forced True Nodes and Reachability

Theorem (Forced True Nodes vs. Reachability)

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task,
and let NT be the forced true nodes of RTG(Π+).

For all formulas over state variables φ
that occur in the definition of Π+:

φ is true in some reachable state of Π+ iff nφ ∈ NT.

(We omit the proof.)

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Forced True Nodes and Reachability: Consequences

Corollary

Let Π+ = ⟨V , I ,O+, γ⟩ be a relaxed planning task,
and let NT be the forced true nodes of RTG(Π+). Then:

A state variable v ∈ V is true in at least one
reachable state iff nv ∈ NT.

An operator o+ ∈ O+ is part of at least one
applicable operator sequence iff npre(o+) ∈ NT.

The relaxed task is solvable iff nγ ∈ NT.

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

a

a

F
a

T

b

b

F
b

T

c

c

F
c

T

d

d

F
d

T

e

e

F
e

T

f

f

F
f

T

g

g

F
g

T

h

h

F
h

T

I

I

F

I

T

FT

FT FT

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

FT

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

FT

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

I

I

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γγ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

a

a

F
a

T

b

b

F
b

T

c

c

F
c

T

d

d

F
d

T

e

e

F
e

T

f

f

F
f

T

g

g

F
g

T

h

h

F
h

T

I

I

F

I

T

FT

FT FT

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

FT

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

FT

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

I

I

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Reachability Analysis: Example with Different Initial State

aa

F

a

T

bb

F

b

T

cc

F

c

T

d

d

F

d

T
e

e

F

e

T
ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Remarks

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Relaxed Task Graphs in the Literature

Some remarks on the planning literature:

Usually, only the STRIPS case is studied.

⇝ definitions simpler: only variable nodes and operator nodes,
no formula nodes or effect nodes

Usually, so-called relaxed planning graphs (RPGs)
are studied instead of RTGs.

These are temporally unrolled versions of RTGs,
i.e., they have multiple layers (“time steps”) and are acyclic.

⇝ Foundations of Artificial Intelligence course FS 2025, Ch. F3–F4

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Summary

Relaxed Task Graphs Construction Reachability Analysis Remarks Summary

Summary

Relaxed task graphs (RTGs) represent (most of) the
information of a relaxed planning task as an AND/OR graph.

They consist of:

variable nodes
an initial node
operator subgraphs including formula nodes and effect nodes
a goal subgraph including formula nodes

RTGs can be used to analyze reachability in relaxed tasks:
forced true nodes mean “reachable”,
other nodes mean “unreachable”.

Planning and Optimization
D6. Delete Relaxation: hmax and hadd

Malte Helmert and Gabriele Röger

Universität Basel

October 27, 2025

Introduction hmax and hadd Properties of hmax and hadd Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Introduction hmax and hadd Properties of hmax and hadd Summary

Introduction

Introduction hmax and hadd Properties of hmax and hadd Summary

Delete Relaxation Heuristics

In this chapter, we introduce heuristics
based on delete relaxation.

Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

Unlike the previous chapter, we do not just propagate
information about whether a given node is reachable,
but estimates how expensive it is to reach the node.

Introduction hmax and hadd Properties of hmax and hadd Summary

Reminder: Running Example

We will use the same running example as in the previous chapter:

Π = ⟨V , I , {o1, o2, o3, o4}, γ⟩ with

V = {a, b, c , d , e, f , g , h}
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ T,

e 7→ F, f 7→ F, g 7→ F, h 7→ F}
o1 = ⟨c ∨ (a ∧ b), c ∧ ((c ∧ d) ▷ e), 1⟩
o2 = ⟨⊤, f , 2⟩
o3 = ⟨f , g , 1⟩
o4 = ⟨f , h, 1⟩
γ = e ∧ (g ∧ h)

Introduction hmax and hadd Properties of hmax and hadd Summary

Algorithm for Reachability Analysis (Reminder)

reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

Here is an algorithm that achieves this:

Reachability Analysis

Associate a reachable attribute with each node.
for all nodes n:

n.reachable := false
while no fixed point is reached:

Choose a node n.
if n is an AND node:

n.reachable :=
∧

n′∈succ(n) n
′.reachable

if n is an OR node:
n.reachable :=

∨
n′∈succ(n) n

′.reachable

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

a

a

F
a

T

b

b

F
b

T

c

c

F
c

T

d

d

F
d

T

e

e

F
e

T

f

f

F
f

T

g

g

F
g

T

h

h

F
h

T

I

I

F

I

T

FT

FT FT

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

FT

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

FT

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

I

I

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

a

a

F

a

T
b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

b

b

F

b

T
c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

c

c

F

c

T
d

d

F

d

T
e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤

o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

c

c

F

c

T
dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ d

o1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

e

e

F

e

T
f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤

o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

f

f

F

f

T
g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤

o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

g

g

F

g

T
h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤

o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

h

h

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γ

γ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

Reachability Analysis: Example (Reminder)

aa

F

a

T

bb

F

b

T

cc

F

c

T

dd

F

d

T

ee

F

e

T

ff

F

f

T

gg

F

g

T

hh

F

h

T

II

F

I

T

F

T

F

T

F

T

o1,⊤o1,⊤
F

o1,⊤
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

F

T

o2,⊤o2,⊤
F

o2,⊤
T

o3,⊤o3,⊤
F

o3,⊤
T

o4,⊤o4,⊤
F

o4,⊤
T

F

T

γγ

F

γ

T

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax and hadd

Introduction hmax and hadd Properties of hmax and hadd Summary

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:

To apply an operator, we must pay its cost.

To make an OR node true, it is sufficient
to make one of its successors true.

⇝ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

To make an AND node true, all its successors
must be made true first.

⇝ We can be optimistic and estimate the cost
as the maximum of the successor node costs.

⇝ Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.

⇝ We will prove later that this is indeed optimistic/pessimistic.

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing hmax Values

Associate a cost attribute with each node.
for all nodes n:

n.cost := ∞
while no fixed point is reached:

Choose a node n.
if n is an AND node that is not an effect node:

n.cost := maxn′∈succ(n) n
′.cost

if n is an effect node for operator o:
n.cost := cost(o) + maxn′∈succ(n) n

′.cost
if n is an OR node:

n.cost := minn′∈succ(n) n
′.cost

The overall heuristic value is the cost of the goal node, nγ .cost.

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

a

a

∞
a

0

b

b

∞
b

0

c

c

∞
c

1

d

d

∞
d

0

e

e

∞
e

2

f

f

∞
f

2

g

g

∞
g

3

h

h

∞
h

3

I

I

∞
I

0

∞0

∞0 ∞1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞
o1, c ∧ d

2

+1 +1

∞0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞3

γ

γ

∞
γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

a

a

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

I

I

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

a

a

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

3

γ

γ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

3

γγ

∞

γ

3

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd Algorithm

(Differences to hmax algorithm highlighted.)

Computing hadd Values

Associate a cost attribute with each node.
for all nodes n:

n.cost := ∞
while no fixed point is reached:

Choose a node n.
if n is an AND node that is not an effect node:

n.cost :=
∑

n′∈succ(n) n
′.cost

if n is an effect node for operator o:
n.cost := cost(o) +

∑
n′∈succ(n) n

′.cost
if n is an OR node:

n.cost := minn′∈succ(n) n
′.cost

The overall heuristic value is the cost of the goal node, nγ .cost.

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

a

a

∞
a

0

b

b

∞
b

0

c

c

∞
c

1

d

d

∞
d

0

e

e

∞
e

2

f

f

∞
f

2

g

g

∞
g

3

h

h

∞
h

3

I

I

∞
I

0

∞0

∞0 ∞1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞
o1, c ∧ d

2

+1 +1

∞0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞6

γ

γ

∞
γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

a

a

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

I

I

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

a

a

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

b

b

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

d

d

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤

o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

c

c

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0 ∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

e

e

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤

o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

f

f

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

g

g

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

h

h

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

6

γ

γ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hadd: Example

aa

∞

a

0

bb

∞

b

0

cc

∞

c

1

dd

∞

d

0

ee

∞

e

2

ff

∞

f

2

gg

∞

g

3

hh

∞

h

3

II

∞

I

0

∞

0

∞

0

∞

1

o1,⊤o1,⊤
∞

o1,⊤
1

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2

+1 +1

∞

0

o2,⊤o2,⊤
∞

o2,⊤
2

+2

o3,⊤o3,⊤
∞

o3,⊤
3

+1

o4,⊤o4,⊤
∞

o4,⊤
3

+1

∞

6

γγ

∞

γ

8

⇝ hadd(I) = 8

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax and hadd: Definition

We can now define our first non-trivial efficient planning heuristics:

hmax and hadd Heuristics

Let Π = ⟨V , I ,O, γ⟩ be a propositional planning task
in positive normal form.

The hmax heuristic value of a state s, written hmax(s), is obtained
by constructing the RTG for Π+

s = ⟨V , s,O+, γ⟩ and then
computing nγ .cost using the hmax value algorithm for RTGs.

The hadd heuristic value of a state s, written hadd(s), is computed
in the same way using the hadd value algorithm for RTGs.

Notation: we will use the same notation hmax(n) and hadd(n)
for the hmax/hadd values of RTG nodes

Introduction hmax and hadd Properties of hmax and hadd Summary

Properties of hmax and hadd

Introduction hmax and hadd Properties of hmax and hadd Summary

Understanding hmax and hadd

We want to understand hmax and hadd better:

Are they well-defined?

How can they be efficiently computed?

Are they safe?

Are they admissible?

How do they compare to the optimal solution cost
for a delete-relaxed task (h+)?

Introduction hmax and hadd Properties of hmax and hadd Summary

Well-Definedness of hmax and hadd (1)

Are hmax and hadd well-defined?

The algorithms for computing hmax and hadd values do not
specify in which order the RTG nodes should be selected.

It turns out that the order does not affect the final result.
⇝ The hmax and hadd values are well-defined.

To show this, we must show

that their computation always terminates, and
that all executions terminate with the same result.

For time reasons, we only provide a proof sketch.

Introduction hmax and hadd Properties of hmax and hadd Summary

Well-Definedness of hmax and hadd (2)

Theorem

The fixed point algorithms for computing hmax and hadd values
produce a well-defined result.

Proof Sketch.

Let V0,V1,V2, . . . be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that Vi ≥ Vi+1 for all i .
It is not hard to prove that each node value can only decrease
a finite number of times: first from ∞ to some finite value,
and then a finite number of additional times. . . .

Introduction hmax and hadd Properties of hmax and hadd Summary

Well-Definedness of hmax and hadd (3)

Proof Sketch (continued).

Uniqueness of result: Let V0 ≥ V1 ≥ V2 ≥ · · · ≥ Vn be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.

View the consistency conditions of all nodes
(e.g., n.cost = minn′∈succ(n) n

′.cost for all OR nodes n)
as a system of equations E.

Vn must be a solution to E (otherwise no fixed point
is reached with Vn).

For all i ∈ {0, . . . , n}, show by induction over i
that Vi ≥ S for all solutions S to E.

It follows that Vn is the unique maximum solution to E
and hence well-defined.

Introduction hmax and hadd Properties of hmax and hadd Summary

Efficient Computation of hmax and hadd

If nodes are poorly chosen, the hmax/hadd algorithm
can update the same node many times
until it reaches its final value.

However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

Using a suitable priority queue data structure,
this allows computing the hmax/hadd values of an RTG
with nodes N and arcs A in time O(|N| log |N|+ |A|).

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

a

a

∞
a

0
(2)

b

b

∞
b

0
(3)

c

c

∞
c

1
(9)

d

d

∞
d

0
(4)

e

e

∞
e

2
(12)

f

f

∞
f

2
(14)

g

g

∞
g

3
(16)

h

h

∞
h

3
(18)

I

I

∞
I

0
(1)

∞0
(5)

∞0(6)
∞1

(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ d

o1, c ∧ d

∞
o1, c ∧ d

2
(11)

+1 +1

∞0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞3
(19)

γ

γ

∞
γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

a

a

∞

a

0
(2)

b

b

∞

b

0
(3)

c

c

∞

c

1
(9)

d

d

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

I

I

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

a

a

∞

a

0
(2)

b

b

∞

b

0
(3)

c

c

∞

c

1
(9)

d

d

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

b

b

∞

b

0
(3)

c

c

∞

c

1
(9)

d

d

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

d

d

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤

o1,⊤
∞

o1,⊤
1

(8)
o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

c

c

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ d

o1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

e

e

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤

o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

f

f

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤

o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

g

g

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

gg

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤

o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

gg

∞

g

3
(16)

h

h

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

gg

∞

g

3
(16)

hh

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

gg

∞

g

3
(16)

hh

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γ

γ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

hmax: Example of Efficient Computation

aa

∞

a

0
(2)

bb

∞

b

0
(3)

cc

∞

c

1
(9)

dd

∞

d

0
(4)

ee

∞

e

2
(12)

ff

∞

f

2
(14)

gg

∞

g

3
(16)

hh

∞

h

3
(18)

II

∞

I

0
(1)

∞

0
(5)

∞

0
(6)

∞

1
(10)

o1,⊤o1,⊤
∞

o1,⊤
1

(8)

o1, c ∧ do1, c ∧ d

∞

o1, c ∧ d

2
(11)

+1 +1

∞

0
(7)

o2,⊤o2,⊤
∞

o2,⊤
2

(13)

+2

o3,⊤o3,⊤
∞

o3,⊤
3

(15)

+1

o4,⊤o4,⊤
∞

o4,⊤
3

(17)

+1

∞

3
(19)

γγ

∞

γ

3
(20)

⇝ hmax(I) = 3

Introduction hmax and hadd Properties of hmax and hadd Summary

Efficient Computation of hmax and hadd: Remarks

In the following chapters, we will always assume that we are
using this efficient version of the hmax and hadd algorithm.

In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.

Introduction hmax and hadd Properties of hmax and hadd Summary

Heuristic Quality of hmax and hadd

This leaves us with the questions about the heuristic quality
of hmax and hadd:

Are they safe?

Are they admissible?

How do they compare to the optimal solution cost
for a delete-relaxed task?

It is easy to see that hmax and hadd are safe:
they assign ∞ iff a node is unreachable in the delete relaxation.

In our running example, it seems that hmax is prone to
underestimation and hadd is prone to overestimation.

We will study this further in the next chapter.

Introduction hmax and hadd Properties of hmax and hadd Summary

Summary

Introduction hmax and hadd Properties of hmax and hadd Summary

Summary

hmax and hadd values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).

They are computed by propagating cost information
in relaxed task graphs:

At OR nodes, choose the cheapest alternative.
At AND nodes, maximize or sum the successor costs.
At effect nodes, also add the operator cost.

hmax and hadd values can serve as heuristics.

They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.

Planning and Optimization
D7. Delete Relaxation: Analysis of hmax and hadd

Malte Helmert and Gabriele Röger

Universität Basel

October 29, 2025

Choice Functions Best Achievers Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Choice Functions Best Achievers Summary

Choice Functions

Choice Functions Best Achievers Summary

Motivation

In this chapter, we analyze the behaviour
of hmax and hadd more deeply.

Our goal is to understand their shortcomings.

In the next chapter we then used this understanding
to devise an improved heuristic.

As a preparation for our analysis, we need some further
definitions that concern choices in AND/OR graphs.

The key observation is that if we want to establish the value of
a certain node n, we can to some extent choose how we want
to achieve the OR nodes that are relevant to achieving n.

Choice Functions Best Achievers Summary

Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node,
but node values may not change.

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

(precondition of o1 modified to c ∨ (a ∨ b))

Choice Functions Best Achievers Summary

Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node,
but node values may not change.

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

(precondition of o1 modified to c ∨ (a ∨ b))

Choice Functions Best Achievers Summary

Choice Functions

Definition (Choice Function)

Let G be an AND/OR graph with nodes N and OR nodes N∨.

A choice function for G is a function f : N ′ → N defined on
some set N ′ ⊆ N∨ such that f (n) ∈ succ(n) for all n ∈ N ′.

In words, choice functions select (at most)
one successor for each OR node of G .

Intuitively, f (n) selects by which disjunct n is achieved.

If f (n) is undefined for a given n, the intuition is
that n is not achieved.

Choice Functions Best Achievers Summary

Reduced Graphs

Once we have decided how to achieve an OR node,
we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function
for G defined on nodes N ′.

The reduced graph for f is the subgraph of G
where all outgoing arcs of OR nodes are removed
except for the chosen arcs ⟨n, f (n)⟩ with n ∈ N ′.

Choice Functions Best Achievers Summary

Best Achievers

Choice Functions Best Achievers Summary

Choice Functions Induced by hmax and hadd

Which choices do hmax and hadd make?

At every OR node n, we set the cost of n
to the minimum of the costs of the successors of n.

The motivation for this is to achieve n via the successor that
can be achieved most cheaply according to our cost estimates.

⇝ This corresponds to defining a choice function f
with f (n) ∈ argminn′∈N′ n′.cost for all reached OR nodes n,
where N ′ ⊆ succ(n) are all successors of n processed before n.

The successors chosen by this cost function are called
best achievers (according to hmax or hadd).

Note that the best achiever function f is in general
not well-defined because there can be multiple minimizers.
We assume that ties are broken arbitrarily.

Choice Functions Best Achievers Summary

Example: Best Achievers (1)

best achievers for hadd

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

Choice Functions Best Achievers Summary

Example: Best Achievers (1)

best achievers for hadd

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

Choice Functions Best Achievers Summary

Example: Best Achievers (2)

best achievers for hadd; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

Choice Functions Best Achievers Summary

Example: Best Achievers (2)

best achievers for hadd; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

Choice Functions Best Achievers Summary

Best Achiever Graphs

Observation: The hmax/hadd costs of nodes remain the same
if we replace the RTG by the reduced graph for the respective
best achiever function.

The AND/OR graph that is obtained by removing
all nodes with infinite cost from this reduced graph
is called the best achiever graph for hmax/hadd.

We write Gmax and G add for the best achiever graphs.

Gmax (G add) is always acyclic: for all arcs ⟨n, n′⟩ it contains,
n is processed by hmax (by hadd) after n′.

Choice Functions Best Achievers Summary

Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.
Let Neff be the set of effect nodes of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs
of all effect nodes on the path.

The following properties can be shown by induction:

hmax(n) is the maximum cost of all paths originating from n in
Gmax. A path achieving this maximum is called a critical path.

hadd(n) is the sum, over all effect nodes n′, of the cost of n′

multiplied by the number of paths from n to n′ in G add.

In particular, these properties hold for the goal node nγ
if it is reachable.

Choice Functions Best Achievers Summary

Example: Undercounting in hmax

Gmax: undercounting in hmax

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

3

γ

3

⇝ o1 and o4 not counted because they are off the critical path

Choice Functions Best Achievers Summary

Example: Undercounting in hmax

Gmax: undercounting in hmax

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

3

γ

3

⇝ o1 and o4 not counted because they are off the critical path

Choice Functions Best Achievers Summary

Example: Overcounting in hadd

G add: overcounting in hadd

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

⇝ o2 counted twice because there are two paths to n⊤o2

Choice Functions Best Achievers Summary

Example: Overcounting in hadd

G add: overcounting in hadd

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

⇝ o2 counted twice because there are two paths to n⊤o2

Choice Functions Best Achievers Summary

Example: Overcounting in hadd

G add: overcounting in hadd

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

8

⇝ o2 counted twice because there are two paths to n⊤o2

Choice Functions Best Achievers Summary

Summary

Choice Functions Best Achievers Summary

Summary

hmax and hadd can be used to decide how to achieve
OR nodes in a relaxed task graph
⇝ best achievers

Best achiever graphs help identify shortcomings of hmax and
hadd compared to the perfect delete relaxation heuristic h+.

hmax underestimates h+ because it only considers
the cost of a critical path for the relaxed planning task.
hadd overestimates h+ because it double-counts operators
occurring on multiple paths in the best achiever graph.

Planning and Optimization
D8. Delete Relaxation: hFF and Comparison of Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

October 29, 2025

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

The FF Heuristic

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Inaccuracies in hmax and hadd

hmax is often inaccurate because it undercounts:
the heuristic estimate only reflects the cost of a critical path,
which is often only a small fraction of the overall plan.

hadd is often inaccurate because it overcounts:
if the same subproblem is reached in many ways, it will be
counted many times although it only needs to be solved once.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

The FF Heuristic

With best achiever graphs, there is a simple solution
to the overcounting of hadd: count all effect nodes
that hadd would count, but only count each of them once.

Definition (FF Heuristic)

Let Π = ⟨V , I ,O, γ⟩ be a propositional planning task
in positive normal form. The FF heuristic for a state s of Π,
written hFF(s), is computed as follows:

Construct the RTG for the task ⟨V , s,O+, γ⟩
Construct the best achiever graph G add.

Compute the set of effect nodes {nχ1
o1 , . . . , n

χk
ok }

reachable from nγ in G add.

Return hFF(s) =
∑k

i=1 cost(oi).

Note: hFF is not well-defined; different tie-breaking policies
for best achievers can lead to different heuristic values

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (1)

FF heuristic computation

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

o2,⊤
2

+2

o3,⊤
3

o3,⊤
3

+1

o4,⊤
3

o4,⊤
3

+1

6

γ

8

Construct RTG.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (1)

FF heuristic computation

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

o2,⊤
2

+2

o3,⊤
3

o3,⊤
3

+1

o4,⊤
3

o4,⊤
3

+1

6

γ

8

Construct best achiever graph G add.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (1)

FF heuristic computation

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

o2,⊤
2

+2

o3,⊤
3

o3,⊤
3

+1

o4,⊤
3

o4,⊤
3

+1

6

γ

8

Compute effect nodes reachable from goal node.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (1)

FF heuristic computation

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

o2,⊤
2

+2

o3,⊤
3

o3,⊤
3

+1

o4,⊤
3

o4,⊤
3

+1

6

γ

8

hFF(s) = 1 + 1 + 2 + 1 + 1 = 6

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (2)

FF heuristic computation; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

Construct RTG.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (2)

FF heuristic computation; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

Construct best achiever graph G add.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (2)

FF heuristic computation; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

Compute effect nodes reachable from goal node.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Example: FF Heuristic (2)

FF heuristic computation; modified goal e ∨ (g ∧ h)

a

0

b

0

c

1

d

0

e

2

f

2

g

3

h

3

I

0

0

0 1

o1,⊤
1

o1,⊤
1

o1, c ∧ d

2

o1, c ∧ d

2

+1 +1

0

o2,⊤
2

+2

o3,⊤
3

+1

o4,⊤
3

+1

6

γ

2

γ

8

hFF(s) = 1 + 1 = 2

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

hmax vs. hadd vs. hFF vs. h+

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Reminder: Optimal Delete Relaxation Heuristic

Definition (h+ Heuristic)

Let Π be a propositional planning task in positive normal form,
and let s be a state of Π.

The optimal delete relaxation heuristic for s, written h+(s),
is the perfect heuristic value h∗(s) of state s
in the delete-relaxed task Π+.

Reminder: We proved that h+(s) is hard to compute.
(BCPlanEx is NP-complete for delete-relaxed tasks.)

The optimal delete relaxation heuristic is often used
as a reference point for comparison.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Relationships between Delete Relaxation Heuristics (1)

Theorem

Let Π be a propositional planning task in positive normal form,
and let s be a state of Π.

Then:

1 hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)

2 hmax(s) = ∞ iff h+(s) = ∞ iff hFF(s) = ∞ iff hadd(s) = ∞
3 hmax and h+ are admissible and consistent.

4 hFF and hadd are neither admissible nor consistent.

5 All four heuristics are safe and goal-aware.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Relationships between Delete Relaxation Heuristics (2)

Proof Sketch.

for 1:

To show hmax(s) ≤ h+(s), show that critical path costs can
be defined for arbitrary relaxed plans and that the critical path
cost of a plan is never larger than the cost of the plan.
Then show that hmax(s) computes the minimal critical path
cost over all delete-relaxed plans.

To show h+(s) ≤ hFF(s), prove that the operators belonging
to the effect nodes counted by hFF form a relaxed plan.
No relaxed plan is cheaper than h+ by definition of h+.

hFF(s) ≤ hadd(s) is obvious from the description of hFF:
both heuristics count the same operators,
but hadd may count some of them multiple times.

. . .

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Relationships between Delete Relaxation Heuristics (3)

Proof Sketch (continued).

for 2: all heuristics are infinite iff the task has no relaxed solution

for 3: admissibility follows from hmax(s) ≤ h+(s)

for 3:

because we already know that h+ is admissible;

for 3:

we omit the argument for consistency

for 4: construct a counterexample to admissibility for hFF

for 5: goal-awareness is easy to show; safety follows from 2.+3.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Summary

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Summary

The FF heuristic repairs the double-counting of hadd

and therefore approximates h+ more closely.

The key idea is to mark all effect nodes “used” for the hadd

value of the goal and count each of them once.

In general, hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s).

hmax and h+ are admissible; hFF and hadd are not.

The FF Heuristic hmax vs. hadd vs. hFF vs. h+ Summary

Literature Pointers

(Some) delete-relaxation heuristics in the planning literature:

additive heuristic hadd (Bonet, Loerincs & Geffner, 1997)

maximum heuristic hmax (Bonet & Geffner, 1999)

(original) FF heuristic (Hoffmann & Nebel, 2001)

cost-sharing heuristic hcs (Mirkis & Domshlak, 2007)

set-additive heuristics hsa (Keyder & Geffner, 2008)

FF/additive heuristic hFF (Keyder & Geffner, 2008)

local Steiner tree heuristic hlst (Keyder & Geffner, 2009)

⇝ also hybrids such as semi-relaxed heuristics

⇝

and delete-relaxation landmark heuristics

Planning and Optimization
E1. Planning Tasks in Finite-Domain Representation

Malte Helmert and Gabriele Röger

Universität Basel

November 3, 2025

Finite-Domain Representation Equivalence and Normal Forms Summary

How We Continue

The next class of heuristics we will consider
are abstraction heuristics.

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

However, this requires some preparations.

Finite-Domain Representation Equivalence and Normal Forms Summary

Back to Foundations: Finite-Domain Representation

Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

⇝ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

⇝ not specific to abstraction heuristics, but general foundations

Finite-Domain Representation Equivalence and Normal Forms Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain Representation

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain State Variables

So far, we used propositional (Boolean) state variables.
⇝ possible values T and F

We now consider finite-domain variables.
⇝ every variable has a finite set of possible values

A state is still an assignment to the state variables.

Example: O(n2) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.

Finite-Domain Representation Equivalence and Normal Forms Summary

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

⇝ 29 = 512 states

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

Finite-Domain Representation Equivalence and Normal Forms Summary

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

below-a: {b, c, table}
below-b: {a, c, table}
below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

⇝ 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

Finite-Domain Representation Equivalence and Normal Forms Summary

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?

There are 13 physically possible states with three blocks:

all blocks on table: 1 state
all blocks in one stack: 3! = 6 states
two block stacked, the other separate:

(
3
2

)
2! = 6

With propositional variables, 29 − 13 = 499 states are useless.

With finite-domain variables, only 27− 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s |= v = d iff s(v) = d .

Finite-Domain Representation Equivalence and Normal Forms Summary

Example: Finite-Domain State Variables

Example

Consider finite-domain variables V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {location 7→ at-home, bike 7→ locked}.

Does s |= (location = at-home ∧ ¬bike = stolen) hold?

Finite-Domain Representation Equivalence and Normal Forms Summary

Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

a precondition pre(o), a formula over V

an effect eff(o) over V

a cost cost(o) ∈ R+
0

Only necessary adaptation: What is an effect?

Example

⟨location = in-front-of-uni,
location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

Finite-Domain Representation Equivalence and Normal Forms Summary

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects

Finite-Domain Representation Equivalence and Normal Forms Summary

Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d , e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

effcond(v := d ,⊤) = ⊥
effcond(v := d , v := d) = ⊤
effcond(v := d , v ′ := d ′) = ⊥
for atomic effects with v ′ ̸= v or d ′ ̸= d

effcond(v := d , (e ∧ e ′)) =
(effcond(v := d , e) ∨ effcond(v := d , e ′))

effcond(v := d , (χ ▷ e)) = (χ ∧ effcond(v := d , e))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.

Finite-Domain Representation Equivalence and Normal Forms Summary

Conflicting Effects and Consistency Condition

What should an effect of the form v := a ∧ v := b mean?

For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d ̸=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

How did we handle conflicting effects
in propositional planning tasks?

Finite-Domain Representation Equivalence and Normal Forms Summary

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables
and e be an effect over V .
If s |= consist(e), the resulting state of applying e in s,
written sJeK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =

{
d if s |= effcond(v := d , e) for some d ∈ dom(v)

s(v) otherwise

Let o be an operator over V .
Operator o is applicable in s if s |= pre(o) ∧ consist(eff(o)).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state sJeff(o)K.

Finite-Domain Representation Equivalence and Normal Forms Summary

Applying Operators: Example

Example

V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {location 7→ in-front-of-uni, bike 7→ unlocked}

o = ⟨location = in-front-of-uni, location := at-home, 1⟩
o ′ = ⟨location = in-front-of-uni,

location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

What is sJoK? What is sJo ′K?

Finite-Domain Representation Equivalence and Normal Forms Summary

FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple Π = ⟨V , I ,O, γ⟩ where

V is a finite set of finite-domain state variables,

I is an assignment for V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

Finite-Domain Representation Equivalence and Normal Forms Summary

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

Finite-Domain Representation Equivalence and Normal Forms Summary

Equivalence and Normal Forms

Finite-Domain Representation Equivalence and Normal Forms Summary

Equivalence and Flat Operators

The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.

Finite-Domain Representation Equivalence and Normal Forms Summary

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d , e) ∧ effcond(v := d ′, e)
is unsatisfiable for all v ∈ V and d , d ′ ∈ dom(v) with d ̸= d ′.

An operator o is called conflict-free if eff(o) is conflict-free.

Note: consist(e) ≡ ⊤ for conflict-free e.

Algorithm to make given operator o conflict-free:

replace pre(o) with pre(o) ∧ consist(eff(o))

replace all atomic effects v := d by (consist(eff(o)) ▷ v := d)

The resulting operator o ′ is conflict-free and o ≡ o ′.

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ Operators and Planning Tasks

Definition (SAS+ Operator)

An operator o of an FDR planning task is a SAS+ operator if

pre(o) is a satisfiable conjunction of atoms, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (SAS+ Planning Task)

An FDR planning task ⟨V ,O, I , γ⟩ is a SAS+ planning task
if all operators o ∈ O are SAS+ operators
and γ is a satisfiable conjunction of atoms.

Note: SAS+ operators are conflict-free and flat.

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ Operators: Remarks

Every SAS+ operator is of the form

⟨v1 = d1 ∧ · · · ∧ vn = dn, v ′1 := d ′
1 ∧ · · · ∧ v ′m := d ′

m⟩

where all vi are distinct and all v ′j are distinct.

Often, SAS+ operators o are described
via two sets of partial assignments:

the preconditions {v1 7→ d1, . . . , vn 7→ dn}
the effects {v ′

1 7→ d ′
1, . . . , v

′
m 7→ d ′

m}

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ vs. STRIPS

SAS+ is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

Apart from this difference, all comments for STRIPS
apply analogously.

If all variable domains are binary, SAS+ is essentially
STRIPS with negation.

SAS+

Derives from SAS = Simplified Action Structures
(Bäckström & Klein, 1991)

Finite-Domain Representation Equivalence and Normal Forms Summary

Summary

Finite-Domain Representation Equivalence and Normal Forms Summary

Summary

Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

FDR tasks are often more compact (have fewer states).

This makes many planning algorithms more efficient
when working with a finite-domain representation.

SAS+ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.
No conditional effects are allowed.

Planning and Optimization
E2. Invariants and Mutexes

Malte Helmert and Gabriele Röger

Universität Basel

November 3, 2025

Invariants Computing Invariants Mutexes Reformulation Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Invariants Computing Invariants Mutexes Reformulation Summary

Invariants

Invariants Computing Invariants Mutexes Reformulation Summary

Invariants

When we as humans reason about planning tasks,
we implicitly make use of “obvious” properties of these tasks.

Example: we are never in two places at the same time

We can represent such properties as logical formulas φ
that are true in all reachable states.

Example: φ = ¬(at-uni ∧ at-home)

Such formulas are called invariants of the task.

Invariants Computing Invariants Mutexes Reformulation Summary

Invariants: Definition

Definition (Invariant)

An invariant of a planning task Π with state variables V
is a logical formula φ over V such that s |= φ
for all reachable states s of Π.

Invariants Computing Invariants Mutexes Reformulation Summary

Computing Invariants

Invariants Computing Invariants Mutexes Reformulation Summary

Computing Invariants

How does an automated planner come up with invariants?

Theoretically, testing if a formula φ is an invariant
is as hard as planning itself.
⇝ proof idea: a planning task is unsolvable iff

⇝

the negation of its goal is an invariant

Still, many practical invariant synthesis algorithms exist.

To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
⇝ sound, but not complete

Empirically, they tend to at least find the “obvious”
invariants of a planning task.

Invariants Computing Invariants Mutexes Reformulation Summary

Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on
the generate-test-repair approach:

Generate: Suggest some invariant candidates, e.g.,
by enumerating all possible formulas φ of a certain size.

Test: Try to prove that φ is indeed an invariant.
Usually done inductively:

1 Test that initial state satisfies φ.
2 Test that if φ is true in the current state,

it remains true after applying a single operator.

Repair: If invariant test fails, replace candidate φ
by a weaker formula, ideally exploiting why the proof failed.

Invariants Computing Invariants Mutexes Reformulation Summary

Invariant Synthesis: References

We will not cover invariant synthesis algorithms in this course.

Literature on invariant synthesis:

DISCOPLAN (Gerevini & Schubert, 1998)

TIM (Fox & Long, 1998)

Edelkamp & Helmert’s algorithm (1999)

Bonet & Geffner’s algorithm (2001)

Rintanen’s algorithm (2008)

Rintanen’s algorithm for schematic invariants (2017)

Invariants Computing Invariants Mutexes Reformulation Summary

Exploiting Invariants

Invariants have many uses in planning:

Regression search (C3–C4):
Prune subgoals that violate (are inconsistent with) invariants.

Planning as satisfiability (C5–C6):
Add invariants to a SAT encoding of a planning task
to get tighter constraints.

Proving unsolvability:
If φ is an invariant such that φ ∧ γ is unsatisfiable,
the planning task with goal γ is unsolvable.

Finite-Domain Reformulation:
Derive a more compact FDR representation (equivalent, but
with fewer states) from a given propositional planning task.

We now discuss the last point because it connects
to our discussion of propositional vs. FDR planning tasks.

Invariants Computing Invariants Mutexes Reformulation Summary

Mutexes

Invariants Computing Invariants Mutexes Reformulation Summary

Reminder: Blocks World (Propositional Variables)

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

A
B

C

⇝ 29 = 512 states

Invariants Computing Invariants Mutexes Reformulation Summary

Reminder: Blocks World (Finite-Domain Variables)

Example

Use three finite-domain state variables:

below-a: {b, c, table}
below-b: {a, c, table}
below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

⇝ 33 = 27 states

A
B

C

Invariants Computing Invariants Mutexes Reformulation Summary

Task Reformulation

Common modeling languages (like PDDL)
often give us propositional tasks.

More compact FDR tasks are often desirable.

Can we do an automatic reformulation?

Invariants Computing Invariants Mutexes Reformulation Summary

Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments
cannot be simultaneously true (are mutually exclusive).

Example (Blocks World)

The invariant ¬A-on-B ∨ ¬A-on-C states that
A-on-B and A-on-C are mutex.

We say that a set of literals is a mutex group
if every subset of two literals is a mutex.

Example (Blocks World)

{A-on-B,A-on-C,A-on-table} is a mutex group.

Invariants Computing Invariants Mutexes Reformulation Summary

Encoding Mutex Groups as Finite-Domain Variables

Let G = {ℓ1, . . . , ℓn} be a mutex group over n different
propositional state variables VG = {v1, . . . , vn}.

Then a single finite-domain state variable vG with
dom(vG) = {ℓ1, . . . , ℓn, none} can replace the n variables VG :

s(vG) = ℓi represents situations where (exactly) ℓi is true

s(vG) = none represents situations where all ℓi are false

Note: We can omit the “none” value if ℓ1 ∨ · · · ∨ ℓn is an invariant.

Invariants Computing Invariants Mutexes Reformulation Summary

Mutex Covers

Definition (Mutex Cover)

A mutex cover for a propositional planning task Π
is a set of mutex groups {G1, . . . ,Gn} where each variable of Π
occurs in exactly one group Gi .

A mutex cover is positive if all literals in all groups are positive.

Note: always exists (use trivial group {v} if v otherwise uncovered)

Invariants Computing Invariants Mutexes Reformulation Summary

Positive Mutex Covers

In the following, we stick to positive mutex covers for simplicity.

If we have ¬v in G for some group G in the cover, we can
reformulate the task to use an “opposite” variable v̂ instead,
as in the conversion to positive normal form (Chapter B5).

Invariants Computing Invariants Mutexes Reformulation Summary

Reformulation

Invariants Computing Invariants Mutexes Reformulation Summary

Mutex-Based Reformulation of Propositional Tasks

Given a conflict-free propositional planning task Π
with positive mutex cover {G1, . . . ,Gn}:

In all conditions where variable v ∈ Gi occurs,
replace v with vGi

= v .

In all effects e where variable v ∈ Gi occurs,

Replace all atomic add effects v with vGi := v
Replace all atomic delete effects ¬v with
(vGi = v ∧ ¬

∨
v ′∈Gi\{v} effcond(v

′, e)) ▷ vGi := none

This results in an FDR planning task Π′ that is equivalent to Π
(without proof).

Note: the conditional effects encoding delete effects
can often be simplified away to an unconditional or empty effect.

Invariants Computing Invariants Mutexes Reformulation Summary

And Back?

It can also be useful to reformulate an FDR task
into a propositional task.

For example, we might want positive normal form,
which requires a propositional task.

Key idea: each variable/value combination v = d
becomes a separate propositional state variable ⟨v , d⟩

Invariants Computing Invariants Mutexes Reformulation Summary

Converting FDR Tasks into Propositional Tasks

Definition (Induced Propositional Planning Task)

Let Π = ⟨V , I ,O, γ⟩ be a conflict-free FDR planning task.
The induced propositional planning task Π′

is the propositional planning task Π′ = ⟨V ′, I ′,O ′, γ′⟩, where
V ′ = {⟨v , d⟩ | v ∈ V , d ∈ dom(v)}
I ′(⟨v , d⟩) = T iff I (v) = d

O ′ and γ′ are obtained from O and γ by

replacing each atomic formula v = d by the proposition ⟨v , d⟩
replacing each atomic effect v := d by the effect
⟨v , d⟩ ∧

∧
d′∈dom(v)\{d} ¬⟨v , d ′⟩.

Notes:

Again, simplifications are often possible
to avoid introducing so many delete effects.

SAS+ tasks induce STRIPS tasks.

Invariants Computing Invariants Mutexes Reformulation Summary

Summary

Invariants Computing Invariants Mutexes Reformulation Summary

Summary (1)

Invariants are common properties of all reachable states,
expressed as formulas.

A number of algorithms for computing invariants exist.

These algorithms will not find all useful invariants
(which is too hard), but try to find some useful subset
with reasonable (polynomial) computational effort.

Invariants Computing Invariants Mutexes Reformulation Summary

Summary (2)

Mutexes are invariants that express
that certain literals are mutually exclusive.

Mutex covers provide a way to convert a set of propositional
state variables into a potentially much smaller set
of finite-domain state variables.

Using mutex covers, we can reformulate propositional tasks
as more compact FDR tasks.

Conversely, we can reformulate FDR tasks as propositional
tasks by introducing propositions for each variable/value pair.

Planning and Optimization
E3. Abstractions: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

November 5, 2025

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Introduction

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

delete relaxation

abstraction

critical paths

landmarks

network flows

potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour
as much as possible.

An abstraction of a transition system T is defined by
an abstraction mapping α that defines which states of T
should be distinguished and which ones should not.

From T and α, we compute an abstract transition system T α

which is similar to T , but smaller.

The abstract goal distances (goal distances in T α)
are used as heuristic estimates for goal distances in T .

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstracting a Transition System: Example

example from domain-specific heuristic search:

Example (15-Puzzle)

A 15-puzzle state is given by a permutation ⟨b, t1, . . . , t15⟩
of {1, . . . , 16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8–15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1–7:

α(⟨b, t1, . . . , t15⟩) = ⟨b, t1, . . . , t7⟩

The heuristic values for this abstraction correspond to the cost
of moving tiles 1–7 to their goal positions.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstraction Example: 15-Puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

real state space:

16! = 20922789888000 ≈ 2 · 1013 states
16!
2 = 10461394944000 ≈ 1013 reachable states

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Abstraction Example: 15-Puzzle

2 6

5 7

3 4 1

1 2 3 4

5 6 7

abstract state space:

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 states

16 · 15 · . . . · 9 = 518918400 ≈ 5 · 108 reachable states

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Computing the Abstract Transition System

Given T and α, how do we compute T α?

Requirement

We want to obtain an admissible heuristic.
Hence, h∗(α(s)) (in the abstract state space T α) should never
overestimate h∗(s) (in the concrete state space T).

An easy way to achieve this is to ensure that all solutions in T
are also present in T α:

If s is a goal state in T , then α(s) is a goal state in T α.

If T has a transition from s to t, then T α

has a transition from α(s) to α(t) with the same cost.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Computing the Abstract Transition System: Example

Example (15-Puzzle)

In the running example:

T has the unique goal state ⟨16, 1, 2, . . . , 15⟩.
⇝ T α has the unique goal state ⟨16, 1, 2, . . . , 7⟩.

Let x and y be neighbouring positions in the 4× 4 grid.
T has a transition from ⟨x , t1, . . . , ti−1, y , ti+1, . . . , t15⟩
to ⟨y , t1, . . . , ti−1, x , ti+1, . . . , t15⟩ for all i ∈ {1, . . . , 15}.
⇝ T α has a transition from ⟨x , t1, . . . , ti−1, y , ti+1, . . . , t7⟩

to ⟨y , t1, . . . , ti−1, x , ti+1, . . . , t7⟩ for all i ∈ {1, . . . , 7}.
⇝ Moreover, T α has a transition from ⟨x , t1, . . . , t7⟩

to ⟨y , t1, . . . , t7⟩ if y /∈ {t1, . . . , t7}.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for α:

For a given state s, the abstract state α(s)
must be efficiently computable.

For a given abstract state α(s), the abstract goal distance
h∗(α(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:

pattern database heuristics (Culberson & Schaeffer, 1996)

domain abstractions (Hernádvölgyi and Holte, 2000)

merge-and-shrink abstractions (Dräger, Finkbeiner &
Podelski, 2006)

Cartesian abstractions (Ball, Podelski & Rajamani, 2001)

structural patterns (Katz & Domshlak, 2008)

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, α can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ≈ 495 MiB RAM).

During search, computing h∗(α(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Multiple Abstractions

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Multiple Abstractions

One important practical question is how to come up
with a suitable abstraction mapping α.

Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

However, it is generally not necessary to commit
to a single abstraction.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Combining Multiple Abstractions

Maximizing several abstractions:

Each abstraction mapping gives rise to an admissible heuristic.

By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

Thus, we can always compute several abstractions
and maximize over the individual abstract goal distances.

Adding several abstractions:

In some cases, we can even compute the sum
of individual estimates and still stay admissible.

Summation often leads to much higher estimates
than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Maximizing Several Abstractions: Example

Example (15-Puzzle)

mapping to tiles 1–7 was arbitrary
⇝ can use any subset of tiles

with the same amount of memory required for the tables
for the mapping to tiles 1–7, we could store the tables
for nine different abstractions to six tiles and the blank

use maximum of individual estimates

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

⇝ Is the sum of the abstraction heuristics admissible?

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15

2nd abstraction: ignore precise location of 1–7

⇝ The sum of the abstraction heuristics is not admissible.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Adding Several Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

1st abstraction: ignore precise location of 8–15 and blank

2nd abstraction: ignore precise location of 1–7 and blank

⇝ The sum of the abstraction heuristics is admissible.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Outlook

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In the next two chapters, we formally introduce abstractions
and abstraction heuristics and study some of their
most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

pattern database heuristics,

merge-and-shrink abstractions and

Cartesian abstractions.

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Summary

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Summary

Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

The key idea is to map states to a smaller abstract transition
system T α by means of an abstraction function α.

Goal distances in T α are then used as admissible estimates
for goal distances in the original transition system.

To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

Often, multiple abstractions are used.
They can always be maximized admissibly.

Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

Planning and Optimization
E4. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

November 5, 2025

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Reminder: Transition Systems

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Transition Systems

Reminder from Chapter B1:

Definition (Transition System)

A transition system is a 6-tuple T = ⟨S , L, c ,T , s0, S⋆⟩ where
S is a finite set of states,

L is a finite set of (transition) labels,

c : L → R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s ′⟩ if ⟨s, ℓ, s ′⟩ ∈ T .

We also write this as s
ℓ−→ s ′, or s → s ′ when not interested in ℓ.

Note: Transition systems are also called state spaces.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Mapping Planning Tasks to Transition Systems

Reminder from Chapters B3 and E1:

Definition (Transition System Induced by a Planning Task)

The planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over state variables V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.

(same definition for propositional and finite-domain representation)

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Tasks in Finite-Domain Representation

Notes:

We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

All concepts apply equally to propositional planning tasks.

However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

Useless states can hurt the efficiency of abstraction-based
algorithms.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task ⟨V , I ,O, γ⟩:
V = {p, tA, tB} with

dom(p) = {L,R,A,B}
dom(tA) = dom(tB) = {L,R}

I = {p 7→ L, tA 7→ R, tB 7→ R}
O = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j ̸= j ′}, where
pickupi,j = ⟨ti = j ∧ p = j , p := i , 1⟩
dropi,j = ⟨ti = j ∧ p = i , p := j , 1⟩
movei,j,j′ = ⟨ti = j , ti := j ′, 1⟩

γ = (p = R)

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Transition System of Example Task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

State {p 7→ i , tA 7→ j , tB 7→ k} is depicted as ijk.

Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupA,L.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions

Definition (Abstraction)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function α : S → Sα defined on the states of T ,
where Sα is an arbitrary set.

Without loss of generality, we require that α is surjective.

Intuition: α maps the states of T to another (usually smaller)
abstract state space.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstract Transition System

Definition (Abstract Transition System)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system,
and let α : S → Sα be an abstraction of T .

The abstract transition system induced by α, in symbols T α,
is the transition system T α = ⟨Sα, L, c ,Tα, sα0 ,S

α
⋆ ⟩ defined by:

Tα = {⟨α(s), ℓ, α(t)⟩ | ⟨s, ℓ, t⟩ ∈ T}
sα0 = α(s0)

Sα
⋆ = {α(s) | s ∈ S⋆}

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Concrete and Abstract State Space

Let T be a transition system and α be an abstraction of T .

T is called the concrete transition system.

T α is called the abstract transition system.

Similarly: concrete/abstract state space,
concrete/abstract transition, etc.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstraction: Example

concrete transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstraction: Example

abstract transition system

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

ARRALL

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Note: Most arcs represent many parallel transitions.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Strict Homomorphisms

The abstraction mapping α that transforms T to T α

is also called a strict homomorphism from T to T α.

Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by α.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstraction Heuristics

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstraction Heuristics

Definition (Abstraction Heuristic)

Let α : S → Sα be an abstraction of a transition system T .

The abstraction heuristic induced by α, written hα,
is the heuristic function hα : S → R+

0 ∪ {∞} defined as

hα(s) = h∗T α(α(s)) for all s ∈ S ,

where h∗T α denotes the goal distance function in T α.

Notes:

hα(s) = ∞ if no goal state of T α is reachable from α(s)

We also apply abstraction terminology to planning tasks Π,
which stand for their induced transition systems.
For example, an abstraction of Π is an abstraction of T (Π).

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstraction Heuristics: Example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

ARRALL

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα({p 7→ L, tA 7→ R, tB 7→ R}) = 3

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of hα)

Let α be an abstraction of a transition system T .
Then hα is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩.
Let T α = ⟨Sα, L, c ,Tα, sα0 , S

α
⋆ ⟩.

Goal-awareness: We need to show that hα(s) = 0 for all s ∈ S⋆,
so let s ∈ S⋆. Then α(s) ∈ Sα

⋆ by the definition of abstract
transition systems, and hence hα(s) = h∗T α(α(s)) = 0. . . .

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of hα)

Let α be an abstraction of a transition system T .
Then hα is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩.
Let T α = ⟨Sα, L, c ,Tα, sα0 , S

α
⋆ ⟩.

Goal-awareness: We need to show that hα(s) = 0 for all s ∈ S⋆,
so let s ∈ S⋆. Then α(s) ∈ Sα

⋆ by the definition of abstract
transition systems, and hence hα(s) = h∗T α(α(s)) = 0. . . .

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Coarsenings and Refinements

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

Using a first abstraction α : S → S ′, map T to T α.

Using a second abstraction β : S ′ → S ′′, map T α to (T α)β.

The result is the same as directly using the abstraction (β ◦ α):
Let γ : S → S ′′ be defined as γ(s) = (β ◦ α)(s) = β(α(s)).

Then T γ = (T α)β.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions: Example (1)

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

transition system T

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions: Example (2)

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions: Example (2)

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions: Example (3)

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BLR

BRR

BLL BLR

BRRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T ′

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Abstractions of Abstractions: Example (3)

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let α and γ be abstractions of the same transition system
such that γ = β ◦ α for some function β.

Then γ is called a coarsening of α
and α is called a refinement of γ.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let α and γ be abstractions of the same transition system
such that α is a refinement of γ.

Then hα dominates hγ .

In other words, hγ(s) ≤ hα(s) ≤ h∗(s) for all states s.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Heuristic Quality of Refinements: Proof

Proof.

Since α is a refinement of γ,
there exists a function β with γ = β ◦ α.
For all states s of Π, we get:

hγ(s) = h∗T γ (γ(s))

= h∗T γ (β(α(s)))

= hβT α(α(s))

≤ h∗T α(α(s))

= hα(s),

where the inequality holds because hβT α is an admissible heuristic
in the transition system T α.

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Summary

Transition Systems Abstractions Abstraction Heuristics Coarsenings and Refinements Summary

Summary

An abstraction is a function α that maps the states S
of a transition system to another (usually smaller) set Sα.

This induces an abstract transition system T α, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

Abstractions α induce abstraction heuristics hα: hα(s)
is the goal distance of α(s) in the abstract transition system.

Abstraction heuristics are safe, goal-aware, admissible
and consistent.

Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.

Planning and Optimization
E5. Abstractions: Additive Abstractions

Malte Helmert and Gabriele Röger

Universität Basel

November 10, 2025

Additivity Outlook Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Additivity Outlook Summary

Additivity

Additivity Outlook Summary

Orthogonality of Abstractions

Definition (Orthogonal)

Let α1 and α2 be abstractions of transition system T .

We say that α1 and α2 are orthogonal if for all transitions s
ℓ−→ t

of T , we have α1(s) = α1(t) or α2(s) = α2(t).

Additivity Outlook Summary

Affecting Transition Labels

Definition (Affecting Transition Labels)

Let T be a transition system, and let ℓ be one of its labels.

We say that ℓ affects T if T has a transition s
ℓ−→ t with s ̸= t.

Theorem (Affecting Labels vs. Orthogonality)

Let α1 and α2 be abstractions of transition system T .

If no label of T affects both T α1 and T α2 ,
then α1 and α2 are orthogonal.

(Easy proof omitted.)

Additivity Outlook Summary

Orthogonal Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstractions orthogonal?

Additivity Outlook Summary

Orthogonal Abstractions: Example

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

Are the abstractions orthogonal?

Additivity Outlook Summary

Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let hα1 , . . . , hαn be abstraction heuristics of the same transition
system such that αi and αj are orthogonal for all i ̸= j .

Then
∑n

i=1 h
αi is a safe, goal-aware, admissible and consistent

heuristic for Π.

Additivity Outlook Summary

Orthogonality and Additivity: Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

transition system T
state variables: first package, second package, truck

Additivity Outlook Summary

Orthogonality and Additivity: Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction α1

abstraction: only consider value of first package

Additivity Outlook Summary

Orthogonality and Additivity: Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

LIL

LIR
LRR LRL

ILR

ILL

IIL IIR

IRR

IRL

RLR RLL
RIL

RIR

RRR RRL

abstraction α1

abstraction: only consider value of first package

Additivity Outlook Summary

Orthogonality and Additivity: Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction α2 (orthogonal to α1)
abstraction: only consider value of second package

Additivity Outlook Summary

Orthogonality and Additivity: Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR
LRR LRL

IRL

LLR LLL

ILL

ILR
RLR RLL

LIR

LIL

IIL IIR

RIR

RIL

LRR LRL
IRL

IRR

RRR RRL

abstraction α2 (orthogonal to α1)
abstraction: only consider value of second package

Additivity Outlook Summary

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be the concrete transition system.

Let h =
∑n

i=1 h
αi .

Goal-awareness: For goal states s ∈ S⋆,
h(s) =

∑n
i=1 h

αi (s) =
∑n

i=1 0 = 0 because all individual
abstraction heuristics are goal-aware. . . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be the concrete transition system.

Let h =
∑n

i=1 h
αi .

Goal-awareness: For goal states s ∈ S⋆,
h(s) =

∑n
i=1 h

αi (s) =
∑n

i=1 0 = 0 because all individual
abstraction heuristics are goal-aware. . . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s
o−→ t ∈ T . We must prove h(s) ≤ c(o) + h(t).

Because the abstractions are orthogonal, αi (s) ̸= αi (t)
for at most one i ∈ {1, . . . , n}.

Case 1: αi (s) = αi (t) for all i ∈ {1, . . . , n}.
Then h(s) =

∑n
i=1 h

αi (s)
=

∑n
i=1 h

∗
T αi (αi (s))

=
∑n

i=1 h
∗
T αi (αi (t))

=
∑n

i=1 h
αi (t)

= h(t) ≤ c(o) + h(t).
. . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s
o−→ t ∈ T . We must prove h(s) ≤ c(o) + h(t).

Because the abstractions are orthogonal, αi (s) ̸= αi (t)
for at most one i ∈ {1, . . . , n}.

Case 1: αi (s) = αi (t) for all i ∈ {1, . . . , n}.
Then h(s) =

∑n
i=1 h

αi (s)
=

∑n
i=1 h

∗
T αi (αi (s))

=
∑n

i=1 h
∗
T αi (αi (t))

=
∑n

i=1 h
αi (t)

= h(t) ≤ c(o) + h(t).
. . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s
o−→ t ∈ T . We must prove h(s) ≤ c(o) + h(t).

Because the abstractions are orthogonal, αi (s) ̸= αi (t)
for at most one i ∈ {1, . . . , n}.

Case 1: αi (s) = αi (t) for all i ∈ {1, . . . , n}.
Then h(s) =

∑n
i=1 h

αi (s)
=

∑n
i=1 h

∗
T αi (αi (s))

=
∑n

i=1 h
∗
T αi (αi (t))

=
∑n

i=1 h
αi (t)

= h(t) ≤ c(o) + h(t).
. . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s
o−→ t ∈ T . We must prove h(s) ≤ c(o) + h(t).

Because the abstractions are orthogonal, αi (s) ̸= αi (t)
for at most one i ∈ {1, . . . , n}.

Case 1: αi (s) = αi (t) for all i ∈ {1, . . . , n}.
Then h(s) =

∑n
i=1 h

αi (s)
=

∑n
i=1 h

∗
T αi (αi (s))

=
∑n

i=1 h
∗
T αi (αi (t))

=
∑n

i=1 h
αi (t)

= h(t) ≤ c(o) + h(t).
. . .

Additivity Outlook Summary

Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: αi (s) ̸= αi (t) for exactly one i ∈ {1, . . . , n}.
Let k ∈ {1, . . . , n} such that αk(s) ̸= αk(t).

Then h(s) =
∑n

i=1 h
αi (s)

=
∑

i∈{1,...,n}\{k} h
∗
T αi (αi (s)) + hαk (s)

≤
∑

i∈{1,...,n}\{k} h
∗
T αi (αi (t)) + c(o) + hαk (t)

= c(o) +
∑n

i=1 h
αi (t)

= c(o) + h(t),
where the inequality holds because αi (s) = αi (t) for all i ̸= k
and hαk is consistent.

Additivity Outlook Summary

Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: αi (s) ̸= αi (t) for exactly one i ∈ {1, . . . , n}.
Let k ∈ {1, . . . , n} such that αk(s) ̸= αk(t).

Then h(s) =
∑n

i=1 h
αi (s)

=
∑

i∈{1,...,n}\{k} h
∗
T αi (αi (s)) + hαk (s)

≤
∑

i∈{1,...,n}\{k} h
∗
T αi (αi (t)) + c(o) + hαk (t)

= c(o) +
∑n

i=1 h
αi (t)

= c(o) + h(t),
where the inequality holds because αi (s) = αi (t) for all i ̸= k
and hαk is consistent.

Additivity Outlook Summary

Outlook

Additivity Outlook Summary

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:

we want to obtain an informative heuristic, but

want to keep its representation small.

Abstractions have small representations if

there are few abstract states and

there is a succinct encoding for α.

Additivity Outlook Summary

Counterexample: One-State Abstraction

LRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLLLRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

One-state abstraction: α(s) := const.

+ very few abstract states and succinct encoding for α

− completely uninformative heuristic

Additivity Outlook Summary

Counterexample: Identity Abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Identity abstraction: α(s) := s.

+ perfect heuristic and succinct encoding for α

− too many abstract states

Additivity Outlook Summary

Counterexample: Perfect Abstraction

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR

ALL

BLL

BRL

ALR

BRL

ALL

BLL

ARL

ARR

BRR

BLR

ARL

BLR

ARR

BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Perfect abstraction: α(s) := h∗(s).

+ perfect heuristic and usually few abstract states

− usually no succinct encoding for α

Additivity Outlook Summary

Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem

Automatically derive effective abstraction heuristics
for planning tasks.

⇝ we will study three state-of-the-art approaches
in the following chapters

Additivity Outlook Summary

Summary

Additivity Outlook Summary

Summary

Abstraction heuristics from orthogonal abstractions
can be added without losing admissibility or consistency.

One sufficient condition for orthogonality is that all
abstractions are affected by disjoint sets of labels.

Practically useful abstractions are those which give
informative heuristics, yet have a small representation.

Coming up with good abstractions automatically
is the main research challenge when applying
abstraction heuristics in planning.

Planning and Optimization
E6. Pattern Databases: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

November 10, 2025

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Syntactic
Projection

Lookups

Pattern
Collections

Merge & Shrink

Cartesian
Abstractions

Constraints

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Projections and Pattern Database
Heuristics

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics

The oldest commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

The first use for domain-independent planning
is due to Edelkamp (2001).

Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

Pattern databases are a research area both in planning and in
(domain-specific) heuristic search.

For many search problems, pattern databases are
the most effective admissible heuristics currently known.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task
is an abstraction heuristic where

some aspects of the task are represented in the abstraction
with perfect precision, while

all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

Example (15-Puzzle)

Choose a subset T of tiles (the pattern).

Faithfully represent the locations of T in the abstraction.

Assume that all other tiles and the blank can be anywhere
in the abstraction.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)

Let Π be an FDR planning task with variables V and states S .
Let P ⊆ V , and let S ′ be the set of states over P.

The projection πP : S → S ′ is defined as πP(s) := s|P ,
(where s|P(v) := s(v) for all v ∈ P).

We call P the pattern of the projection πP .

In other words, πP maps two states s1 and s2 to the same
abstract state iff they agree on all variables in P.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by πP is called
a pattern database heuristic or PDB heuristic.
We write hP as a shorthand for hπP .

Why are they called pattern database heuristics?

Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Transition System

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (1)

Abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (2)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Example: Projection (2)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Databases: Chapter Overview

In the following, we will discuss:

how to implement PDB heuristics
⇝ this chapter

how to effectively make use of multiple PDB heuristics
⇝ Chapter E7

how to find good patterns for PDB heuristics
⇝ Chapter E8

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Implementing PDBs: Precomputation

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Syntactic
Projection

Lookups

Pattern
Collections

Merge & Shrink

Cartesian
Abstractions

Constraints

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Pattern Database Implementation

Assume we are given a pattern P for a planning task Π.
How do we implement hP?

1 In a precomputation step, we compute a graph representation
for the abstraction T (Π)πP and compute the abstract goal
distance for each abstract state.

2 During search, we use the precomputed abstract goal
distances in a lookup step.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Precomputation Step

Let Π be a planning task and P a pattern.
Let T = T (Π) and T ′ = T πP .

We want to compute a graph representation of T ′.

T ′ is defined through an abstraction of T .

For example, each concrete transition induces
an abstract transition.

However, we cannot compute T ′ by iterating
over all transitions of T .

This would take time Ω(∥T ∥).
This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).

Hence, we need a way of computing T ′ in time
which is polynomial only in ∥Π∥ and ∥T ′∥.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Syntactic Projections

Definition (Syntactic Projection)

Let Π = ⟨V , I ,O, γ⟩ be an FDR planning task,
and let P ⊆ V be a subset of its variables.
The syntactic projection Π|P of Π to P is the FDR planning task
⟨P, I |P , {o|P | o ∈ O}, γ|P⟩, where

φ|P for formula φ is defined as the formula obtained from φ
by replacing all atoms (v = d) with v /∈ P by ⊤, and

o|P for operator o is defined by replacing all formulas φ
occurring in the precondition or effect conditions of o with
φ|P and all atomic effects (v := d) with v /∈ P with the
empty effect ⊤.

Put simply, Π|P throws away all information not pertaining
to variables in P.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P
relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π|P can be computed in linear time in ∥Π∥.
If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P

relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π|P can be computed in linear time in ∥Π∥.
If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P
relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π|P can be computed in linear time in ∥Π∥.
If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Idea

Π T (Π)

T (Π)πP

T (Π|P)Π|P
relationship?

induced TS

abstract TS

induced TS

syntactic projection

Π|P can be computed in linear time in ∥Π∥.
If T (Π|P) was “equivalent” to T (Π)πP this would give us an
efficient way to compute T (Π)πP .

What do we mean with “equivalent”?

Is this actually the case?

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Isomorphic Transition Systems

Isomorphic = equivalent up to renaming

Definition (Isomorphic Transition Systems)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ and T ′ = ⟨S ′, L′, c ′,T ′, s ′0, S
′
⋆⟩

be transition systems.

We say that T is isomorphic to T ′, in symbols T ∼ T ′, if there
exist bijective functions φ : S → S ′ and λ : L → L′ such that:

s
ℓ−→ t ∈ T iff φ(s)

λ(ℓ)−−→ φ(t) ∈ T ′,

c ′(λ(ℓ)) = c(ℓ) for all ℓ ∈ L,

φ(s0) = s ′0, and

s ∈ S⋆ iff φ(s) ∈ S ′
⋆.

(∼) is a an equivalence relation. Two isomorphic transition
systems are interchangeable for all practical intents and purposes.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let Π be a SAS+ task, and let P be a pattern for Π.
Then T (Π)πP ∼ T (Π|P).

Proof.

⇝ exercises

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

PDB Computation

Using the equivalence theorem, we can compute pattern databases
for SAS+ tasks Π and patterns P:

Computing Pattern Databases

def compute-PDB(Π, P):
Compute Π′ := Π|P .
Compute T ′ := T (Π′).
Perform a backward uniform-cost search from the goal

states of T ′ to compute all abstract goal distances.
PDB := a table containing all goal distances in T ′

return PDB

The algorithm runs in polynomial time and space
in terms of ∥Π∥+ |PDB|.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Generalizations of the Equivalence Theorem

The restriction to SAS+ tasks is necessary.

We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.

In that case, the weighted graph of T (Π)πP is isomorphic
to a subgraph of the weighted graph of T (Π|P).
This means that we can use T (Π|P) to derive
an admissible estimate of hP .

With negations in conditions or with conditional effects,
not even this weaker result holds.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Going Beyond SAS+ Tasks

Most practical implementations of PDB heuristics
are limited to SAS+ tasks (or modest generalizations).

One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS+ tasks.

However, most direct conversions can exponentially increase
the task size in the worst case.

⇝ We will only consider SAS+ tasks in the chapters

⇝

dealing with pattern databases.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Implementing PDBs: Lookup

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Syntactic
Projection

Lookups

Pattern
Collections

Merge & Shrink

Cartesian
Abstractions

Constraints

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Overview

During search, the PDB is the only piece of information
necessary to represent hP . (It is not necessary to store
the abstract transition system itself at this point.)

Hence, the space requirements for PDBs during search
are linear in the number of abstract states S ′:
there is one table entry for each abstract state.

During search, hP(s) is computed by mapping
πP(s) to a natural number in the range {0, . . . , |S ′| − 1}
using a perfect hash function, then looking up
the table entry for this number.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Algorithm

Let P = {v1, . . . , vk} be the pattern.

We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0, 1, . . . , |dom(v)| − 1}.
For all i ∈ {1, . . . , k}, we precompute Ni :=

∏i−1
j=1 |dom(vj)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index :=

∑k
i=1Ni s(vi)

return PDB[index]

This is a very fast operation: it can be performed in O(k).

For comparison, most relaxation heuristics need time O(∥Π∥)
per state.

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Example (1)

Abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Lookup Step: Example (2)

P = {v1, v2} with v1 = package, v2 = truck A.

dom(v1) = {L,R,A,B} ≈ {0, 1, 2, 3}
dom(v2) = {L,R} ≈ {0, 1}

⇝ N1 =
∏0

j=1 |dom(vj)| = 1, N2 =
∏1

j=1 |dom(vj)| = 4

⇝ index(s) = 1 · s(package) + 4 · s(truck A)

Pattern database:
abstract state LL RL AL BL LR RR AR BR

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Summary

Projections Implementing PDBs: Precomputation Implementing PDBs: Lookup Summary

Summary

Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

For SAS+ tasks, they can easily be implemented
via syntactic projections of the task representation.

PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

Planning and Optimization
E7. Pattern Databases: Multiple Patterns

Malte Helmert and Gabriele Röger

Universität Basel

November 12, 2025

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Syntactic
Projection

Lookups

Pattern
Collections

Merge & Shrink

Cartesian
Abstractions

Constraints

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Additivity & the Canonical Heuristic

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Pattern Collections

The space requirements for a pattern database
grow exponentially with the number of state variables
in the pattern.

This places severe limits on the usefulness
of single PDB heuristics hP for larger planning task.

To overcome this limitation, planners using pattern databases
work with collections of multiple patterns.

When using two patterns P1 and P2, it is always possible
to use the maximum of hP1 and hP2 as an admissible
and consistent heuristic estimate.

However, when possible, it is much preferable
to use the sum of hP1 and hP2 as a heuristic estimate,
since hP1 + hP2 ≥ max{hP1 , hP2}.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let P1, . . . ,Pk be disjoint patterns for an FDR planning task Π.

If there exists no operator that has an effect
on a variable vi ∈ Pi and on a variable vj ∈ Pj for some i ̸= j ,

then
∑k

i=1 h
Pi is an admissible and consistent heuristic for Π.

Proof.

If there exists no such operator, then no label of T (Π) affects both
T (Π)πPi and T (Π)

πPj for i ̸= j . By the theorem on affecting
transition labels, this means that any two projections πPi

and πPj

are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions.

A pattern set {P1, . . . ,Pk} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let P1, . . . ,Pk be disjoint patterns for an FDR planning task Π.

If there exists no operator that has an effect
on a variable vi ∈ Pi and on a variable vj ∈ Pj for some i ̸= j ,

then
∑k

i=1 h
Pi is an admissible and consistent heuristic for Π.

Proof.

If there exists no such operator, then no label of T (Π) affects both
T (Π)πPi and T (Π)

πPj for i ̸= j . By the theorem on affecting
transition labels, this means that any two projections πPi

and πPj

are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions.

A pattern set {P1, . . . ,Pk} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Finding Additive Pattern Sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:

1 Build the compatibility graph for C.
Vertices correspond to patterns P ∈ C.
There is an edge between two vertices iff
no operator affects both incident patterns.

2 Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.

Computing large cliques is an NP-hard problem,
and a graph can have exponentially many maximal cliques.
However, there are output-polynomial algorithms for finding
all maximal cliques (Tomita, Tanaka & Takahashi, 2004)
which have led to good results in practice.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Finding Additive Pattern Sets: Example

Example

Consider a planning task with state variables V = {v1, . . . , v5}
and the pattern collection C = {P1, . . . ,P5} with P1 = {v1, v2, v3},
P2 = {v1, v2}, P3 = {v3}, P4 = {v4} and P5 = {v5}.
There are operators affecting each individual variable,
variables v1 and v2, variables v3 and v4 and variables v3 and v5.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2,P3}, {P2,P4,P5}

What is the canonical heuristic function hC?
Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}

= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Finding Additive Pattern Sets: Example

Example

Consider a planning task with state variables V = {v1, . . . , v5}
and the pattern collection C = {P1, . . . ,P5} with P1 = {v1, v2, v3},
P2 = {v1, v2}, P3 = {v3}, P4 = {v4} and P5 = {v5}.
There are operators affecting each individual variable,
variables v1 and v2, variables v3 and v4 and variables v3 and v5.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2,P3}, {P2,P4,P5}

What is the canonical heuristic function hC?
Answer: hC = max {hP1 , hP2 + hP3 , hP3 + hP4}

= max {h{v1,v2}, h{v1} + h{v2}, h{v2} + h{v3}}

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

The Canonical Heuristic Function

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {v1, . . . , v5}
and the pattern collection C = {P1, . . . ,P5} with P1 = {v1, v2, v3},
P2 = {v1, v2}, P3 = {v3}, P4 = {v4} and P5 = {v5}.
There are operators affecting each individual variable, an operator
that affects v1 and v2 and an operator that affects v3 and v5.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2,P3}, {P2,P4,P5}

What is the canonical heuristic function hC?

Answer:
hC = max {hP1 , hP2 + hP3 , hP2 + hP4 + hP5}

= max {h{v1,v2,v3}, h{v1,v2} + h{v3}, h{v1,v2} + h{v4} + h{v5}}

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {v1, . . . , v5}
and the pattern collection C = {P1, . . . ,P5} with P1 = {v1, v2, v3},
P2 = {v1, v2}, P3 = {v3}, P4 = {v4} and P5 = {v5}.
There are operators affecting each individual variable, an operator
that affects v1 and v2 and an operator that affects v3 and v5.

What are the maximal cliques in the compatibility graph for C?

Answer: {P1}, {P2,P3}, {P2,P4,P5}

What is the canonical heuristic function hC?

Answer:
hC = max {hP1 , hP2 + hP3 , hP2 + hP4 + hP5}

= max {h{v1,v2,v3}, h{v1,v2} + h{v3}, h{v1,v2} + h{v4} + h{v5}}

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

How Good is the Canonical Heuristic Function?

The canonical heuristic function is the best possible admissible
heuristic we can derive from C using our additivity criterion.

Even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion
based on an idea called cost partitioning.

⇝ We will return to this topic in Part F.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominated Additive Sets

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Computing hC Efficiently: Motivation

Consider
hC = max {h{v1,v2,v3}, h{v1,v2} + h{v3}, h{v1,v2} + h{v4} + h{v5}}.

We need to evaluate this expression for every search node.

It is thus worth to spend some effort in precomputations
to make the evaluation more efficient.

A naive implementation requires 5 PDB lookups
(one for each pattern) and maximizes over 3 additive sets.

Can we do better?

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominated Sum Theorem

Theorem (Dominated Sum)

Let {P1, . . . ,Pk} be an additive pattern set for an FDR planning
task Π, and let P be a pattern with Pi ⊆ P for all i ∈ {1, . . . , k}.
Then

∑k
i=1 h

Pi ≤ hP .

Proof.

Because Pi ⊆ P, all projections πPi
are coarsenings

of the projection πP . Let T ′ := T (Π)πP .
We can view each hPi as an abstraction heuristic for solving T ′.

By the argumentation of the previous theorem, {P1, . . . ,Pk} is an
additive pattern set and hence

∑k
i=1 h

Pi is an admissible heuristic

for solving T ′. Hence,
∑k

i=1 h
Pi is bounded by the optimal

goal distances in T ′, which implies
∑k

i=1 h
Pi ≤ hP .

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominated Sum Theorem

Theorem (Dominated Sum)

Let {P1, . . . ,Pk} be an additive pattern set for an FDR planning
task Π, and let P be a pattern with Pi ⊆ P for all i ∈ {1, . . . , k}.
Then

∑k
i=1 h

Pi ≤ hP .

Proof.

Because Pi ⊆ P, all projections πPi
are coarsenings

of the projection πP . Let T ′ := T (Π)πP .
We can view each hPi as an abstraction heuristic for solving T ′.

By the argumentation of the previous theorem, {P1, . . . ,Pk} is an
additive pattern set and hence

∑k
i=1 h

Pi is an admissible heuristic

for solving T ′. Hence,
∑k

i=1 h
Pi is bounded by the optimal

goal distances in T ′, which implies
∑k

i=1 h
Pi ≤ hP .

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1, . . . ,Pn} and {Q1, . . . ,Qm} be additive pattern sets
of an FDR planning task such that each pattern Pi

is a subset of some pattern Qj (not necessarily proper).

Then
∑n

i=1 h
Pi ≤

∑m
j=1 h

Qj .

Proof.
n∑

i=1

hPi
(1)

≤
m∑
j=1

∑
Pi⊆Qj

hPi
(2)

≤
m∑
j=1

hQj ,

where (1) holds because each Pi is contained in some Qj

and (2) follows from the dominated sum theorem.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1, . . . ,Pn} and {Q1, . . . ,Qm} be additive pattern sets
of an FDR planning task such that each pattern Pi

is a subset of some pattern Qj (not necessarily proper).

Then
∑n

i=1 h
Pi ≤

∑m
j=1 h

Qj .

Proof.
n∑

i=1

hPi
(1)

≤
m∑
j=1

∑
Pi⊆Qj

hPi
(2)

≤
m∑
j=1

hQj ,

where (1) holds because each Pi is contained in some Qj

and (2) follows from the dominated sum theorem.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Dominance Pruning

We can use the dominated sum corollary
to simplify the representation of hC :
sums that are dominated by other sums can be pruned.

The dominance test can be performed in polynomial time.

Example

max {h{v1,v2,v3}, h{v1,v2} + h{v3}, h{v1,v2} + h{v4} + h{v5}}
= max {h{v1,v2,v3}, h{v1,v2} + h{v4} + h{v5}}

⇝ number of PDB lookups reduced from 5 to 4;

⇝

number of additive sets reduced from 3 to 2

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Redundant Patterns

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Redundant Patterns

The previous example shows that sometimes,
not all patterns in a pattern collection are useful.

Pattern {v3} could be removed because
it does not affect the heuristic value.

In this section, we will show that certain patterns
are never useful and should thus never be considered.

Knowing about such redundant patterns is useful for
algorithms that try to find good patterns automatically.

⇝ It allows us to focus on the useful ones.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Non-Goal Patterns

Theorem (Non-Goal Patterns are Trivial)

Let Π be a SAS+ planning task, and let P be a pattern for Π
such that no variable in P is mentioned in the goal formula of Π.
Then hP(s) = 0 for all states s.

Proof.

All states in the abstraction are goal states.

⇝ Patterns with no goal variables are redundant.

⇝

They should not be included in a pattern collection.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causal Graphs: Motivation

For more interesting notions of redundancy,
we need to introduce causal graphs.

Causal graphs describe the dependency structure
between the state variables of a planning task.

Causal graphs are a general tool for analyzing planning tasks.

They are used in many contexts besides abstraction heuristics.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causal Graphs

Definition (Causal Graph)

Let Π = ⟨V , I ,O, γ⟩ be an FDR planning task.

The causal graph of Π, written CG(Π), is the directed graph
whose vertices are the state variables V and which has an arc ⟨u, v⟩
iff u ̸= v and there exists an operator o ∈ O such that:

u appears anywhere in o (in precondition, effect conditions
or atomic effects), and

v is modified by an effect of o.

Idea: an arc ⟨u, v⟩ in the causal graph indicates that variable u
is in some way relevant for modifying the value of v

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causally Relevant Variables

Definition (Causally Relevant)

Let Π = ⟨V , I ,O, γ⟩ be an FDR planning task,
and let P ⊆ V be a pattern for Π.

We say that v ∈ P is causally relevant for P if CG(Π),
restricted to the variables of P, contains a directed path from v
to a variable v ′ ∈ P that is mentioned in the goal formula γ.

Note: The definition implies that variables in P mentioned
in the goal are always causally relevant for P.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless)

Let P ⊆ V be a pattern for an FDR planning task Π, and let
P ′ ⊆ P consist of all variables that are causally relevant for P.

Then hP(s) = hP
′
(s) for all states s.

⇝ Patterns P where not all variables are causally relevant are

⇝

redundant. The smaller subpattern P ′ should be used instead.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causally Irrelevant Variables are Useless: Proof

Proof Sketch.

(≥): holds because πP is a refinement of πP′

(≤): Obvious if hP
′
(s) = ∞; else, consider an optimal abstract

plan ⟨o1, . . . , on⟩ for πP′(s) in T (Π)πP′ .

W.l.o.g., each oi modifies some variable in P ′.
(Other oi are redundant and can be omitted.)

Because P ′ includes all variables causally relevant for P,
no variable in P \ P ′ is mentioned in any oi or in the goal.

Then the same abstract plan also is a solution for πP(s) in T (Π)πP .
Hence, the optimal solution cost under abstraction πP
is no larger than under πP′ .

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causally Irrelevant Variables are Useless: Proof

Proof Sketch.

(≥): holds because πP is a refinement of πP′

(≤): Obvious if hP
′
(s) = ∞; else, consider an optimal abstract

plan ⟨o1, . . . , on⟩ for πP′(s) in T (Π)πP′ .

W.l.o.g., each oi modifies some variable in P ′.
(Other oi are redundant and can be omitted.)

Because P ′ includes all variables causally relevant for P,
no variable in P \ P ′ is mentioned in any oi or in the goal.

Then the same abstract plan also is a solution for πP(s) in T (Π)πP .
Hence, the optimal solution cost under abstraction πP
is no larger than under πP′ .

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Causally Connected Patterns

Definition (Causally Connected)

Let Π = ⟨V , I ,O, γ⟩ be an FDR planning task,
and let P ⊆ V be a pattern for Π.

We say that P is causally connected if the subgraph of CG(Π)
induced by P is weakly connected (i.e., contains a path
from every vertex to every other vertex, ignoring arc directions).

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable)

Let P ⊆ V be a pattern for a SAS+ planning task Π
that is not causally connected, and let P1, P2 be a partition of P
into non-empty subsets such that CG(Π) contains no arc
between the two sets.

Then hP(s) = hP1(s) + hP2(s) for all states s.

⇝ Causally disconnected patterns P are redundant.

⇝

The smaller subpatterns P1 and P2 should be used instead.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Disconnected Patterns are Decomposable: Proof

Proof Sketch.

(≥): There is no arc between P1 and P2 in the causal graph,
and thus there is no operator that affects both patterns.

Therefore, they are additive, and hP ≥ hP1 + hP2 follows
from the dominated sum theorem.

(≤): Obvious if hP1(s) = ∞ or hP2(s) = ∞. Else, consider
optimal abstract plans ρ1 for T (Π)πP1 and ρ2 for T (Π)πP2 .

Because the variables of the two projections do not interact,
concatenating the two plans yields an abstract plan for T (Π)πP .

Hence, the optimal solution cost under abstraction πP is at most
the sum of costs of ρ1 and ρ2, and thus hP ≤ hP1 + hP2 .

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Summary

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Summary (1)

When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
possible, and maximize where addition is inadmissible.

A set of patterns is additive if each operator affects (i.e.,
assigns to a variable from) at most one pattern in the set.

The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given this additivity criterion.

Additivity & the Canonical Heuristic Dominated Additive Sets Redundant Patterns Summary

Summary (2)

Not all patterns need to be considered, as some are redundant:

Patterns should include a goal variable (else hP = 0).

Patterns should only include causally relevant variables
(others can be dropped without affecting the heuristic value).

Patterns should be causally connected (disconnected patterns
can be split into smaller subpatterns at no loss).

Planning and Optimization
E8. Pattern Databases: Pattern Selection

Malte Helmert and Gabriele Röger

Universität Basel

November 12, 2025

Local Search Search Neighbourhood Literature Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Syntactic
Projection

Lookups

Pattern
Collections

Merge & Shrink

Cartesian
Abstractions

Constraints

Local Search Search Neighbourhood Literature Summary

Pattern Selection as Local Search

Local Search Search Neighbourhood Literature Summary

Pattern Selection as an Optimization Problem

Only one question remains to be answered now
in order to apply PDBs to planning tasks in practice:

How do we automatically find a good pattern collection?

The Idea

Pattern selection can be cast as an optimization problem:

Given: a set of candidates
(= pattern collections which fit into a given memory limit)

Find: a best possible candidate, or an approximation
(= pattern collection with high heuristic quality)

Local Search Search Neighbourhood Literature Summary

Pattern Selection as Local Search

How to solve this optimization problem?

For problems of interesting size, we cannot hope to find
(and prove optimal) a globally optimal pattern collection.

Question: How many candidates are there?

Instead, we try to find good solutions by local search.

Two approaches from the literature:

Edelkamp (2007): using an evolutionary algorithm

Haslum et al. (2007): using hill-climbing

⇝ in the following: main ideas of the second approach

Local Search Search Neighbourhood Literature Summary

Pattern Selection as Hill-Climbing

Reminder: Hill Climbing

current := an initial candidate
loop forever:

next := a neighbour of current with maximum quality
if quality(next) ≤ quality(current):

return current
current := next

more on hill climbing:

⇝ Foundations of Artificial Intelligence course FS 2025, Ch. C1–C2

Local Search Search Neighbourhood Literature Summary

Pattern Selection as Hill-Climbing

Reminder: Hill Climbing

current := an initial candidate
loop forever:

next := a neighbour of current with maximum quality
if quality(next) ≤ quality(current):

return current
current := next

Three questions to answer to use this for pattern selection:

1 initial candidate: What is the initial pattern collection?

2 neighbourhood: Which pattern collections are considered next
starting from a given collection?

3 quality: How do we evaluate the quality of pattern collections?

Local Search Search Neighbourhood Literature Summary

Search Neighbourhood

Local Search Search Neighbourhood Literature Summary

Search Neighbourhood: Basic Idea

The basic idea is that we

start from small patterns with only a single variable,

grow them by adding slightly larger patterns

and prefer moving to pattern collections that improve
the heuristic value of many states.

Local Search Search Neighbourhood Literature Summary

Initial Pattern Collection

1. Initial Candidate

The initial pattern collection is
{{v} | v is a state variable mentioned in the goal formula}.

Motivation:

patterns with one variable are the simplest possible ones
and hence a natural starting point

non-goal patterns are trivial (⇝ Chapter E7),
so would be useless

Local Search Search Neighbourhood Literature Summary

Which Pattern Collections to Consider Next

From this initial pattern collection, we incrementally grow
larger pattern collections to obtain an improved heuristic.

2. Neighbourhood

The neighbours of C are all pattern collections C ∪ {P ′} where

P ′ = P ∪ {v} for some P ∈ C,
P ′ /∈ C,
all variables of P ′ are causally relevant for P ′,

P ′ is causally connected, and

all pattern databases in C ∪ {P ′} can be represented
within some prespecified space limit.

⇝ add one pattern with one additional variable at a time

⇝ use criteria for redundant patterns (⇝ Chapter E7)
to avoid neighbours that cannot improve the heuristic

Local Search Search Neighbourhood Literature Summary

Checking Causal Relevance and Connectivity

Remark: For causal relevance and connectivity, there is a sufficient
and necessary criterion which is easy to check:

v is a predecessor of some u ∈ P in the causal graph, or

v is a successor of some u ∈ P in the causal graph
and is mentioned in the goal formula.

Local Search Search Neighbourhood Literature Summary

Evaluating the Quality of Pattern Collections

The last question we need to answer is how to evaluate
the quality of pattern collections.

This is perhaps the most critical point: without a good
evaluation criterion, pattern collections are chosen blindly.

Local Search Search Neighbourhood Literature Summary

Approaches for Evaluating Heuristic Quality

Three approaches have been suggested:

estimating the mean heuristic value of the resulting heuristic
(Edelkamp, 2007)

estimating search effort under the resulting heuristic
using a model for predicting search effort
(Haslum et al., 2007; Franco et al., 2017)

sampling states in the state space and counting how many
of them have improved heuristic values compared to
the current pattern collection (Haslum et al., 2007)

The last approach is most commonly used
and has been shown to work well experimentally.

Local Search Search Neighbourhood Literature Summary

Heuristic Quality by Improved Sample States

3. Quality

Generate M states s1, . . . , sM through random walks
in the state space from the initial state
(according to certain parameters not discussed in detail).

The degree of improvement of a pattern collection C′

which is generated as a successor of collection C
is the number of sample states si for which hC

′
(si) > hC(si).

Use the degree of improvement as the quality measure for C′.

Local Search Search Neighbourhood Literature Summary

Computing hC
′
(s)

So we need to compute hC
′
(s) for some states s

and each candidate successor collection C′.

We have PDBs for all patterns in C, but not for the new
pattern P ′ ∈ C′ (of the form P ∪ {v} for some P ∈ C).
If possible, we want to avoid fully computing
all PDBs for all neighbours.

Idea:

For SAS+ tasks Π, hP
′
(s) is identical to the

optimal solution cost for the syntactic projection Π|P′ .

We can use any optimal planning algorithm for this.

In particular, we can use A∗ search using hP as a heuristic.

Local Search Search Neighbourhood Literature Summary

Literature

Local Search Search Neighbourhood Literature Summary

References (1)

References on planning with pattern databases:

Stefan Edelkamp.
Planning with Pattern Databases.
Proc. ECP 2001, pp. 13–24, 2001.
First paper on planning with pattern databases.

Stefan Edelkamp.
Symbolic Pattern Databases in Heuristic Search Planning.
Proc. AIPS 2002, pp. 274–283, 2002.
Uses BDDs to store pattern databases more compactly.

Local Search Search Neighbourhood Literature Summary

References (2)

References on planning with pattern databases:

Patrik Haslum, Blai Bonet and Héctor Geffner.
New Admissible Heuristics for Domain-Independent Planning.
Proc. AAAI 2005, pp. 1164–1168, 2005.
Introduces constrained PDBs.
First pattern selection methods based on heuristic quality.

Local Search Search Neighbourhood Literature Summary

References (3)

References on planning with pattern databases:

Stefan Edelkamp.
Automated Creation of Pattern Database Search Heuristics.
Proc. MoChArt 2006, pp. 121–135, 2007.
First search-based pattern selection method.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet and
Sven Koenig.
Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning.
Proc. AAAI 2007, pp. 1007–1012, 2007.
Introduces canonical heuristic for pattern collections.
Search-based pattern selection based on Korf, Reid &
Edelkamp’s theory for search effort estimation.

Local Search Search Neighbourhood Literature Summary

References (4)

References on planning with pattern databases:

Santiago Franco, Álvaro Torralba, Levi H. S. Lelis
and Mike Barley.
On Creating Complementary Pattern Databases
Proc. IJCAI 2017, pp. 4302–4309, 2017.
Improved version of Edelkamp’s pattern collection
selection approach evaluating pattern collections
based on a prediction of A* search effort.

Local Search Search Neighbourhood Literature Summary

Summary

Local Search Search Neighbourhood Literature Summary

Summary

One way to automatically find a good pattern collection
is by searching in the space of pattern collections.

One such approach uses hill-climbing search

starting from single-variable patterns
adding patterns with one additional variable at a time
evaluating patterns by the number of improved sample states

By exploiting what we know about redundant patterns,
the hill-climbing search space can be reduced significantly.

Planning and Optimization
E9. Merge-and-Shrink: Factored Transition Systems

Malte Helmert and Gabriele Röger

Universität Basel

November 17, 2025

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Motivation

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Beyond Pattern Databases

Despite their popularity, pattern databases have some
fundamental limitations (⇝ example on next slides).

Today and next time, we study a class of abstractions called
merge-and-shrink abstractions.

Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

They can do everything that pattern databases can do
(modulo polynomial extra effort).
They can do some things that pattern databases cannot.

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Back to the Running Example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Projection (1)

T π{package} :

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Projection (2)

T π{package,truck A} :

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Limitations of Projections

How accurate is the PDB heuristic?

consider generalization of the example:
N trucks, 1 package

consider any pattern that is a proper subset of variable set V

h(s0) ≤ 2 ⇝ no better than atomic projection to package

These values cannot be improved by maximizing
over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics
with h(s0) ≥ 3 for tasks of this kind of any size.
Time and space requirements are linear in N.

(In fact, with time/space O(N2) we can construct a merge-and-shrink abstraction

that gives the perfect heuristic h∗ for such tasks, but we do not show this here.)

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Main Idea

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Merge-and-Shrink Abstractions: Main Idea

Main Idea of Merge-and-shrink Abstractions

(due to Dräger, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

Represent planning task as factored transition system (FTS):
a set of (small) abstract transition systems (factors)
that jointly represent the full transition system of the task.

Iteratively transform FTS by:

merging: combining two factors into one
shrinking: reducing the size of a single factor by abstraction

When only a single factor is left, its goal distances
are the merge-and-shrink heuristic values.

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product

T

M

B

L R

TL TR

ML MR

BL BR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Atomic Projections

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Running Example: Explanations

Atomic projections (projections to a single state variable)
play an important role for merge-and-shrink abstractions.

Unlike previous chapters, transition labels
are critically important for merge-and-shrink.

Hence we now look at the transition systems for atomic
projections of our example task, including transition labels.

We abbreviate labels (operator names) as in these examples:

MALR: move truck A from left to right
DAR: drop package from truck A at right location
PBL: pick up package with truck B at left location

We abbreviate parallel arcs with commas and wildcards (⋆)
as in these examples:

PAL, DAL: two parallel arcs labeled PAL and DAL
MA⋆⋆: two parallel arcs labeled MALR and MARL

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Running Example: Atomic Projection for Package

T π{package} :

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Running Example: Atomic Projection for Truck A

T π{truck A} :

L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Running Example: Atomic Projection for Truck B

T π{truck B} :

L R

PBL,DBL,MA⋆⋆,
PA⋆,DA⋆

MBLR

MBRL

PBR,DBR,MA⋆⋆,
PA⋆,DA⋆

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Synchronized Product

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Synchronized Product: Idea

Given two abstract transition systems with the same labels,
we can compute a product transition system.

The product transition system captures all information
of both transition systems.

A sequence of labels is a solution for the product
iff it is a solution for both factors.

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Synchronized Product of Transition Systems

Definition (Synchronized Product of Transition Systems)

For i ∈ {1, 2}, let Ti = ⟨Si , L, c ,Ti , s0i ,S⋆i ⟩ be transition systems
with the same labels and cost function.

The synchronized product of T1 and T2, in symbols T1 ⊗ T2,
is the transition system T⊗ = ⟨S⊗, L, c,T⊗, s0⊗,S⋆⊗⟩ with

S⊗ = S1 × S2

T⊗ = {⟨s1, s2⟩
ℓ−→ ⟨t1, t2⟩ | s1

ℓ−→ t1 ∈ T1 and s2
ℓ−→ t2 ∈ T2}

s0⊗ = ⟨s01, s02⟩
S⋆⊗ = S⋆1 × S⋆2

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL
⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :
S⊗ = S1 × S2

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

A

⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

L

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

AL

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :
s0⊗ = ⟨s01, s02⟩

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

L ⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

R

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

LR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :
S⋆⊗ = S⋆1 × S⋆2

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

R ⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

L R

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

RL RR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :

T⊗ = {⟨s1, s2⟩
ℓ−→ ⟨t1, t2⟩ | s1

ℓ−→ t1 ∈ T1 and s2
ℓ−→ t2 ∈ T2}

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

PA
L

⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

PA
L

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :

T⊗ = {⟨s1, s2⟩
ℓ−→ ⟨t1, t2⟩ | s1

ℓ−→ t1 ∈ T1 and s2
ℓ−→ t2 ∈ T2}

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

M⋆⋆⋆

⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

MALR

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MALR

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :

T⊗ = {⟨s1, s2⟩
ℓ−→ ⟨t1, t2⟩ | s1

ℓ−→ t1 ∈ T1 and s2
ℓ−→ t2 ∈ T2}

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL
PBL

⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆
PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

PBL

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Example: Synchronized Product

T π{package} ⊗ T π{truck A} :

T⊗ = {⟨s1, s2⟩
ℓ−→ ⟨t1, t2⟩ | s1

ℓ−→ t1 ∈ T1 and s2
ℓ−→ t2 ∈ T2}

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

M⋆⋆⋆

⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Associativity and Commutativity

Up to isomorphism (“names of states”),
products are associative and commutative:

(T ⊗ T ′)⊗ T ′′ ∼ T ⊗ (T ′ ⊗ T ′′)
T ⊗ T ′ ∼ T ′ ⊗ T

We do not care about names of states and thus
treat products as associative and commutative.

We can then define the product of a set F = {T1, . . . , Tn}
of transition systems:

⊗
F := T1 ⊗ . . .⊗ Tn

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Factored Transition Systems

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Factored Transition System

Definition (Factored Transition System)

A finite set F = {T1, . . . , Tn} of transition systems
with the same labels and cost function
is called a factored transition system (FTS).

F represents the transition system
⊗

F .

A planning task gives rise to an FTS via its atomic projections:

Definition (Factored Transition System Induced by Planning Task)

Let Π be a planning task with state variables V .

The factored transition system induced by Π
is the FTS F (Π) = {T π{v} | v ∈ V }.

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Back to the Example Product

T π{package} ⊗ T π{truck A} :

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL
⊗ L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

= LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

We have T π{package} ⊗ T π{truck A} ∼ T π{package,truck A} . Coincidence?

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Products of Projections

Theorem (Products of Projections)

Let Π be a SAS+ planning task with variable set V ,
and let V1 and V2 be disjoint subsets of V .

Then T πV1 ⊗ T πV2 ∼ T πV1∪V2 .

(Proof omitted.)

⇝ products allow us to build finer projections from coarser ones

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Recovering T (Π) from the Factored Transition System

By repeated application of the theorem, we can recover
all pattern database heuristics of a SAS+ planning task
as products of atomic factors.

Moreover, by computing the product of all atomic projections,
we can recover the identity abstraction id = πV .

This implies:

Corollary (Recovering T (Π) from the Factored Transition System)

Let Π be a SAS+ planning task. Then
⊗

F (Π) ∼ T (Π).

This is an important result because it shows
that F (Π) represents all important information about Π.

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Summary

Motivation Main Idea Atomic Projections Synchronized Product Factored Transition Systems Summary

Summary

A factored transition system is a set of transition systems
that represents a larger transition system by focusing
on its individual components (factors).

For planning tasks, these factors are the atomic projections
(projections to single state variables).

The synchronized product T ⊗ T ′ of two transition systems
with the same labels captures their “joint behaviour”.

For SAS+ tasks, all projections can be obtained
as products of atomic projections.

In particular, the product of all factors of a SAS+ task
results in the full transition system of the task.

Planning and Optimization
E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Röger

Universität Basel

November 17, 2025

Generic Algorithm Example Maintaining the Abstraction Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Generic Algorithm Example Maintaining the Abstraction Summary

Generic Algorithm

Generic Algorithm Example Maintaining the Abstraction Summary

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

Initialization: Compute the FTS
consisting of all atomic projections.

Loop: Repeatedly apply a transformation to the FTS.

Merging: Combine two factors by replacing them
with their synchronized product.
Shrinking: If the factors are too large,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Algorithm Example Maintaining the Abstraction Summary

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

F := F (Π)
while |F | > 1:

select type ∈ {merge, shrink}
if type = merge:

select T1, T2 ∈ F
F := (F \ {T1, T2}) ∪ {T1 ⊗ T2}

if type = shrink:
select T ∈ F
choose an abstraction mapping β on T
F := (F \ {T }) ∪ {T β}

return the remaining factor T α in F

Generic Algorithm Example Maintaining the Abstraction Summary

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

When to merge, when to shrink?
⇝ general strategy

Which abstractions to merge?
⇝ merge strategy

Which abstraction to shrink, and how to shrink it (which β)?
⇝ shrink strategy

merge and shrink strategies ⇝ Ch. E11/E12

Generic Algorithm Example Maintaining the Abstraction Summary

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

When to merge, when to shrink?
⇝ general strategy

Which abstractions to merge?
⇝ merge strategy

Which abstraction to shrink, and how to shrink it (which β)?
⇝ shrink strategy

merge and shrink strategies ⇝ Ch. E11/E12

Generic Algorithm Example Maintaining the Abstraction Summary

General Strategy

A typical general strategy:

define a limit N on the number of states allowed in each factor

in each iteration, select two factors we would like to merge

merge them if this does not exhaust the state number limit

otherwise shrink one or both factors just enough
to make a subsequent merge possible

Generic Algorithm Example Maintaining the Abstraction Summary

Example

Generic Algorithm Example Maintaining the Abstraction Summary

Back to the Running Example

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

Logistics problem with one package, two trucks, two locations:

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

Generic Algorithm Example Maintaining the Abstraction Summary

Initialization Step: Atomic Projection for Package

T π{package} :

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

Generic Algorithm Example Maintaining the Abstraction Summary

Initialization Step: Atomic Projection for Truck A

T π{truck A} :

L R

PAL,DAL,MB⋆⋆,
PB⋆,DB⋆

MALR

MARL

PAR,DAR,MB⋆⋆,
PB⋆,DB⋆

Generic Algorithm Example Maintaining the Abstraction Summary

Initialization Step: Atomic Projection for Truck B

T π{truck B} :

L R

PBL,DBL,MA⋆⋆,
PA⋆,DA⋆

MBLR

MBRL

PBR,DBR,MA⋆⋆,
PA⋆,DA⋆

current FTS: {T π{package} , T π{truck A} , T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Merge Step

T1 := T π{package} ⊗ T π{truck A} :

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

current FTS: {T1, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

Need to Shrink?

With sufficient memory, we could now compute T1 ⊗T π{truck B}

and recover the full transition system of the task.

However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

To make the product fit the bound, we shrink T1 to 4 states.
We can decide freely how exactly to abstract T1.
In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrink strategy.

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

RL RR
MALR

MARL

MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL

DBL

DB
R

PB
R

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆ MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

AL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

D
ARPAR

PB
RD

BRDBL

PBL

PBL

DBL

DBR

PBR

MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

AL ARAL AR

BL BR

R
MALR

MARL

MALR

MARL

MALR

MARL

PA
L

DA
L

D
ARPAR

PB
RD

BRDBL

PBL

PBL

DBL

DBR

PBR

MB⋆⋆

MB⋆⋆ MB⋆⋆

MB⋆⋆

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

A

BL BR

R
MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RD

BRDBL

PBL

PBL

DBL

DBR

PBR

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

A

BL BRBL BR

R
MALR

MARL

MALR

MARL

PA
L

DA
L

DARPAR

PB
RD

BRDBL

PBL

PBL

DBL

DBR

PBR

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

A

B

R
MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL
DBL

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

M⋆⋆⋆

M⋆⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR

AA

BB

R
MALR

MARL

PA
L

DA
L

DARPAR

PB
RDB

R
DBL

PBL

PBL
DBL

MB⋆⋆

M⋆⋆⋆

MB⋆⋆

M⋆⋆⋆

M⋆⋆⋆

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB⋆⋆

MB⋆⋆

M⋆⋆⋆D⋆R

P⋆R

M⋆⋆⋆

PBL

DBL

P⋆L

D⋆L

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

First Shrink Step

T2 := some abstraction of T1

LL LR I R
MALR

MARL

MB⋆⋆

MB⋆⋆

M⋆⋆⋆D⋆R

P⋆R

M⋆⋆⋆

PBL

DBL

P⋆L

D⋆L

current FTS: {T2, T π{truck B}}

Generic Algorithm Example Maintaining the Abstraction Summary

Second Merge Step

T3 := T2 ⊗ T π{truck B} :

LRL

LRR

LLL

LLR

IL

IR

RL

RR

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

M
BLRM

BRL

DAR

PAR

D⋆R

P⋆R

P⋆L

D⋆
L

PA
L

DA
L

M
A
L
R

M
A
R
L

M
A
L
R

M
A
R
L

PBLDBL

MA⋆⋆

MA⋆⋆ MA⋆⋆

MA⋆⋆

current FTS: {T3}

Generic Algorithm Example Maintaining the Abstraction Summary

Another Shrink Step?

At this point, merge-and-shrink construction stops.
The distances in the final factor define the heuristic function.

If there were further state variables to integrate,
we would shrink again, e.g., leading to the following
abstraction (again with four states):

LRR
LLL
LRL
LLR

I R

M⋆⋆⋆ M⋆⋆⋆M⋆⋆⋆

M⋆RL

M⋆LR

P⋆L

D⋆L

D⋆R

P⋆R

We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

The example generalizes to arbitrarily many trucks,
even if we stick to the fixed size limit of 8.

Generic Algorithm Example Maintaining the Abstraction Summary

Maintaining the Abstraction

Generic Algorithm Example Maintaining the Abstraction Summary

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

F := F (Π)
while |F | > 1:

select type ∈ {merge, shrink}
if type = merge:

select T1, T2 ∈ F
F := (F \ {T1, T2}) ∪ {T1 ⊗ T2}

if type = shrink:
select T ∈ F
choose an abstraction mapping β on T
F := (F \ {T }) ∪ {T β}

return the remaining factor T α in F

The algorithm computes an abstract transition system.
For the heuristic evaluation, we need an abstraction.
How to maintain and represent the corresponding abstraction?

Generic Algorithm Example Maintaining the Abstraction Summary

The Need for Succinct Abstractions

One major difficulty for non-PDB abstraction heuristics is to
succinctly represent the abstraction.

For pattern databases, this is easy because the abstractions –
projections – are very structured.

For less rigidly structured abstractions, we need another idea.

Generic Algorithm Example Maintaining the Abstraction Summary

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations

For the atomic abstractions π{v}, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in T π{v} .

During the merge (product) step A := A1 ⊗A2, we generate
a two-dimensional table that denotes which pair of states of
A1 and A2 corresponds to which state of A.

During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.

Generic Algorithm Example Maintaining the Abstraction Summary

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

At this point, we can throw away all the abstract transition
systems – we just need to keep the tables.

During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
⇝ 2|V | lookups, O(|V |) time

Again, we illustrate the process with our running example.

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

L

A

B

R

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

0

2

3

1

M⋆⋆⋆
PA

L

DA
L

M⋆⋆⋆

DAR
PAR

M⋆⋆⋆

PB
R

DB
R

M⋆⋆⋆

DBL

PBL

L R A B

0 1 2 3

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

LL LR

AL AR

BL BR

RL RR

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

00 01

20 21

30 31

10 11

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Merge Step

For product transition systems A1 ⊗A2, we again number the
product states consecutively and generate a table that links state
pairs of A1 and A2 to states of A:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

Generic Algorithm Example Maintaining the Abstraction Summary

Maintaining the Abstraction when Shrinking

The hard part in representing the abstraction is to keep it
consistent when shrinking.

In theory, this is easy to do:

When combining states i and j , arbitrarily use one of them
(say i) as the number of the new state.
Find all table entries in the table for this abstraction which
map to the other state j and change them to i .

However, doing a table scan each time two states are
combined is very inefficient.

Fortunately, there also is an efficient implementation which
takes constant time per combination.

Generic Algorithm Example Maintaining the Abstraction Summary

Maintaining the Abstraction Efficiently

Associate each abstract state with a linked list, representing
all table entries that map to this state.

Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

While shrinking, when combining i and j , splice the list
elements of j into the list elements of i .

For linked lists, this is a constant-time operation.

Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

Finally, regenerate the mapping table from the linked list
information.

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

Representation before shrinking:

0 1

4 5

6 7

2 3

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 3
s1 = 2 4 5
s1 = 3 6 7

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2 3

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0)}
list3 = {(1, 1)}
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4 54 5

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0)}
list5 = {(2, 1)}
list6 = {(3, 0)}
list7 = {(3, 1)}

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6 76 7

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0)}
list7 = {(3, 1)}

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

4

6

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1

44

66

2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1)}
list5 = ∅
list6 = {(3, 0), (3, 1)}
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

2. When combining i and j , splice listj into listi .

0 1 4 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 47→3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = ∅
list4 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list5 = ∅
list6 = ∅
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

Generic Algorithm Example Maintaining the Abstraction Summary

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

0 1 3 2

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),

(3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

Generic Algorithm Example Maintaining the Abstraction Summary

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

three one-dimensional tables for the atomic abstractions:
Tpackage L R A B

0 1 2 3

Ttruck A L R

0 1

Ttruck B L R

0 1

two tables for the two merge and subsequent shrink steps:

T 1
m&s s2 = 0 s2 = 1

s1 = 0 0 1
s1 = 1 2 2
s1 = 2 3 3
s1 = 3 3 3

T 2
m&s s2 = 0 s2 = 1

s1 = 0 1 1
s1 = 1 1 0
s1 = 2 2 2
s1 = 3 3 3

one table with goal distances for the final transition system:

Th s = 0 s = 1 s = 2 s = 3

h(s) 3 2 0 1

Given a state s = {package 7→ L, truck A 7→ L, truck B 7→ R},
its heuristic value is then looked up as:

h(s) = Th[T
2
m&s[T

1
m&s[Tpackage[L],Ttruck A[L]],Ttruck B[R]]]

Generic Algorithm Example Maintaining the Abstraction Summary

Summary

Generic Algorithm Example Maintaining the Abstraction Summary

Summary (1)

Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

Merge transformations combine two factors
into their synchronized product.

Shrink transformations reduce the size of a factor
by abstracting it.

Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

Generic Algorithm Example Maintaining the Abstraction Summary

Summary (1)

Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

Merge transformations combine two factors
into their synchronized product.

Shrink transformations reduce the size of a factor
by abstracting it.

Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

Generic Algorithm Example Maintaining the Abstraction Summary

Summary (2)

Projections of SAS+ tasks correspond to
merges of atomic factors.

By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

Planning and Optimization
E11. Merge-and-Shrink: Properties and Shrink Strategies

Malte Helmert and Gabriele Röger

Universität Basel

November 19, 2025

Heuristic Properties Shrink Strategies Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Heuristic Properties Shrink Strategies Summary

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

F := F (Π)
while |F | > 1:

select type ∈ {merge, shrink}
if type = merge:

select T1, T2 ∈ F
F := (F \ {T1, T2}) ∪ {T1 ⊗ T2}

if type = shrink:
select T ∈ F
choose an abstraction mapping β on T
F := (F \ {T }) ∪ {T β}

return the remaining factor T α in F

Heuristic Properties Shrink Strategies Summary

Heuristic Properties

Heuristic Properties Shrink Strategies Summary

Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better,
we are interested in the properties of the resulting heuristic:

Is it admissible (hα(s) ≤ h∗(s) for all states s)?

Is it consistent (hα(s) ≤ c(o) + hα(t) for all trans. s
o−→ t)?

Is it perfect (hα(s) = h∗(s) for all states s)?

Because merge-and-shrink is a generic procedure,
the answers may depend on how exactly we instantiate it:

size limits

merge strategy

shrink strategy

Heuristic Properties Shrink Strategies Summary

Merge-and-Shrink as Sequence of Transformations

Consider a run of the merge-and-shrink construction algorithm
with n iterations of the main loop.

Let Fi (0 ≤ i ≤ n) be the FTS F after i loop iterations.

Let Ti (0 ≤ i ≤ n) be the transition system represented by Fi ,
i.e., Ti =

⊗
Fi .

In particular, F0 = F (Π) and Fn = {Tn}.
For SAS+ tasks Π, we also know T0 = T (Π).

For a formal study, it is useful to view merge-and-shrink
construction as a sequence of transformations from Ti to Ti+1.

(We do it in a bit more general fashion than necessary for merge and
shrink steps only, to also cover some improvements we will see later.)

Heuristic Properties Shrink Strategies Summary

Transformations

Definition (Transformation)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ and T ′ = ⟨S ′, L′, c ′,T ′, s ′0, S
′
⋆⟩

be transition systems.
Let σ : S → S ′ map the states of T to the states of T ′ and
λ : L → L′ map the labels of T to the labels of T ′.

The tuple τ = ⟨T , σ, λ, T ′⟩ is called a transformation from T to

T ′. We also write it as T σ,λ−−→ T ′.

The transformation τ induces the heuristic hτ for T
defined as hτ (s) = h∗T ′(σ(s)).

Example: If α is an abstraction mapping for transition system T ,

then T α,id−−→ T α is a transformation.

Heuristic Properties Shrink Strategies Summary

Conservative Transformations

Definition (Conservative Transformation)

Let T and T ′ be transition systems with label sets L and L′ and
cost functions c and c ′, respectively.

A transformation ⟨T , σ, λ, T ′⟩ is conservative if

c ′(λ(ℓ)) ≤ c(ℓ) for all ℓ ∈ L,

for all transitions ⟨s, ℓ, t⟩ of T there is a transition
⟨σ(s), λ(ℓ), σ(t)⟩ of T ′, and

for all goal states s of T , state σ(s) is a goal state of T ′.

Example: If α is an abstraction mapping for transition system T ,

then T α,id−−→ T α is a conservative transformation.

Heuristic Properties Shrink Strategies Summary

Conservative Transformations: Heuristic Properties (1)

Theorem

If τ is a conservative transformation from transition system T to
transition system T ′ then hτ is a safe, consistent, goal-aware and
admissible heuristic for T .

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s⋆ of T , state σ(s⋆) is a goal
state of T ′ and therefore hτ (s⋆) = h∗T ′(σ(s⋆)) = 0. . . .

Heuristic Properties Shrink Strategies Summary

Conservative Transformations: Heuristic Properties (2)

Proof (continued).

Consistency: Let c and c ′ be the label cost functions of T and T ′,
respectively. Consider state s of T and transition ⟨s, ℓ, t⟩.
As T ′ has a transition ⟨σ(s), λ(ℓ), σ(t)⟩, it holds that

hτ (s) = h∗T ′(σ(s))

≤ c ′(λ(ℓ)) + h∗T ′(σ(t))

= c ′(λ(ℓ)) + hτ (t)

≤ c(ℓ) + hτ (t)

The second inequality holds due to the requirement on the label
costs.

Heuristic Properties Shrink Strategies Summary

Exact Transformations

Definition (Exact Transformation)

Let T and T ′ be transition systems with label sets L and L′ and
cost functions c and c ′, respectively.

A transformation ⟨T , σ, λ, T ′⟩ is exact if it is conservative and

1 if ⟨s ′, ℓ′, t ′⟩ is a transition of T ′ then for all s ∈ σ−1(s ′) there
is a transition ⟨s, ℓ, t⟩ of T with t ∈ σ−1(t ′) and ℓ ∈ λ−1(ℓ′),

2 if s ′ is a goal state of T ′ then all states s ∈ σ−1(s ′) are goal
states of T , and

3 c(ℓ) = c ′(λ(ℓ)) for all ℓ ∈ L.

⇝ no “new” transitions and goal states, no cheaper labels

Heuristic Properties Shrink Strategies Summary

Heuristic Properties with Exact Transformations (1)

Theorem

If τ is an exact transformation from transition system T to
transition system T ′ then hτ is the perfect heuristic h∗ for T .

Proof.

As the transformation is conservative, hτ is admissible for T and
therefore h∗T (s) ≥ hτ (s).
For the other direction, we show that for every state s ′ of T ′ and
goal path π′ for s ′, there is for each s ∈ σ−1(s ′) a goal path in T
that has the same cost. . . .

Heuristic Properties Shrink Strategies Summary

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of π′.

|π′| = 0: If s ′ is a goal state of T ′ then each s ∈ σ−1(s ′) is a goal
state of T and the empty path is a goal path for s in T .

|π′| = i + 1: Let π′ = ⟨s ′, ℓ′, t ′⟩π′
t′ , where π′

t′ is a goal path of
length i from t ′. Then there is for each t ∈ σ−1(t ′) a goal path πt
of the same cost in T (by ind. hypothesis). Furthermore, for all
s ∈ σ−1(s ′) there is a state t ∈ σ−1(t ′) and a label ℓ ∈ λ−1(ℓ′)
such that T has a transition ⟨s, ℓ, t⟩. The path π = ⟨s, ℓ, t⟩πt is a
solution for s in T . As ℓ and ℓ′ must have the same cost and πt
and π′

t′ have the same cost, π has the same cost as π′.

Heuristic Properties Shrink Strategies Summary

Composing Transformations

Merge-and-shrink performs many transformations in sequence.
We can formalize this with a notion of composition:

Given τ = T σ, λ−−→ T ′ and τ ′ = T ′ σ′, λ′
−−−→ T ′′,

their composition τ ′′ = τ ′ ◦ τ is defined as

τ ′′ = T σ′◦σ, λ′◦λ−−−−−−→ T ′′.

If τ and τ ′ are conservative, then τ ′ ◦ τ is conservative.

If τ and τ ′ are exact, then τ ′ ◦ τ is exact.

Heuristic Properties Shrink Strategies Summary

Merge-and-Shrink Transformations

F : factored transition system

Replacement with Synchronized Product is Conservative and Exact

Let T1, T2 ∈ F with T1 ̸= T2.
Let F ′ := (X \ {T1, T2}) ∪ {T1 ⊗ T2}.
Then there is an exact transformation ⟨⊗F , σ, id,⊗F ′⟩.

Up to the isomorphism we know from the synchronized product,
we can use σ = id.

Abstraction is Conservative

Let α be an abstraction of Ti ∈ F and let F ′ := (F \ {Ti})∪ {T α
i }.

The transformation ⟨⊗F , σ, id,⊗F ′⟩ with
σ(⟨s1, . . . , sn⟩) = ⟨s1, . . . , si−1, α(si), si+1, . . . , sn⟩ is conservative.

(Proofs omitted.)

Heuristic Properties Shrink Strategies Summary

Properties of Merge-and-Shrink Heuristics

We can conclude the following properties
of merge-and-shrink heuristics for SAS+ tasks:

The heuristic is always admissible and consistent
(because it is induced by a a composition of conservative
transformations).

If all shrink transformation used are exact,
the heuristic is perfect (because it is induced by
a composition of exact transformations).

Heuristic Properties Shrink Strategies Summary

Shrink Strategies

Heuristic Properties Shrink Strategies Summary

Reminder: Generic Algorithm Template

F := F (Π)
while |F | > 1:

select type ∈ {merge, shrink}
if type = merge:

select T1, T2 ∈ F
F := (F \ {T1, T2}) ∪ {T1 ⊗ T2}

if type = shrink:
select T ∈ F
choose an abstraction mapping β on T
F := (F \ {T }) ∪ {T β}

return the remaining factor T α in F

Remaining Questions:

Which abstractions to select for merging? ⇝ merge strategy

How to shrink an abstraction? ⇝ shrink strategy

Heuristic Properties Shrink Strategies Summary

Shrink Strategies

How to shrink an abstraction?

We cover two common approaches:

f -preserving shrinking

bisimulation-based shrinking

Heuristic Properties Shrink Strategies Summary

f -preserving Shrink Strategy

f -preserving Shrink Strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A∗, so inaccuracies there matter less

Heuristic Properties Shrink Strategies Summary

Bisimulation

Definition (Bisimulation)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system. An equivalence
relation ∼ on S is a bisimulation for T if for every ⟨s, ℓ, s ′⟩ ∈ T
and every t ∼ s there is a transition ⟨t, ℓ, t ′⟩ ∈ T with t ′ ∼ s ′.

A bisimulation ∼ is goal-respecting if s ∼ t implies that either
s, t ∈ S⋆ or s, t ̸∈ S⋆.

Heuristic Properties Shrink Strategies Summary

Bisimulation: Example

1

2

3

4

5

o

p

o

po

q

o

q

o

p

∼ with equivalence classes
{{1, 2, 5}, {3, 4}} is a
goal-respecting
bisimulation.

Heuristic Properties Shrink Strategies Summary

Bisimulation Abstractions

Definition (Abstractions as Bisimulation)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system and α : S → S ′

be an abstraction of T . The abstraction induces the equivalence
relation ∼α as s ∼α t iff α(s) = α(t).

We say that α is a (goal-respecting) bisimulation for T if ∼α is a
(goal-respecting) bisimulation for T .

Heuristic Properties Shrink Strategies Summary

Abstraction as Bisimulations: Example

Abstraction α with
α(1) = α(2) = α(5) = A and α(3) = α(4) = B
is a goal-respecting bisimulation for T .

T

1

2

3

4

5

o

p

o

po

q

o

q

o

p

T α

A B

o
p

o, q

Heuristic Properties Shrink Strategies Summary

Goal-respecting Bisimulations are Exact

Theorem

Let F be a factored transition system and α be an abstraction of
Ti ∈ F .
If α is a goal-respecting bisimulation then the transformation
⟨⊗F , σ, id,⊗F ′⟩ with

σ(⟨s1, . . . , sn⟩) = ⟨s1, . . . , si−1, α(si), si+1, . . . , sn⟩ and
F ′ := (F \ {Ti}) ∪ {T α

i }
is exact.

(Proofs omitted.)

Shrinking with bisimulation preserves the heuristic estimates.

Heuristic Properties Shrink Strategies Summary

Bisimulations: Discussion

As all bisimulations preserve all relevant information, we are
interested in the coarsest such abstraction (to shrink as much
as possible).

There is always a unique coarsest bisimulation for T and it
can be computed efficiently (from the explicit representation).

In some cases, computing the bisimulation is still too
expensive or it cannot sufficiently shrink a transition system.

Heuristic Properties Shrink Strategies Summary

Summary

Heuristic Properties Shrink Strategies Summary

Summary

Merge-and-shrink abstractions can be analyzed
by viewing them as a sequence of transformations.

We only use conservative transformations,
and hence merge-and-shrink heuristics for SAS+ tasks
are admissible and consistent.

Merge-and-shrink heuristics for SAS+ tasks
that only use exact transformations are perfect.

Bisimulation is an exact shrinking method.

Planning and Optimization
E12. Merge-and-Shrink: Merge Strategies & Outlook

Malte Helmert and Gabriele Röger

Universität Basel

November 19, 2025

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Merge Strategies

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

F := F (Π)
while |F | > 1:

select type ∈ {merge, shrink}
if type = merge:

select T1, T2 ∈ F
F := (F \ {T1, T2}) ∪ {T1 ⊗ T2}

if type = shrink:
select T ∈ F
choose an abstraction mapping β on T
F := (F \ {T }) ∪ {T β}

return the remaining factor T α in F

Remaining Question:

Which abstractions to select for merging? ⇝ merge strategy

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as T1.

Rationale: only maintains one “complex” abstraction at a time

Fully defined by an ordering of atomic projections/variables.

Each merge-and-shrink heuristic computed with a non-linear
merge strategy can also be computed with a linear merge
strategy.

However, linear merging can require a super-polynomial
blow-up of the final representation size.

Recent research turned from linear to non-linear strategies,
also because better label reduction techniques (later in this
chapter) enabled a more efficient computation.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Classes of Merge Strategies

We can distinguish two major types of merge strategies:

precomputed merge strategies fix a unique merge order
up-front.
One-time effort but cannot react to other transformations
applied to the factors.

stateless merge strategies only consider the current FTS and
decide what factors to merge.
Typically computing a score for each pair of factors and
naturally non-linear; easy to implement but cannot capture
dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless
strategies.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of hHHH

hHHH: Ordering of atomic projections

Start with a goal variable.

Add variables that appear in preconditions of operators
affecting previous variables.

If that is not possible, add a goal variable.

Rationale: increases h quickly

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first
merge variables within each cluster.

Example: MIASM (“maximum intermediate abstraction size
minimizing merging strategy”)

MIASM strategy

Measure interaction by ratio of unnecessary states in the
merged system (= states not traversed by any abstract plan).

Best-first search to identify interesting variable sets.

Disjoint variable sets chosen by a greedy algorithm for
maximum weighted set packing.

Rationale: increase power of pruning (later in this chapter)

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize
on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

DFP strategy

labelrank(ℓ, T) = min{h∗(t) | ⟨s, ℓ, t⟩ transition in T }
score(T , T ′) = min{max{labelrank(ℓ, T), labelrank(ℓ, T ′)} |

ℓ label in T and T ′}
Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region,
which is likely to be searched by A∗.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected
component of the causal graph.

Example: SCC framework

SCC strategy

Compute strongly connected components of causal graph

Secondary strategies for order in which

the SCCs are considered (e.g. topologic order),
the factors within an SCC are merged, and
the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP or a stateless MIASM variant

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Outlook: Label Reduction and
Pruning

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Further Transformations

State-of-the-art Merge & Shrink uses two further transformations:

Label reduction

Pruning

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Label Reduction

Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

A label reduction ⟨λ, c ′⟩ for a FTS F with label set L is given
by a function λ : L → L′, where L′ is an arbitrary set of labels,
and a label cost function c ′ on L′ such that for all ℓ ∈ L,
c ′(λ(ℓ)) ≤ c(ℓ).
The label-reduced TSs have L′ and c ′ for the labels and cost,
and in each transition the original label ℓ is replaced with λ(ℓ).

Label reduction is a conservative transformation.

There are also clear criteria when label reduction is exact.

Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Label Reduction

Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

A label reduction ⟨λ, c ′⟩ for a FTS F with label set L is given
by a function λ : L → L′, where L′ is an arbitrary set of labels,
and a label cost function c ′ on L′ such that for all ℓ ∈ L,
c ′(λ(ℓ)) ≤ c(ℓ).
The label-reduced TSs have L′ and c ′ for the labels and cost,
and in each transition the original label ℓ is replaced with λ(ℓ).

Label reduction is a conservative transformation.

There are also clear criteria when label reduction is exact.

Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Label Reduction

Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

A label reduction ⟨λ, c ′⟩ for a FTS F with label set L is given
by a function λ : L → L′, where L′ is an arbitrary set of labels,
and a label cost function c ′ on L′ such that for all ℓ ∈ L,
c ′(λ(ℓ)) ≤ c(ℓ).
The label-reduced TSs have L′ and c ′ for the labels and cost,
and in each transition the original label ℓ is replaced with λ(ℓ).

Label reduction is a conservative transformation.

There are also clear criteria when label reduction is exact.

Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Label Reduction

Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

A label reduction ⟨λ, c ′⟩ for a FTS F with label set L is given
by a function λ : L → L′, where L′ is an arbitrary set of labels,
and a label cost function c ′ on L′ such that for all ℓ ∈ L,
c ′(λ(ℓ)) ≤ c(ℓ).
The label-reduced TSs have L′ and c ′ for the labels and cost,
and in each transition the original label ℓ is replaced with λ(ℓ).

Label reduction is a conservative transformation.

There are also clear criteria when label reduction is exact.

Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Label Reduction

Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

A label reduction ⟨λ, c ′⟩ for a FTS F with label set L is given
by a function λ : L → L′, where L′ is an arbitrary set of labels,
and a label cost function c ′ on L′ such that for all ℓ ∈ L,
c ′(λ(ℓ)) ≤ c(ℓ).
The label-reduced TSs have L′ and c ′ for the labels and cost,
and in each transition the original label ℓ is replaced with λ(ℓ).

Label reduction is a conservative transformation.

There are also clear criteria when label reduction is exact.

Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Alive States

0 1 2 3

4 5

6 7

reachable

backward-reachable

state s is reachable if we can reach it from the initial state

state s is backward-reachable if we can reach the goal from s

state s is alive if it is reachable and backward-reachable
→ only alive states can be traversed by a solution

a state s is dead if it is not alive.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Pruning States (1)

If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.
→ use heuristic estimate ∞

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Pruning States (2)

Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A∗(but
not in other contexts like such as orbit search).
We usually prune all dead states to keep the factors small.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Summary

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Summary

There is a wide range of merge strategies. We only covered
some important ones.

Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.

Pruning is used to keep the size of the factors small. It
depends on the intended application how aggressive the
pruning can be.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature (1)

References on merge-and-shrink abstractions:

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature (2)

Raz Nissim, Jörg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.
Proc. IJCAI 2011, pp. 1983–1990, 2011.
Introduces bisimulation-based shrinking.

Malte Helmert, Patrik Haslum, Jörg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1–63, 2014.
Detailed journal version of the previous two publications.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature (3)

Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces modern version of label reduction.
(There was a more complicated version before.)

Gaojian Fan, Martin Müller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.
Proc. SoCS 2014, pp. 53–61, 2014.
Introduces UMC and MIASM merging strategies

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature (4)

Malte Helmert, Gabriele Röger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106–114, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.

Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781–883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.

Merge Strategies Outlook: Label Reduction and Pruning Summary Literature

Literature (5)

Silvan Sievers, Florian Pommerening , Thomas Keller and
Malte Helmert.
Cost-Partitioned Merge-and-Shrink Heuristics for Optimal
Classical Planning.
Proc. IJCAI 2020, pp. 4152–4160, 2020.
Extends saturated cost partitioning to merge-and-shrink.

Planning and Optimization
E13. Cartesian Abstractions

Malte Helmert and Gabriele Röger

Universität Basel

November 24, 2025

Introduction Cartesian Sets Cartesian Abstractions Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

Introduction Cartesian Sets Cartesian Abstractions Summary

Introduction

Introduction Cartesian Sets Cartesian Abstractions Summary

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

Start with a very coarse abstraction.

Iteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.

If yes, the task is solved.
If not, refine the abstraction so that the same flaw will not be
encountered in future iterations.

CEGAR is another technique originally introduced for model checking.

Introduction Cartesian Sets Cartesian Abstractions Summary

Our Plan for Today

For a certain class of abstractions (the Cartesian
abstractions), CEGAR can be efficiently implemented.

In this chapter, we get to know this class of abstractions and
the necessary foundations.

In the next chapter, we see how they can be used within
CEGAR.

Introduction Cartesian Sets Cartesian Abstractions Summary

Remarks

In Ch. E13 and E14 we continue to only consider SAS+ tasks.

To facilitate notation, we will use an arbitrary (but fixed)
order on the variables.
→ Tuple of variables instead of set of variables.

These chapters are based on:
Jendrik Seipp and Malte Helmert.
Counterexample-Guided Cartesian Abstraction Refinement for
Classical Planning. Journal of Artificial Intelligence Research
62, pp. 535-577. 2018.

Introduction Cartesian Sets Cartesian Abstractions Summary

Example Task: Two Packages, One Truck

In E13 and E14 we use the following running example.

Example (Two Packages, One Truck)

Consider the following FDR planning task ⟨V , I ,O, γ⟩:
V = {pA, pB, t} with

dom(p)A = dom(pB) = {L, I,R}
dom(t) = {L,R}

I = {pA 7→ L, pB 7→ L, t 7→ L}
O = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j | i , j ∈ {L,R}, i ̸= j}, where
pickupi,j = ⟨pi = j ∧ t = j , pi := I, 1⟩
dropi,j = ⟨pi = I ∧ t = j , pi := j , 1⟩
movei,j = ⟨t = i , t := j , 1⟩

γ = (pA = R ∧ pB = R)

Introduction Cartesian Sets Cartesian Abstractions Summary

Cartesian Sets

Introduction Cartesian Sets Cartesian Abstractions Summary

Cartesian Sets

Definition

A set of states for a planning task with variables ⟨v1, . . . , vn⟩ is
called Cartesian if it is of the form A1 × · · · × An, where
Ai ⊆ dom(vi) for all 1 ≤ i ≤ n.

{L, I} × {R} × {L,R} = {(L,R, L), (L,R,R), (I ,R, L), (I ,R,R)}
for variables ⟨pA, pB, t⟩

LRL LRR

IRL IRR

Introduction Cartesian Sets Cartesian Abstractions Summary

Conjunctions of Atoms as Cartesian Sets

For a conjunction φ of atoms, the set of all states s with s |= φ is
Cartesian and can be defined as follows:

Definition

Let φ be a conjunction of atoms over finite domain variables
V = ⟨v1, . . . , vn⟩. The Cartesian set induced by φ is
Cartesian(φ) = A1 × · · · × An, where

Ai =


dom(vi) if φ contains no atom vi = d ,

{d} if φ contains an atom vi = d and

no atom vi = d ′ with d ̸= d ′

∅ otherwise (conflicting atoms for vi).

Introduction Cartesian Sets Cartesian Abstractions Summary

Conjunctions of Atoms as Cartesian Sets: Examples

In the running example with variables ⟨pA, pB , t⟩
Cartesian(pA = R ∧ t = L) = {R} × {L, I ,R} × {L}
Cartesian(pA = R ∧ t = L ∧ t = R) = {R} × {L, I ,R} × ∅

Introduction Cartesian Sets Cartesian Abstractions Summary

Properties of Cartesian Sets

Theorem

Let Π = ⟨V ,O, I , γ⟩ be a SAS+ planning task.

1 The set of goal states of Π is Cartesian.

2 For all o ∈ O, the set of states in which
o is applicable is Cartesian.

3 The intersection of Cartesian sets
over the same variables is Cartesian.

4 For all operators o, the regression of a Cartesian set
wrt. o is Cartesian.

From the proofs we will see that the corresponding Cartesian sets
are easy to determine.

Introduction Cartesian Sets Cartesian Abstractions Summary

Properties of Cartesian Sets

Proof Sketch.

1 The set of goal states is Cartesian(γ).

2 For o ∈ O, the set of states in which o is applicable is
Cartesian(pre(o)).

3 The intersection of Cartesian sets A1 × · · · × An and
B1 × · · · × Bn is (A1 ∩ B1)× · · · × (An ∩ Bn).

. . .

Introduction Cartesian Sets Cartesian Abstractions Summary

Properties of Cartesian Sets

Proof Sketch.

1 The set of goal states is Cartesian(γ).

2 For o ∈ O, the set of states in which o is applicable is
Cartesian(pre(o)).

3 The intersection of Cartesian sets A1 × · · · × An and
B1 × · · · × Bn is (A1 ∩ B1)× · · · × (An ∩ Bn).

. . .

Introduction Cartesian Sets Cartesian Abstractions Summary

Properties of Cartesian Sets

Proof Sketch.

1 The set of goal states is Cartesian(γ).

2 For o ∈ O, the set of states in which o is applicable is
Cartesian(pre(o)).

3 The intersection of Cartesian sets A1 × · · · × An and
B1 × · · · × Bn is (A1 ∩ B1)× · · · × (An ∩ Bn).

. . .

Introduction Cartesian Sets Cartesian Abstractions Summary

Properties of Cartesian Sets

Proof Sketch (continued).

4 With variables ⟨v1, . . . , vn⟩, the regression of Cartesian set
b = B1 × · · · × Bn wrt. o is regr(b, o) = A1 × · · · × An,
where

Ai =



Bi if vi does not occur in pre(o) and eff(o)

∅ if o has an effect setting vi to d ′ /∈ Bi

or if o has no effect on vi

but a precondition vi = d with d /∈ Bi .

dom(vi) if o has no precondition on vi and

an effect setting vi to d ′ ∈ Bi

{d} if o has a precondition vi = d and

an effect setting vi to d ′ ∈ Bi

or if o has precondition vi = d with d ∈ Bi

and no effect on vi

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets

a d e

b

c

a d e

s
c

Theorem (Splits)

1 If b ⊆ a and c ⊆ a are disjoint Cartesian subsets of the
Cartesian set a, then a can be partitioned into
Cartesian sets d and e with b ⊆ d and c ⊆ e.

2 If c ⊆ a is a Cartesian subset of the Cartesian set a and
s ∈ a \ c, then a can be partitioned into
Cartesian sets d and e with s ∈ d and c ⊆ e.

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets

a d e

b

c

a d e

s
c

Theorem (Splits)

1 If b ⊆ a and c ⊆ a are disjoint Cartesian subsets of the
Cartesian set a, then a can be partitioned into
Cartesian sets d and e with b ⊆ d and c ⊆ e.

2 If c ⊆ a is a Cartesian subset of the Cartesian set a and
s ∈ a \ c, then a can be partitioned into
Cartesian sets d and e with s ∈ d and c ⊆ e.

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets a d e

b

c

Proof.

For 1), let a = A1 × · · · × An, b = B1 × · · · × Bn and
c = C1 × · · · × Cn.

Let j be such that Bj and Cj are disjoint. It must exist because
otherwise b and c are not disjoint (we could select for each
variable vi a value in Bi ∩ Ci).

Partition Aj into Dj and Ej with Bj ⊆ Dj and Cj ⊆ Ej ,
e.g. Ej = Cj and Dj = Aj \ Cj .

Then d = A1 × · · · × Aj−1 × Dj × Aj+1 × · · · × An and
e = A1 × · · · × Aj−1 × Ej × Aj+1 × · · · × An

2) follows from 1) by setting b = {s} (a Cartesian set).

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets a d e

b

c

Proof.

For 1), let a = A1 × · · · × An, b = B1 × · · · × Bn and
c = C1 × · · · × Cn.

Let j be such that Bj and Cj are disjoint. It must exist because
otherwise b and c are not disjoint (we could select for each
variable vi a value in Bi ∩ Ci).

Partition Aj into Dj and Ej with Bj ⊆ Dj and Cj ⊆ Ej ,
e.g. Ej = Cj and Dj = Aj \ Cj .

Then d = A1 × · · · × Aj−1 × Dj × Aj+1 × · · · × An and
e = A1 × · · · × Aj−1 × Ej × Aj+1 × · · · × An

2) follows from 1) by setting b = {s} (a Cartesian set).

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets: Example

a : {I ,R, L} × {L, I} × {L,R}

ILL RLL LLL

ILR RLR LLR

IIL RIL LIL

IIR RIR LIR

c : {L} × {I} × {L,R}

b : {I} × {L} × {R}

On which variable(s) can we split?

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets: Example

a : {I ,R, L} × {L, I} × {L,R}

ILL RLL LLL

ILR RLR LLR

IIL RIL LIL

IIR RIR LIR

c : {L} × {I} × {L,R}

b : {I} × {L} × {R}

On which variable(s) can we split? ⇝ first or second.
What are the two Cartesian sets d and e in each case?

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets: Example

a : {I ,R, L} × {L, I} × {L,R}

ILL RLL LLL

ILR RLR LLR

IIL RIL LIL

IIR RIR LIR

c : {L} × {I} × {L,R}

b : {I} × {L} × {R}

Split on first variable:
d = {I ,R} × {L, I} × {L,R} and e = {L} × {L, I} × {L,R}

Introduction Cartesian Sets Cartesian Abstractions Summary

Splitting Cartesian Sets: Example

a : {I ,R, L} × {L, I} × {L,R}

ILL RLL LLL

ILR RLR LLR

IIL RIL LIL

IIR RIR LIR

c : {L} × {I} × {L,R}

b : {I} × {L} × {R}

Split on second variable:
d = {I ,R, L} × {L} × {L,R} and e = {I ,R, L} × {I} × {L,R}

Introduction Cartesian Sets Cartesian Abstractions Summary

Cartesian Abstractions

Introduction Cartesian Sets Cartesian Abstractions Summary

Reminder: Abstractions as Equivalence Relations

An abstraction α induces the equivalence relation ∼α over the
set of (concrete) states as s ∼α t iff α(s) = α(t).

The equivalence class [s]α of state s is the set of all concrete
states that are mapped to the same abstract state as s.

We write ∼ and [s], if α is clear from context.

Introduction Cartesian Sets Cartesian Abstractions Summary

Reminder: Abstractions as Equivalence Relations

An abstraction α induces the equivalence relation ∼α over the
set of (concrete) states as s ∼α t iff α(s) = α(t).

The equivalence class [s]α of state s is the set of all concrete
states that are mapped to the same abstract state as s.

We write ∼ and [s], if α is clear from context.

Introduction Cartesian Sets Cartesian Abstractions Summary

Reminder: Abstractions as Equivalence Relations

An abstraction α induces the equivalence relation ∼α over the
set of (concrete) states as s ∼α t iff α(s) = α(t).

The equivalence class [s]α of state s is the set of all concrete
states that are mapped to the same abstract state as s.

We write ∼ and [s], if α is clear from context.

Introduction Cartesian Sets Cartesian Abstractions Summary

Cartesian Abstraction

Definition

An abstraction α is called Cartesian if all equivalence classes of ∼α

are Cartesian sets.

Introduction Cartesian Sets Cartesian Abstractions Summary

Example

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{L, I} × {L, I ,R}
×{L}

{I} × {L, I ,R}
×{R}

Labels omitted for clarity.

Introduction Cartesian Sets Cartesian Abstractions Summary

Relationship to other Classes of Abstractions

Cartesian abstractions generalize projections (PDBs): the
equivalence classes of projections are Cartesian.

Merge & Shrink abstractions are more general than Cartesian
abstractions (every abstraction can be represented as Merge
& Shrink abstraction).

Merge & Shrink and Cartesian abstractions are incomparable
in representation size: there are compact Cartesian
abstractions that do not have a compact Merge & Shrink
representation and vice versa.

Introduction Cartesian Sets Cartesian Abstractions Summary

Summary

Introduction Cartesian Sets Cartesian Abstractions Summary

Summary

Cartesian sets are sets of states that can be represented as a
Cartesian product of possible values for each variable.

In Cartesian abstractions the sets of states that do not get
distinguished must be Cartesian.

Planning and Optimization
E14. Cartesian Abstractions: CEGAR

Malte Helmert and Gabriele Röger

Universität Basel

November 24, 2025

CEGAR Flaws Refinement Example Heuristic Representation Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Abstraction in
General

Pattern Databases

Merge & Shrink

Cartesian
Abstractions

Constraints

CEGAR Flaws Refinement Example Heuristic Representation Summary

CEGAR

CEGAR Flaws Refinement Example Heuristic Representation Summary

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

Start with a very coarse abstraction.

Iteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.

If yes, the task is solved.
If not, refine the abstraction so that the same flaw will not be
encountered in future iterations.

CEGAR Flaws Refinement Example Heuristic Representation Summary

CEGAR Algorithm

Generic CEGAR algorithm for planning task Π

T := TrivialAbstractTransitionSystem(Π)
while not TerminationCondition():

τ := FindOptimalTrace(T)
if τ is “no trace” then return Π unsolvable
F := FindFlaw(τ,Π, T)
if F is “no flaw” then

return label sequence of τ as plan for Π
T := Refine(T ,F)

return T

Open questions:

How do we refine the system?

CEGAR Flaws Refinement Example Heuristic Representation Summary

CEGAR Algorithm

Generic CEGAR algorithm for planning task Π

T := TrivialAbstractTransitionSystem(Π) ← one abstract state
while not TerminationCondition(): ← e.g. time/memory limit

τ := FindOptimalTrace(T) ← abstract solution (path in T)
if τ is “no trace” then return Π unsolvable
F := FindFlaw(τ,Π, T)
if F is “no flaw” then

return label sequence of τ as plan for Π
T := Refine(T ,F)

return T

Open questions:

How do we refine the system?

CEGAR Flaws Refinement Example Heuristic Representation Summary

CEGAR Algorithm

Generic CEGAR algorithm for planning task Π

T := TrivialAbstractTransitionSystem(Π)
while not TerminationCondition():

τ := FindOptimalTrace(T)
if τ is “no trace” then return Π unsolvable
F := FindFlaw(τ,Π, T)
if F is “no flaw” then

return label sequence of τ as plan for Π
T := Refine(T ,F)

return T

Open questions:

What are flaws (and how to find them)? ⇝ next

How do we refine the system?

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

A flaw is a reason why (the label sequence of) τ does not solve Π
the way it solves the abstract system T (with abstraction α).

Start from the initial state of Π and iteratively apply the next
operator (label) o from τ .

Precondition flaw: o is not applicable in the current state s.

Goal flaw: the final state is not a goal state.

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path).

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

A flaw is a reason why (the label sequence of) τ does not solve Π
the way it solves the abstract system T (with abstraction α).

Start from the initial state of Π and iteratively apply the next
operator (label) o from τ .

Precondition flaw: o is not applicable in the current state s.

Goal flaw: the final state is not a goal state.

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path).

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

A flaw is a reason why (the label sequence of) τ does not solve Π
the way it solves the abstract system T (with abstraction α).

Start from the initial state of Π and iteratively apply the next
operator (label) o from τ .

Precondition flaw: o is not applicable in the current state s.

Goal flaw: the final state is not a goal state.

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path).

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

A flaw is a reason why (the label sequence of) τ does not solve Π
the way it solves the abstract system T (with abstraction α).

Start from the initial state of Π and iteratively apply the next
operator (label) o from τ .

Precondition flaw: o is not applicable in the current state s.

Goal flaw: the final state is not a goal state.

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path).

CEGAR Flaws Refinement Example Heuristic Representation Summary

Flaws

A flaw is a reason why (the label sequence of) τ does not solve Π
the way it solves the abstract system T (with abstraction α).

Start from the initial state of Π and iteratively apply the next
operator (label) o from τ .

Precondition flaw: o is not applicable in the current state s.

Goal flaw: the final state is not a goal state.

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path).

CEGAR Flaws Refinement Example Heuristic Representation Summary

Extracting Flaws

[s]

s
c

For the refinement, we represent flaws in the form ⟨s, c⟩, where
s is a concrete state,

c ⊆ [s] is a non-empty Cartesian set,

the abstract plan relied on “being in c” but s /∈ c .

⟨s, c⟩ will define the split for the refinement step.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Extracting Different Kinds of Flaws

Precondition flaw: if o is not applicabe in state s, use ⟨s, c⟩,
where c is the set of concrete states in [s] in which o is
applicable.

Goal flaw: if the final state s is not a goal state, use ⟨s, c⟩,
where c is the set of concrete goal states in [s].

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path). Use (s, c), where c is the intersection of [s]
and regr(a′, o).

Easy for Cartesian abstractions, using the results from Ch. E13.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Extracting Different Kinds of Flaws

Precondition flaw: if o is not applicabe in state s, use ⟨s, c⟩,
where c is the set of concrete states in [s] in which o is
applicable.

Goal flaw: if the final state s is not a goal state, use ⟨s, c⟩,
where c is the set of concrete goal states in [s].

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path). Use (s, c), where c is the intersection of [s]
and regr(a′, o).

Easy for Cartesian abstractions, using the results from Ch. E13.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Extracting Different Kinds of Flaws

Precondition flaw: if o is not applicabe in state s, use ⟨s, c⟩,
where c is the set of concrete states in [s] in which o is
applicable.

Goal flaw: if the final state s is not a goal state, use ⟨s, c⟩,
where c is the set of concrete goal states in [s].

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path). Use (s, c), where c is the intersection of [s]
and regr(a′, o).

Easy for Cartesian abstractions, using the results from Ch. E13.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Extracting Different Kinds of Flaws

Precondition flaw: if o is not applicabe in state s, use ⟨s, c⟩,
where c is the set of concrete states in [s] in which o is
applicable.

Goal flaw: if the final state s is not a goal state, use ⟨s, c⟩,
where c is the set of concrete goal states in [s].

Deviation flaw: the next abstract transition is a
o−→ a′, the

current concrete state is s with α(s) = a but for successor
state s ′ = sJoK we have α(s ′) ̸= a′ (deviating from the
abstract path). Use (s, c), where c is the intersection of [s]
and regr(a′, o).

Easy for Cartesian abstractions, using the results from Ch. E13.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Refinement

CEGAR Flaws Refinement Example Heuristic Representation Summary

CEGAR Algorithm

Generic CEGAR algorithm for planning task Π

T := TrivialAbstractTransitionSystem(Π)
while not TerminationCondition():

τ := FindOptimalTrace(T)
if τ is “no trace” then return Π unsolvable
F := FindFlaw(τ,Π, T)
if F is “no flaw” then

return label sequence of τ as plan for Π
T := Refine(T ,F)

return T

Open questions:

How do we refine the system?

CEGAR Flaws Refinement Example Heuristic Representation Summary

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine(⟨S ′, L′, c ′,T ′, s ′0,S
′
⋆⟩, ⟨s, c⟩)

⟨d , e⟩ := Split([s], s, c)
S ′′ := S ′ \ {[s]} ∪ {d , e}
T ′′ := RewireTransitions(T ′, [s], d , e)
if [s] = s ′0 then s ′′0 := d else s ′′0 := s ′0
if [s] ∈ S ′

⋆ then S ′′
⋆ := (S ′′

⋆ \ {[s]}) ∪ {e} else S ′′
⋆ := S ′

⋆

return ⟨S ′′, L′, c ′,T ′′, s ′′0 ,S
′′
⋆ ⟩

CEGAR Flaws Refinement Example Heuristic Representation Summary

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine(⟨S ′, L′, c ′,T ′, s ′0,S
′
⋆⟩, ⟨s, c⟩)

⟨d , e⟩ := Split([s], s, c)
S ′′ := S ′ \ {[s]} ∪ {d , e}
T ′′ := RewireTransitions(T ′, [s], d , e)
if [s] = s ′0 then s ′′0 := d else s ′′0 := s ′0
if [s] ∈ S ′

⋆ then S ′′
⋆ := (S ′′

⋆ \ {[s]}) ∪ {e} else S ′′
⋆ := S ′

⋆

return ⟨S ′′, L′, c ′,T ′′, s ′′0 ,S
′′
⋆ ⟩

Split [s] into d and e.

[s]
d e

s
c

CEGAR Flaws Refinement Example Heuristic Representation Summary

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine(⟨S ′, L′, c ′,T ′, s ′0,S
′
⋆⟩, ⟨s, c⟩)

⟨d , e⟩ := Split([s], s, c)
S ′′ := S ′ \ {[s]} ∪ {d , e}
T ′′ := RewireTransitions(T ′, [s], d , e)
if [s] = s ′0 then s ′′0 := d else s ′′0 := s ′0
if [s] ∈ S ′

⋆ then S ′′
⋆ := (S ′′

⋆ \ {[s]}) ∪ {e} else S ′′
⋆ := S ′

⋆

return ⟨S ′′, L′, c ′,T ′′, s ′′0 ,S
′′
⋆ ⟩

Update incident transitions of [s].

Check for each incoming and outgoing transition of [s]
(including self-loops) whether it needs to be rewired
from/to d , from/to e, or both.

Easy for SAS+ operators and Cartesian abstract states.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine(⟨S ′, L′, c ′,T ′, s ′0,S
′
⋆⟩, ⟨s, c⟩)

⟨d , e⟩ := Split([s], s, c)
S ′′ := S ′ \ {[s]} ∪ {d , e}
T ′′ := RewireTransitions(T ′, [s], d , e)
if [s] = s ′0 then s ′′0 := d else s ′′0 := s ′0
if [s] ∈ S ′

⋆ then S ′′
⋆ := (S ′′

⋆ \ {[s]}) ∪ {e} else S ′′
⋆ := S ′

⋆

return ⟨S ′′, L′, c ′,T ′′, s ′′0 ,S
′′
⋆ ⟩

Update abstract initial state and goal states.

The way we defined the flaws, e can never be the abstract initial
state and d never be an abstract goal state.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL

{L, I ,R} × {L, I ,R}
×{L,R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL

{L, I ,R} × {L, I ,R}
×{L,R}

Abstract plan ⟨⟩ ends in state LLL, which is not a goal.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL

{L, I ,R} × {L, I ,R}
×{L,R}

Abstract plan ⟨⟩ ends in state LLL, which is not a goal.
Refine {L, I ,R}×{L, I ,R}×{L,R} with split (LLL, {R}×{R}×{L,R}).
⇝ split on first or second variable;
⇝ {L, I} × {L, I ,R} × {L,R} and {R} × {L, I ,R} × {L,R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL

{L, I} × {L, I ,R}
×{L,R}

{R} × {L, I ,R}
×{L,R}

Abstract plan ⟨⟩ ends in state LLL, which is not a goal.
Refine {L, I ,R}×{L, I ,R}×{L,R} with split (LLL, {R}×{R}×{L,R}).
⇝ split on first or second variable;
⇝ {L, I} × {L, I ,R} × {L,R} and {R} × {L, I ,R} × {L,R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL

{L, I} × {L, I ,R}
×{L,R}

{R} × {L, I ,R}
×{L,R}

Abstract plan ⟨dropA,R⟩; first action inapplicable in LLL.
Refine {L, I} × {L, I ,R} × {L,R} with split (LLL, {I} × {L, I ,R} × {R}).
⇝ split on first or third variable;
⇝ {L, I} × {L, I ,R} × {L} and {L, I} × {L, I ,R} × {R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L, I} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{L, I} × {L, I ,R}
×{L}

Abstract plan ⟨dropA,R⟩; first action inapplicable in LLL.
Refine {L, I} × {L, I ,R} × {L,R} with split (LLL, {I} × {L, I ,R} × {R}).
⇝ split on first or third variable;
⇝ {L, I} × {L, I ,R} × {L} and {L, I} × {L, I ,R} × {R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L, I} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{L, I} × {L, I ,R}
×{L}

Abstract plan ⟨moveL,R , dropA,R⟩; second action inapplicable in LLR.
Refine {L, I} × {L, I ,R} × {R} with split (LLR, {I} × {L, I ,R} × {R}).
⇝ split on first variable;
⇝ {L} × {L, I ,R} × {R} and {I} × {L, I ,R} × {R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{L, I} × {L, I ,R}
×{L}

{I} × {L, I ,R}
×{R}

Abstract plan ⟨moveL,R , dropA,R⟩; second action inapplicable in LLR.
Refine {L, I} × {L, I ,R} × {R} with split (LLR, {I} × {L, I ,R} × {R}).
⇝ split on first variable;
⇝ {L} × {L, I ,R} × {R} and {I} × {L, I ,R} × {R}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{L, I} × {L, I ,R}
×{L}

{I} × {L, I ,R}
×{R}

Abstract plan ⟨moveL,R , dropA,R⟩; deviation flaw at first transition.
Refine {L, I} × {L, I ,R} × {L} with split (LLL, {I} × {L, I ,R} × {L}).
⇝ split on first variable;
⇝ {L} × {L, I ,R} × {L} and {I} × {L, I ,R} × {L}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Example: Two Packages, One Truck

LLR LLL

ILL

LIL

IIL IIR

RIR

IRR

RRR RRL

ILR
RLR RLL

RIL

LIR

LRR LRL
IRL

LLR LLL

LIL

LIR

ILR

ILL

IIL IIR

RLR RLL
RIL

RIR

LRR LRL

RRR RRL

IRR

IRL
{L} × {L, I ,R}

×{R}

{R} × {L, I ,R}
×{L,R}

{I} × {L, I ,R}
×{L}

{I} × {L, I ,R}
×{R}

{L} × {L, I ,R}
×{L}

Abstract plan ⟨moveL,R , dropA,R⟩; deviation flaw at first transition.
Refine {L, I} × {L, I ,R} × {L} with split (LLL, {I} × {L, I ,R} × {L}).
⇝ split on first variable;
⇝ {L} × {L, I ,R} × {L} and {I} × {L, I ,R} × {L}

CEGAR Flaws Refinement Example Heuristic Representation Summary

Heuristic Representation

CEGAR Flaws Refinement Example Heuristic Representation Summary

Representation

In every iteration, we split one abstract state based on one
variable.

Represent abstraction as binary tree of abstract states.

Root: Single state of trivial abstraction
Leaves: Abstract states of final abstraction

With each inner node, we store the variable on which the
state was split.

CEGAR Flaws Refinement Example Heuristic Representation Summary

Representation: Running Example

{L, I ,R} × {L, I ,R} × {L,R}
pA

{L, I} × {L, I ,R} × {L,R}
t

{L, I} × {L, I ,R} × {L}
pA

{L} × {L, I ,R} × {L}
heur. estimate: 3

{I} × {L, I ,R} × {L}
heur. estimate: 2

{L, I} × {L, I ,R} × {R}
pA

{L} × {L, I ,R} × {R}
heur. estimate: 4

{I} × {L, I ,R} × {R}
heur. estimate: 1

{R} × {L, I ,R} × {L,R}
heur. estimate: 0

CEGAR Flaws Refinement Example Heuristic Representation Summary

Summary

CEGAR Flaws Refinement Example Heuristic Representation Summary

Summary

Counterexample-guided abstraction refinement (CEGAR):

Iteratively improve a coarse abstraction:

Find an optimal abstract solution.
Try it in the concrete transition system.
If it fails, extract a flaw and refine the abstraction.

Flaws: unsatisfied precondition, unsatisfied goal, deviation.

Refinement: split abstract state based on flaw to avoid
repeating it.

Can be efficiently implemented for Cartesian abstractions.

Can stop at any time. The resulting heuristic is safe,
goal-aware, admissible and consistent.

Planning and Optimization
F1. Constraints: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

November 26, 2025

Constraint-based Heuristics Multiple Heuristics Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Constraint-based Heuristics Multiple Heuristics Summary

Constraint-based Heuristics

Constraint-based Heuristics Multiple Heuristics Summary

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

delete relaxation

abstraction

critical paths

landmarks

network flows

potential heuristic

Landmarks, network flows and potential heuristics are based on
constraints that can be specified for a planning task.

Constraint-based Heuristics Multiple Heuristics Summary

Constraints: Example
1 2 3 4 5 6

C

B

A

Images from wikimedia

FDR planning task ⟨V , I ,O, γ⟩ with
V = {robot-at, dishes-at} with

dom(robot-at) = {A1, . . . ,C3,B4,A5, . . . ,B6}
dom(dishes-at) = {Table,Robot,Dishwasher}

I = {robot-at 7→ C1, dishes-at 7→ Table}
operators

move-x-y to move from cell x to adjacent cell y
pickup dishes, and
load dishes into the dishwasher.

γ = (robot-at = B6) ∧ (dishes-at = Dishwasher)

Constraint-based Heuristics Multiple Heuristics Summary

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

a variable takes a certain value in at least one visited state.
(a fact landmark constraint)

at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics Multiple Heuristics Summary

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

C

B

A

robot-at = C1, dishes-at = Table (initial state)

robot-at = B6, dishes-at = Dishwasher (goal state)

robot-at = A1, robot-at = B3, robot-at = B4,
robot-at = B5, robot-at = A6, dishes-at = Robot

Constraint-based Heuristics Multiple Heuristics Summary

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

C

B

A

robot-at = C1, dishes-at = Table (initial state)

robot-at = B6, dishes-at = Dishwasher (goal state)

robot-at = A1, robot-at = B3, robot-at = B4,
robot-at = B5, robot-at = A6, dishes-at = Robot

Constraint-based Heuristics Multiple Heuristics Summary

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

C

B

A

robot-at = C1, dishes-at = Table (initial state)

robot-at = B6, dishes-at = Dishwasher (goal state)

robot-at = A1, robot-at = B3, robot-at = B4,
robot-at = B5, robot-at = A6, dishes-at = Robot

Constraint-based Heuristics Multiple Heuristics Summary

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

C

B

A

robot-at = C1, dishes-at = Table (initial state)

robot-at = B6, dishes-at = Dishwasher (goal state)

robot-at = A1, robot-at = B3, robot-at = B4,
robot-at = B5, robot-at = A6, dishes-at = Robot

Constraint-based Heuristics Multiple Heuristics Summary

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

a variable takes some value in at least one visited state.
(a fact landmark constraint)

an action must be applied.
(an action landmark constraint)

fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics Multiple Heuristics Summary

Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

C

B

A

pickup

load

move-B3-B4

move-B4-B5

Constraint-based Heuristics Multiple Heuristics Summary

Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

C

B

A

pickup

load

move-B3-B4

move-B4-B5

Constraint-based Heuristics Multiple Heuristics Summary

Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

C

B

A

pickup

load

move-B3-B4

move-B4-B5

Constraint-based Heuristics Multiple Heuristics Summary

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

a variable takes some value in at least one visited state.
(a fact landmark constraint)

an action must be applied.
(an action landmark constraint)

fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics Multiple Heuristics Summary

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

a variable takes some value in at least one visited state.
(a fact landmark constraint)

at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics Multiple Heuristics Summary

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6

C

B

A

{pickup}
{load}
{move-B3-B4}
{move-B4-B5}

{move-A6-B6,move-B5-B6}
{move-A3-B3,move-B2-B3,move-C3-B3}
{move-B1-A1,move-A2-A1}
. . .

Constraint-based Heuristics Multiple Heuristics Summary

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6

C

B

A

{pickup}
{load}
{move-B3-B4}
{move-B4-B5}

{move-A6-B6,move-B5-B6}

{move-A3-B3,move-B2-B3,move-C3-B3}
{move-B1-A1,move-A2-A1}
. . .

Constraint-based Heuristics Multiple Heuristics Summary

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6

C

B

A

{pickup}
{load}
{move-B3-B4}
{move-B4-B5}

{move-A6-B6,move-B5-B6}
{move-A3-B3,move-B2-B3,move-C3-B3}
{move-B1-A1,move-A2-A1}
. . .

Constraint-based Heuristics Multiple Heuristics Summary

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

a variable takes some value in at least one visited state.
(a fact landmark constraint)

at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics Multiple Heuristics Summary

Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6

C

B

A

Answer: as often as actions that leave this cell

If Counto denotes how often operator o is applied, we have:

Countmove-A1-B1 + Countmove-B2-B1 + Countmove-C1-B1 =

Countmove-B1-A1 + Countmove-B1-B2 + Countmove-B1-C1

Constraint-based Heuristics Multiple Heuristics Summary

Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6

C

B

A

Answer: as often as actions that leave this cell

If Counto denotes how often operator o is applied, we have:

Countmove-A1-B1 + Countmove-B2-B1 + Countmove-C1-B1 =

Countmove-B1-A1 + Countmove-B1-B2 + Countmove-B1-C1

Constraint-based Heuristics Multiple Heuristics Summary

Multiple Heuristics

Constraint-based Heuristics Multiple Heuristics Summary

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:

maximize

canoncial heuristic (for abstractions)

minimum hitting set (for landmarks)

cost partitioning

operator counting

Often computed as solution to a (integer) linear program.

Constraint-based Heuristics Multiple Heuristics Summary

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task ⟨V , I , {o1, o2, o3, o4}, γ⟩ with
V = {v1, v2, v3} with dom(v1) = {A,B} and
dom(v2) = dom(v3) = {A,B,C}, I = {v1 7→ A, v2 7→ A, v3 7→ A},

o1 = ⟨v1 = A, v1 := B, 1⟩
o2 = ⟨v2 = A ∧ v3 = A, v2 := B ∧ v3 := B, 1⟩
o3 = ⟨v2 = B, v2 := C, 1⟩
o4 = ⟨v3 = B, v3 := C, 1⟩

and γ = (v1 = B) ∧ (v2 = C) ∧ (v3 = C).

Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function hC?

Answer: Let hi := hvi . Then hC = max {h1 + h2, h1 + h3}.

Constraint-based Heuristics Multiple Heuristics Summary

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task ⟨V , I , {o1, o2, o3, o4}, γ⟩ with
V = {v1, v2, v3} with dom(v1) = {A,B} and
dom(v2) = dom(v3) = {A,B,C}, I = {v1 7→ A, v2 7→ A, v3 7→ A},

o1 = ⟨v1 = A, v1 := B, 1⟩
o2 = ⟨v2 = A ∧ v3 = A, v2 := B ∧ v3 := B, 1⟩
o3 = ⟨v2 = B, v2 := C, 1⟩
o4 = ⟨v3 = B, v3 := C, 1⟩

and γ = (v1 = B) ∧ (v2 = C) ∧ (v3 = C).

Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function hC?

Answer: Let hi := hvi . Then hC = max {h1 + h2, h1 + h3}.

Constraint-based Heuristics Multiple Heuristics Summary

Reminder: Orthogonality and Additivity

Why can we add h1 and h2 (h1 and h3) admissibly?

Theorem (Additivity for Orthogonal Abstractions)

Let hα1 , . . . , hαn be abstraction heuristics of the same transition
system such that αi and αj are orthogonal for all i ̸= j .

Then
∑n

i=1 h
αi is a safe, goal-aware, admissible and consistent

heuristic for Π.

The proof exploits that every concrete transition
induces state-changing transition in at most one abstraction.

Constraint-based Heuristics Multiple Heuristics Summary

Combining Heuristics (In)admissibly: Example

Let h = h1 + h2 + h3.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h3
2

A
1

B
0

C
o2 o4

o1, o3 o1, o3 o1, o3

⟨o2, o3, o4⟩ is a plan for s = ⟨B,A,A⟩ but h(s) = 4.

Constraint-based Heuristics Multiple Heuristics Summary

Combining Heuristics (In)admissibly: Example

Let h = h1 + h2 + h3.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h3
2

A
1

B
0

C
o2 o4

o1, o3 o1, o3 o1, o3

⟨o2, o3, o4⟩ is a plan for s = ⟨B,A,A⟩ but h(s) = 4.
Heuristics h2 and h3 both account for the single application of o2.

Constraint-based Heuristics Multiple Heuristics Summary

Prevent Inadmissibility

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of o2 in one heuristic by setting
its cost to 0 (e.g., cost3(o2) = 0).

Constraint-based Heuristics Multiple Heuristics Summary

Prevent Inadmissibility

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of o2 in one heuristic by setting
its cost to 0 (e.g., cost3(o2) = 0).

Constraint-based Heuristics Multiple Heuristics Summary

Combining Heuristics Admissibly: Example

Let h′ = h1 + h2 + h′3, where h′3 = hv3 assuming cost3(o2) = 0.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h′3

1

A
1

B
0

C
o2 o4

o1, o3

0-cost

o1, o3 o1, o3

⟨o2, o3, o4⟩ is an optimal plan for s = ⟨B,A,A⟩ and
h′(s) = 3 an admissible estimate.

Constraint-based Heuristics Multiple Heuristics Summary

Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are
distributed in a way that the sum of the individual costs is no
larger than the cost of the operator.

This can also be expressed as a constraint,
the cost partitioning constraint:

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

(more details later)

Constraint-based Heuristics Multiple Heuristics Summary

Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are
distributed in a way that the sum of the individual costs is no
larger than the cost of the operator.

This can also be expressed as a constraint,
the cost partitioning constraint:

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

(more details later)

Constraint-based Heuristics Multiple Heuristics Summary

Summary

Constraint-based Heuristics Multiple Heuristics Summary

Summary

Landmarks and network flows are constraints that describe
something that holds in every solution of the task.

Heuristics can be combined admissibly if the cost partitioning
constraint is satisfied.

Planning and Optimization
F2. Landmarks: RTG Landmarks

Malte Helmert and Gabriele Röger

Universität Basel

November 26, 2025

Landmarks Set Representation Landmarks from RTGs Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks

Basic Idea: Something that must happen in every solution

For example

some operator must be applied (action landmark)

some atomic proposition must hold (fact landmark)

some formula must be true (formula landmark)

→ Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks

Basic Idea: Something that must happen in every solution

For example

some operator must be applied (action landmark)

some atomic proposition must hold (fact landmark)

some formula must be true (formula landmark)

→ Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

Reminder: Terminology

Consider sequence of transitions s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn

such that s0 = s and sn = s ′.

s0, . . . , sn is called (state) path from s to s ′

ℓ1, . . . , ℓn is called (label) path from s to s ′

Landmarks Set Representation Landmarks from RTGs Summary

Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task
Π = ⟨V , I ,O, γ⟩.

A disjunctive action landmark for s is a set of operators L ⊆ O
such that every label path from s to a goal state contains an
operator from L.
The cost of landmark L is cost(L) = mino∈L cost(o).

If we talk about landmarks for the initial state, we omit “for I”.

Landmarks Set Representation Landmarks from RTGs Summary

Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task
Π = ⟨V , I ,O, γ⟩.

A formula landmark for s is a formula λ over V such that
every state path from s to a goal state contains a state s ′

with s ′ |= λ.

If λ is an atomic proposition then λ is a fact landmark.

If we talk about landmarks for the initial state, we omit “for I”.

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks: Example

Example

Consider a FDR planning task ⟨V , I ,O, γ⟩ with
V = {robot-at, dishes-at} with

dom(robot-at) = {A1, . . . ,C3,B4,A5, . . . ,B6}
dom(dishes-at) = {Table,Robot,Dishwasher}

I = {robot-at 7→ C1, dishes-at 7→ Table}
operators

move-x-y to move from cell x to adjacent cell y
pickup dishes, and
load dishes into the dishwasher.

γ = (robot-at = B6) ∧ (dishes-at = Dishwasher)

Landmarks Set Representation Landmarks from RTGs Summary

Fact and Formula Landmarks: Example

1 2 3 4 5 6

C

B

A

Images from wikimedia

Each fact in gray is a fact landmark:

robot-at = x for x ∈ {A1,A6,B3,B4,B5,B6,C1}
dishes-at = x for x ∈ {Dishwasher,Robot,Table}

Formula landmarks:

dishes-at = Robot ∧ robot-at = B4

robot-at = B1 ∨ robot-at = A2

Landmarks Set Representation Landmarks from RTGs Summary

Fact and Formula Landmarks: Example

1 2 3 4 5 6

C

B

A

Images from wikimedia

Each fact in gray is a fact landmark:

robot-at = x for x ∈ {A1,A6,B3,B4,B5,B6,C1}
dishes-at = x for x ∈ {Dishwasher,Robot,Table}

Formula landmarks:

dishes-at = Robot ∧ robot-at = B4

robot-at = B1 ∨ robot-at = A2

Landmarks Set Representation Landmarks from RTGs Summary

Disjunctive Action Landmarks: Example

1 2 3 4 5 6

C

B

A

Actions of same color form disjunctive action landmark:

{pickup}
{load}
{move-B3-B4}
{move-B4-B5}

{move-A6-B6,move-B5-B6}
{move-A3-B3,move-B2-B3,move-C3-B3}
{move-B1-A1,move-A2-A1}
. . .

Landmarks Set Representation Landmarks from RTGs Summary

Remarks

Not every landmark is informative. Some examples:

The set of all operators is a disjunctive action landmark
unless the initial state is already a goal state.
Every variable that is initially true is a fact landmark.
The goal formula is a formula landmark.

Every fact landmark v that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make v true.

Landmarks Set Representation Landmarks from RTGs Summary

Complexity: Disjunctive Action Landmarks

Theorem

Deciding whether a given operator set is a disjunctive action
landmark is as hard as the plan existence problem.

Proof.

Given a propositional planning task Π = ⟨V , I ,O, γ⟩,
create a new planning task Π′ with goal g /∈ V as
Π′ = ⟨V ∪ {g}, I ∪ {g 7→ F},O ∪ {oγ , o⊤}, g⟩, where

oγ = ⟨γ, g , 0⟩, and
o⊤ = ⟨⊤, g , 0⟩.

If γ = ⊤ then Π is trivially solvable. Otherwise Π is solvable
iff {o⊤} is not a disjunctive action landmark of Π′.

Landmarks Set Representation Landmarks from RTGs Summary

Complexity: Fact Landmarks

Theorem

Deciding whether a given atomic proposition is a fact landmark
is as hard as the plan existence problem.

Proof.

Given a propositional planning task Π = ⟨V , I ,O, γ⟩,
let p, g /∈ V be new atomic propositions and create a new planning
task Π′ = ⟨V ∪ {p, g}, I ∪ {p 7→ F, g 7→ F},O ∪ {o, o ′}, g⟩, where

o = ⟨γ, g , 0⟩, and
o ′ = ⟨⊤, g ∧ p, 0⟩.

Then p is a fact landmark of Π′ iff Π is not solvable.

Landmarks Set Representation Landmarks from RTGs Summary

Complexity: Discussion

Does this mean that the idea of exploiting landmarks is
fruitless?– No!

We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.

The way we generate the landmarks guarantees that they are
indeed landmarks.
Efficient landmark generation methods do not guarantee to
generate all possible landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

Complexity: Discussion

Does this mean that the idea of exploiting landmarks is
fruitless?– No!

We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.

The way we generate the landmarks guarantees that they are
indeed landmarks.
Efficient landmark generation methods do not guarantee to
generate all possible landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

Complexity: Discussion

Does this mean that the idea of exploiting landmarks is
fruitless?– No!

We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.

The way we generate the landmarks guarantees that they are
indeed landmarks.
Efficient landmark generation methods do not guarantee to
generate all possible landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)

LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What’s the Difference Anyway? (ICAPS 2009)

hm landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

Today we will discuss the special case of hm landmarks for m = 1,
restricted to STRIPS planning tasks.

Landmarks Set Representation Landmarks from RTGs Summary

Set Representation

Landmarks Set Representation Landmarks from RTGs Summary

Set Representation of STRIPS Planning Tasks

In this (and the following) sections, we only consider STRIPS. For
a more convenient notation, we will use a set representation of
STRIPS planning task. . .

Three differences:

Represent conjunctions of variables as sets of variables.

Use two sets to represent add and delete effects of operators
separately.

Represent states as sets of the true variables.

Landmarks Set Representation Landmarks from RTGs Summary

STRIPS Operators in Set Representation

Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vp, a1 ∧ · · · ∧ aq ∧ ¬d1 ∧ · · · ∧ ¬dr , c⟩

where vi , aj , dk are state variables and c is the cost.

The same operator o in set representation is
⟨pre(o), add(o), del(o), cost(o)⟩, where

pre(o) = {v1, . . . , vp} are the preconditions,
add(o) = {a1, . . . , aq} are the add effects,
del(o) = {d1, . . . , dr} are the delete effects, and
cost(o) = c is the operator cost.

Since STRIPS operators must be conflict-free,
add(o) ∩ del(o) = ∅

Landmarks Set Representation Landmarks from RTGs Summary

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
⟨V , I ,O,G ⟩, where

V is a finite set of state variables,

I ⊆ V is the initial state,

O is a finite set of STRIPS operators in set representation,

G ⊆ V is the goal.

The corresponding planning task in the previous notation is
⟨V , I ′,O ′, γ⟩, where

I ′(v) = T iff v ∈ I ,

O ′ = {⟨
∧

v∈pre(o)
v ,

∧
v∈add(o)

v ∧
∧

v∈del(o)
¬v , cost(o)⟩ | o ∈ O},

γ =
∧
v∈G

v .

Landmarks Set Representation Landmarks from RTGs Summary

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
⟨V , I ,O,G ⟩, where

V is a finite set of state variables,

I ⊆ V is the initial state,

O is a finite set of STRIPS operators in set representation,

G ⊆ V is the goal.

The corresponding planning task in the previous notation is
⟨V , I ′,O ′, γ⟩, where

I ′(v) = T iff v ∈ I ,

O ′ = {⟨
∧

v∈pre(o)
v ,

∧
v∈add(o)

v ∧
∧

v∈del(o)
¬v , cost(o)⟩ | o ∈ O},

γ =
∧
v∈G

v .

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks from RTGs

Landmarks Set Representation Landmarks from RTGs Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Landmarks Set Representation Landmarks from RTGs Summary

Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

Single solution: ⟨o1, o2⟩
All variables are fact landmarks.

Variable b is initially true but irrelevant for the plan.

Variable c gets true as “side effect” of o1 but it is not
necessary for the goal or to make an operator applicable.

Landmarks Set Representation Landmarks from RTGs Summary

Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let Π = ⟨V , I ,O, γ⟩ be a propositional or FDR planning task.

A formula λ over V is a causal formula landmark for I if γ |= λ or
if for all plans π = ⟨o1, . . . , on⟩ there is an oi with pre(oi) |= λ.

Landmarks Set Representation Landmarks from RTGs Summary

Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task
(in set representation).

A variable v ∈ V is a causal fact landmark for I

if v ∈ G or

if for all plans π = ⟨o1, . . . , on⟩ there is an oi with v ∈ pre(oi).

Landmarks Set Representation Landmarks from RTGs Summary

Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

Single solution: ⟨o1, o2⟩
All variables are fact landmarks for the initial state.

Only a, d , e and f are causal landmarks.

Landmarks Set Representation Landmarks from RTGs Summary

What We Are Doing Next

Causal landmarks are the desirable landmarks.

We can use a simplified version of RTGs for STRIPS to
compute causal landmarks for STRIPS planning tasks.

We will define landmarks of AND/OR graphs, . . .

and show how they can be computed.

Afterwards we establish that these are landmarks
of the planning task.

Landmarks Set Representation Landmarks from RTGs Summary

Simplified Relaxed Task Graph

Definition

For a STRIPS planning task Π = ⟨V , I ,O,G ⟩ (in set
representation), the simplified relaxed task graph sRTG(Π+) is the
AND/OR graph ⟨Nand ∪ Nor,A, type⟩ with

Nand = {no | o ∈ O} ∪ {vI , vG}
with type(n) = ∧ for all n ∈ Nand,

Nor = {nv | v ∈ V }
with type(n) = ∨ for all n ∈ Nor, and

A = {⟨na, no⟩ | o ∈ O, a ∈ add(o)} ∪
E = {⟨no , np⟩ | o ∈ O, p ∈ pre(o)} ∪
E = {⟨nv , nI ⟩ | v ∈ I} ∪
E = {⟨nG , nv ⟩ | v ∈ G}

Like RTG but without extra nodes to support arbitrary conditions.

Landmarks Set Representation Landmarks from RTGs Summary

Simplified RTG: Example

The simplified RTG for our example task is:

a b

c

d

e f

I

o1 o2

G

Landmarks Set Representation Landmarks from RTGs Summary

Justification

Definition (Justification)

Let G = ⟨N,A, type⟩ be an AND/OR graph.

A subgraph J = ⟨NJ ,AJ , typeJ⟩ with NJ ⊆ N and AJ ⊆ A and
typeJ = type|NJ justifies n⋆ ∈ N iff

n⋆ ∈ NJ ,

∀n ∈ NJ with type(n) = ∧:
∀⟨n, n′⟩ ∈ A : n′ ∈ NJ and ⟨n, n′⟩ ∈ AJ

∀n ∈ NJ with type(n) = ∨:
∃⟨n, n′⟩ ∈ A : n′ ∈ NJ and ⟨n, n′⟩ ∈ AJ , and

J is acyclic.

“Proves” that n⋆ is forced true.

Landmarks Set Representation Landmarks from RTGs Summary

Landmarks in AND/OR Graphs

Definition (Landmarks in AND/OR Graphs)

Let G = ⟨N,A, type⟩ be an AND/OR graph.

A node n ∈ N is a landmark for reaching n⋆ ∈ N
if n ∈ V J for all justifications J for n⋆.

But: exponential number of possible justifications

Landmarks Set Representation Landmarks from RTGs Summary

Characterizing Equation System

Theorem

Let G = ⟨N,A, type⟩ be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

⟨n,n′⟩∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

⟨n,n′⟩∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n′ ∈ LM(n) iff n′ is a landmark for reaching n in G .

Landmarks Set Representation Landmarks from RTGs Summary

Computation of Maximal Solution

Theorem

Let G = ⟨N,A, type⟩ be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

⟨n,n′⟩∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

⟨n,n′⟩∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

Computation: Initialize landmark sets as LM(n) = N and
Computation: apply equations as update rules until fixpoint.

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

Initialize with all nodes

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(I) = {I}

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I

b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(a) = {a} ∪ LM(I)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I

e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(b) = {b} ∪ LM(I)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(e) = {e} ∪ (LM(I) ∩ LM(o1))

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(o1) = {o1} ∪ LM(a)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(c) = {c} ∪ LM(o1)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(d) = {d} ∪ LM(o1)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(o2) = {o2} ∪ LM(d) ∪ LM(e)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(f) = {f } ∪ LM(o2)

Landmarks Set Representation Landmarks from RTGs Summary

Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

LM(G) = {G} ∪ LM(e) ∪ LM(f)

Landmarks Set Representation Landmarks from RTGs Summary

Relation to Planning Task Landmarks

Theorem

Let Π = ⟨V , I ,O, γ⟩ be a STRIPS planning task and
let L be the set of landmarks for reaching nG in sRTG(Π+).

The set {v ∈ V | nv ∈ L} is exactly the set of
causal fact landmarks in Π+.

For operators o ∈ O, if no ∈ L then {o} is a
disjunctive action landmark in Π+.
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)

Landmarks Set Representation Landmarks from RTGs Summary

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

LM(nG) = {a, d , e, f , I ,G , o1, o2}
a, d , e, and f are causal fact landmarks of Π+.

{o1} and {o2} are disjunctive action landmarks of Π+.

Landmarks Set Representation Landmarks from RTGs Summary

(Some) Landmarks of Π+ Are Landmarks of Π

Theorem

Let Π be a STRIPS planning task.

All fact landmarks of Π+ are fact landmarks of Π and all disjunctive
action landmarks of Π+ are disjunctive action landmarks of Π.

Proof.

Let L be a disjunctive action landmark of Π+ and π be a plan for
Π. Then π is also a plan for Π+ and, thus, π contains an operator
from L.

Let f be a fact landmark of Π+. If f is already true in the initial
state, then it is also a landmark of Π. Otherwise, every plan for Π+

contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of Π+. Therefore, also each plan of
Π contains such an operator, making f a fact landmark of Π.

Landmarks Set Representation Landmarks from RTGs Summary

Not All Landmarks of Π+ are Landmarks of Π

Example

Consider STRIPS task ⟨{a, b, c}, ∅, {o1, o2}, {c}⟩ with
o1 = ⟨{}, {a}, {}, 1⟩ and o2 = ⟨{a}, {c}, {a}, 1⟩.

a ∧ c is a formula landmark of Π+ but not of Π.

Landmarks Set Representation Landmarks from RTGs Summary

Summary

Landmarks Set Representation Landmarks from RTGs Summary

Summary

Fact landmark: atomic proposition that is true in each state
path to a goal

Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

We can efficiently compute all causal fact landmarks of a
delete-free STRIPS task from the (simplified) RTG.

Fact landmarks of the delete relaxed task are also
landmarks of the original task.

Planning and Optimization
F3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 1, 2025

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Why Landmark Orderings?

To compute a landmark heuristic estimate for state s
we need landmarks for s.

We could invest the time to compute them
for every state from scratch.

Alternatively, we can compute landmarks once and
propagate them over operator applications.

Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

(We will later see yet another approach, where heuristic
computation and landmark computation are integrated ⇝ LM-Cut.)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩, and
o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more operators).

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?
You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩, and
o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more operators).

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?
You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Terminology

Let π = ⟨o1, . . . , on⟩ be a sequence of operators applicable in
state I and let φ be a formula over the state variables.

φ is true at time i if I J⟨o1, . . . , oi ⟩K |= φ.

Also special case i = 0: φ is true at time 0 if I |= φ.

No formula is true at time i < 0.

φ is added at time i if it is true at time i but not at time i − 1.

φ is first added at time i if it is true at time i
but not at any time j < i .
We denote this i by first(φ, π).

last(φ, π) denotes the last time in which φ is added in π.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
“φ must be true some time strictly before ψ is first added.”

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
“φ must be true immediately before ψ is first added.”

a weak ordering between φ and ψ (written φ→w ψ)
if in each plan π it holds that first(φ, π) < last(ψ, π).
“φ must be true some time before ψ is last added.”

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
“φ must be true some time strictly before ψ is first added.”

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
“φ must be true immediately before ψ is first added.”

a weak ordering between φ and ψ (written φ→w ψ)
if in each plan π it holds that first(φ, π) < last(ψ, π).
“φ must be true some time before ψ is last added.”

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
“φ must be true some time strictly before ψ is first added.”

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
“φ must be true immediately before ψ is first added.”

a weak ordering between φ and ψ (written φ→w ψ)
if in each plan π it holds that first(φ, π) < last(ψ, π).
“φ must be true some time before ψ is last added.”

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).

We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

For fact landmarks v , v ′ with v ̸= v ′,
if nv ′ ∈ LM(nv) then v ′ → v .

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between φ and ψ
(written φ→gn ψ) if in each plan where ψ is first added at time i ,
φ is true at time i − 1.

We can again determine such orderings from the sRTG.

For an OR node nv , we define the set of first achievers as
FA(nv) = {no | no ∈ succ(nv) and nv ̸∈ LM(no)}.
Then v ′ →gn v if nv ′ ∈ succ(no) for all no ∈ FA(nv).

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Propagation

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more).

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?

Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more).

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?

Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more).

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Past and Future Landmarks

In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Past and Future Landmarks

In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Past and Future Landmarks

In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Past and Future Landmarks

In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Past and Future Landmarks

In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark State

Definition

Let LI be a set of formula landmarks for the initial state.

A landmark state L is ⊥ or a pair ⟨Lpast,Lfut⟩ such that
Lfut ∪ Lpast = LI .

L is valid in state s if

L = ⊥ and Π has no s-plan, or

L = ⟨Lpast,Lfut⟩ with Lpast ⊇ L∗
past and Lfut ⊆ L∗

fut.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark State

Definition

Let LI be a set of formula landmarks for the initial state.

A landmark state L is ⊥ or a pair ⟨Lpast,Lfut⟩ such that
Lfut ∪ Lpast = LI .

L is valid in state s if

L = ⊥ and Π has no s-plan, or

L = ⟨Lpast,Lfut⟩ with Lpast ⊇ L∗
past and Lfut ⊆ L∗

fut.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Context in Search: LM-BFS Algorithm

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Context: Exploit Information from Multiple Paths

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Merging Landmark States

Merging combines the information from two landmark states.

merge landmark states(L,L′)

if L = ⊥ or L′ = ⊥ then return ⊥;
⟨Lpast,Lfut⟩ := L
⟨L′

past,L′
fut⟩ := L′

return ⟨Lpast ∩ L′
past,Lfut ∪ L′

fut⟩

Theorem

If L and L′ are valid in a state s then also
merge landmark states(L,L′) is valid in s.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Context: Progression for a Transition

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Progressing Landmark States

If we expand a state s with transition ⟨s, o, s ′⟩,
we use progression to determine a landmark state for s ′

from the one we know for s.

We will only introduce progression methods that preserve the
validity of landmark states.

Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Progressing Landmark States

If we expand a state s with transition ⟨s, o, s ′⟩,
we use progression to determine a landmark state for s ′

from the one we know for s.

We will only introduce progression methods that preserve the
validity of landmark states.

Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Progressing Landmark States

If we expand a state s with transition ⟨s, o, s ′⟩,
we use progression to determine a landmark state for s ′

from the one we know for s.

We will only introduce progression methods that preserve the
validity of landmark states.

Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state ⟨Lpast,Lfut⟩ and transition
⟨s, o, s ′⟩ to landmark state ⟨Lpast ∪ Ladd,Lfut \ Ladd⟩, where
Ladd = {φ ∈ LI | s ̸|= φ and s ′ |= φ}.

“Extend the past with all landmarks added in s ′ and
remove them from the future.”

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Goal Progression

Definition (Goal Progression)

Let γ be the goal of the task.
Goal progression maps landmark state ⟨Lpast,Lfut⟩ and transition
⟨s, o, s ′⟩ to landmark state ⟨LI ,Lgoal⟩, where
Lgoal = {φ ∈ LI | γ |= φ and s ′ ̸|= φ}.

“All landmarks that must be true in the goal but are false in s ′

must be achieved in the future.”

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Weak Ordering Progression

φ→w ψ: “φ must be true some time before ψ is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state ⟨Lpast,Lfut⟩
and transition ⟨s, o, s ′⟩ to landmark state
⟨LI , {ψ | ∃φ→w ψ : φ ̸∈ Lpast}⟩.

“Landmark ψ must be added in the future because we haven’t
done something that must be done before ψ is last added.”

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Greedy-necessary Ordering Progression

φ→gn ψ: “φ must be true immediately before ψ is first added.”

Definition (Greedy-necessary Ordering Progression)

The greedy necessary ordering progression maps landmark state
⟨Lpast,Lfut⟩ and transition ⟨s, o, s ′⟩ to landmark state

⊥ if there is a φ→gn ψ ∈ OI with ψ ̸∈ Lpast, s ̸|= φ and
s ′ |= ψ, and

⟨LI , {φ | s ′ ̸|= φ and ∃φ→gn ψ ∈ OI : ψ ̸∈ Lpast, s
′ ̸|= ψ}⟩

otherwise.

“Landmark ψ has not been true, yet, and φ must be true
immediately before it becomes true. Since φ is currently false,
we must make it true in the future (before making ψ true).”

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Natural Ordering Progression

φ→ ψ: φ must be true some time strictly before ψ is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state ⟨Lpast,Lfut⟩
and transition ⟨s, o, s ′⟩ to landmark state

⊥ if there is a φ→ ψ ∈ OI with φ ̸∈ Lpast and s ′ |= ψ, and

⟨LI , ∅⟩ otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark-count Heuristic

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and L = ⟨Lpast,Lfut⟩ be a
valid landmark state for s.

The LM-count heuristic for s and L is

hLM-count(s,L) =

{
∞ if L = ⊥,
|Lfut| otherwise

In the original work, Lfut was determined without considering
information from multiple paths and could not detect dead-ends.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic is Path-dependent

LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

Search algorithms need estimates for states.

⇝ we use estimate from the current landmark state.

⇝ heuristic estimate for a state is not well-defined.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task Π = ⟨{a, b}, I , {o}, {a, b}⟩ with
I = ∅, o = ⟨∅, {a, b}, ∅, 1⟩. Let L = {a, b} and O = ∅.

Landmark state ⟨∅,L⟩ for the initial state is valid and the estimate
is hLM-count(I , ⟨∅, {a, b}⟩) = 2
while h∗(I) = 1.

⇝ hLM-count is inadmissible.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic: Comments

LM-Count alone is not a particularily informative heuristic.

On the positive side, it complements hFF very well.

For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal hLM-count

estimate.

The LM-sum heuristic is a cost-aware variant of the heuristic
that sums up the costs of the cheapest achiever (= operator
that adds the fact landmark) of each landmark.

There is an admissible variant of the heuristic based on
operator cost partitioning.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Summary

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Summary

We can propagate landmark sets over action applications.

Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

We can combine the landmark information from several paths
to the same state.

The LM-count heuristic counts how many landmarks still need
to be satisfied.

The LM-count heuristic is inadmissible (but there is an
admissible variant).

Planning and Optimization
F4. Landmarks: Minimum Hitting Set Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 1, 2025

Minimum Hitting Set Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

The remaining landmark topics focus on
disjunctive action landmarks.

Minimum Hitting Set Heuristic Summary

Minimum Hitting Set Heuristic

Minimum Hitting Set Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Minimum Hitting Set Heuristic Summary

Exploiting Disjunctive Action Landmarks

The cost cost(L) of a disjunctive action landmark L is an
admissible heuristic, but it is usually not very informative.

Landmark heuristics typically aim to combine multiple
disjunctive action landmarks.

How can we exploit a given set L of disjunctive action landmarks?

Sum of costs
∑

L∈L cost(L)?
⇝ not admissible!

Maximize costs maxL∈L cost(L)?
⇝ usually very weak heuristic

better: Hitting sets

Minimum Hitting Set Heuristic Summary

Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {F1, . . . ,Fn} ⊆ 2X be a family of subsets of
X and c : X → R+

0 be a cost function for X .

A hitting set is a subset H ⊆ X that “hits” all subsets in F , i.e.,
H ∩ F ̸= ∅ for all F ∈ F . The cost of H is

∑
x∈H c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)

Minimum Hitting Set Heuristic Summary

Example: Hitting Sets

Example

X = {o1, o2, o3, o4}

F = {{o4}, {o1, o2}, {o1, o3}, {o2, o3}}

c(o1) = 3, c(o2) = 4, c(o3) = 5, c(o4) = 0

Specify a minimum hitting set.

Solution: {o1, o2, o4} with cost 3 + 4 + 0 = 7

Minimum Hitting Set Heuristic Summary

Example: Hitting Sets

Example

X = {o1, o2, o3, o4}

F = {{o4}, {o1, o2}, {o1, o3}, {o2, o3}}

c(o1) = 3, c(o2) = 4, c(o3) = 5, c(o4) = 0

Specify a minimum hitting set.

Solution: {o1, o2, o4} with cost 3 + 4 + 0 = 7

Minimum Hitting Set Heuristic Summary

Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
Idea: instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let L be a set of disjunctive action landmarks. The hitting set
heuristic hMHS(L) is defined as the cost of a minimum hitting set
for L with c(o) = cost(o).

Proposition (Hitting Set Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s.
Then hMHS(L) is an admissible estimate for s.

Minimum Hitting Set Heuristic Summary

Hitting Set Heuristic: Discussion

The hitting set heuristic is the best possible heuristic
that only uses the given information. . .

. . . but is NP-hard to compute.

⇝ Use approximations that can be efficiently computed.
⇒ LP-relaxation, cost partitioning (both discussed later)

Minimum Hitting Set Heuristic Summary

Summary

Minimum Hitting Set Heuristic Summary

Summary

Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks.

The computation of a minimal hitting set is NP-hard.

Planning and Optimization
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 3, 2025

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Roadmap for this Chapter

We first introduce a new normal form for delete-free STRIPS
tasks that simplifies later definitions.

We then present a method that computes disjunctive action
landmarks for such tasks.

We conclude with the LM-cut heuristic
that builds on this method.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

i-g Form

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks
in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task ⟨V , I ,O, γ⟩ is in i-g form if

V contains atoms i and g

Initially exactly i is true: I (v) = T iff v = i

g is the only goal atom: γ = {g}
Every action has at least one precondition.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Transformation to i-g Form

Every delete-free STRIPS task Π = ⟨V , I ,O, γ⟩ can easily be
transformed into an analogous task in i-g form.

If i or g are in V already, rename them everywhere.

Add i and g to V .

Add an operator ⟨{i}, {v ∈ V | I (v) = T}, {}, 0⟩.
Add an operator ⟨γ, {g}, {}, 0⟩.
Replace all operator preconditions ⊤ with i .

Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Transformation to i-g Form

Every delete-free STRIPS task Π = ⟨V , I ,O, γ⟩ can easily be
transformed into an analogous task in i-g form.

If i or g are in V already, rename them everywhere.

Add i and g to V .

Add an operator ⟨{i}, {v ∈ V | I (v) = T}, {}, 0⟩.
Add an operator ⟨γ, {g}, {}, 0⟩.
Replace all operator preconditions ⊤ with i .

Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning ⟨V , I ,O, γ⟩ with
V = {i , a, b, c, d , g}, I = {i 7→ T} ∪ {v 7→ F | v ∈ V \ {i}}, γ = g
and operators

oblue = ⟨{i}, {a, b}, {}, 4⟩,
ogreen = ⟨{i}, {a, c}, {}, 5⟩,
oblack = ⟨{i}, {b, c}, {}, 3⟩,
ored = ⟨{b, c}, {d}, {}, 2⟩, and
oorange = ⟨{a, d}, {g}, {}, 0⟩.

optimal solution?

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning ⟨V , I ,O, γ⟩ with
V = {i , a, b, c, d , g}, I = {i 7→ T} ∪ {v 7→ F | v ∈ V \ {i}}, γ = g
and operators

oblue = ⟨{i}, {a, b}, {}, 4⟩,
ogreen = ⟨{i}, {a, c}, {}, 5⟩,
oblack = ⟨{i}, {b, c}, {}, 3⟩,
ored = ⟨{b, c}, {d}, {}, 2⟩, and
oorange = ⟨{a, d}, {g}, {}, 0⟩.

optimal solution to reach g from i :

plan: ⟨oblue, oblack, ored, oorange⟩
cost: 4 + 3 + 2 + 0 = 9 (= h+(I) because plan is optimal)

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Cut Landmarks

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) P : O → V for a
delete-free STRIPS task Π = ⟨V , I ,O, γ⟩ in i-g form
maps each operator to one of its preconditions
(i.e. P(o) ∈ pre(o) for all o ∈ O).

Definition (Justification Graphs)

Let P be a pcf for ⟨V , I ,O, γ⟩ in i-g form. The justification graph
for P is the directed, edge-labeled graph J = ⟨V ,E ⟩, where

the vertices are the variables from V , and

E contains an edge P(o)
o−→ a for each o ∈ O, a ∈ add(o).

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Justification Graph

Example (Precondition Choice Function)

P(oblue) = P(ogreen) = P(oblack) = i , P(ored) = b, P(oorange) = a

P ′(oblue) = P ′(ogreen) = P ′(oblack) = i , P ′(ored) = c, P ′(oorange) = d

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Justification Graph

Example (Precondition Choice Function)

P(oblue) = P(ogreen) = P(oblack) = i , P(ored) = b, P(oorange) = a

P ′(oblue) = P ′(ogreen) = P ′(oblack) = i , P ′(ored) = c, P ′(oorange) = d

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that
all paths from i to g contain an edge from C .

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that
all paths from i to g contain an edge from C .

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for ⟨V , I ,O, γ⟩ (in i-g form) and
C be a cut in the justification graph for P.

The set of edge labels from C (formally {o | ⟨v , o, v ′⟩ ∈ C})
is a disjunctive action landmark for I .

Proof idea:

The justification graph corresponds to a simpler problem
where some preconditions (those not picked by the pcf) are
ignored.

Cuts are landmarks for this simplified problem.

Hence they are also landmarks for the original problem.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Cuts in Justification Graphs

Example (Landmarks)

L1 = {oorange} (cost = 0)

L3 = {ored} (cost = 2)

L2 = {ogreen, oblack} (cost = 3)

L4 = {ogreen, oblue} (cost = 4)

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Cuts in Justification Graphs

Example (Landmarks)

L1 = {oorange} (cost = 0)

L3 = {ored} (cost = 2)

L2 = {ogreen, oblack} (cost = 3)

L4 = {ogreen, oblue} (cost = 4)

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Cuts in Justification Graphs

Example (Landmarks)

L1 = {oorange} (cost = 0)

L3 = {ored} (cost = 2)

L2 = {ogreen, oblack} (cost = 3)

L4 = {ogreen, oblue} (cost = 4)

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Cuts in Justification Graphs

Example (Landmarks)

L1 = {oorange} (cost = 0)

L3 = {ored} (cost = 2)

L2 = {ogreen, oblack} (cost = 3)

L4 = {ogreen, oblue} (cost = 4)

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state I . Then hMHS(L) = h+(I).

⇝ Hitting set heuristic for L is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for L and plans,
i.e., each hitting set for L corresponds to a plan,
and vice versa.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state I . Then hMHS(L) = h+(I).

⇝ Hitting set heuristic for L is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for L and plans,
i.e., each hitting set for L corresponds to a plan,
and vice versa.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state I . Then hMHS(L) = h+(I).

⇝ Hitting set heuristic for L is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for L and plans,
i.e., each hitting set for L corresponds to a plan,
and vice versa.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

The LM-Cut Heuristic

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

LM-Cut Heuristic: Motivation

In general, there are exponentially many pcfs, hence
computing all relevant landmarks is not tractable.

The LM-cut heuristic is a method that chooses pcfs
and computes cuts in a goal-oriented way.

As a side effect, it computes a

a cost partitioning over multiple instances of hmax that is also
a saturated cost partitioning over disjunctive action landmarks.
⇝ next week

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

LM-Cut Heuristic

hLM-cut: Helmert & Domshlak (2009)

Initialize hLM-cut(I) := 0. Then iterate:

1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph G for the P that chooses
preconditions with maximal hmax value

3 Determine the goal zone Vg of G that consists of all nodes
that have a zero-cost path to g .

4 Compute the cut L that contains the labels of all edges
⟨v , o, v ′⟩ such that v ̸∈ Vg , v

′ ∈ Vg and v can be reached
from i without traversing a node in Vg .
It is guaranteed that cost(L) > 0.

5 Increase hLM-cut(I) by cost(L).

6 Decrease cost(o) by cost(L) for all o ∈ L.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i

0

a

400

b

300

c

3110

d

533110

g

544110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

{ored}
{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 0

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables

1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1

{ored}
{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 0

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph

3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b

{ored}
{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 0

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph

3 Determine goal zone

4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b

{ored}
{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 0

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone

4 Compute cut

5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 0

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut

5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d
5

33110

g
5

44110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

5

3

3110

g

5

4

4110

1 Compute hmax values of the variables

1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph

3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph

3 Determine goal zone

4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b

{ogreen, oblue}
{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone

4 Compute cut

5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

{ogreen, oblack}

hLM-cut(I) 2

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut

5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

{ogreen, oblack}

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a
4

00

b
3

00

c
3

110

d

53

3

110

g

54

4

110

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

{ogreen, oblack}

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

4

0

0

b

3

0

0

c

3

1

10

d

533

1

10

g

544

1

10

1 Compute hmax values of the variables

1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3

{ogreen, oblack}

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph

3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c

{ogreen, oblack}

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph

3 Determine goal zone

4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c

{ogreen, oblack}

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone

4 Compute cut

5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I) 6

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut

5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 1⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I) 7

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

31

1

0

d

5331

1

0

g

5441

1

0

1 Compute hmax values of the variables1 Compute hmax values of the variables. Stop if hmax(g) = 0.2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)

6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 0⟩
oblack = ⟨{i}, {b, c}, {}, 2⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I) 7

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Example: Computation of LM-Cut

i
0

a

40

0

b

30

0

c

311

0

d

53311

0

g

54411

0

1 Compute hmax values of the variables

1 Compute hmax values of the variables. Stop if hmax(g) = 0.

2 Compute justification graph3 Determine goal zone4 Compute cut5 Increase hLM-cut(I) by cost(L)6 Decrease cost(o) by cost(L) for all o ∈ L

oblue = ⟨{i}, {a, b}, {}, 0⟩
ogreen = ⟨{i}, {a, c}, {}, 0⟩
oblack = ⟨{i}, {b, c}, {}, 2⟩
ored = ⟨{b, c}, {d}, {}, 0⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I)

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Properties of LM-Cut Heuristic

Theorem

Let ⟨V , I ,O, γ⟩ be a delete-free STRIPS task in i-g normal form.
The LM-cut heuristic is admissible: hLM-cut(I) ≤ h∗(I).

Proof omitted.

If Π is not delete-free, we can compute hLM-cut on Π+.
Then hLM-cut is bounded by h+.

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Summary

i-g Form Cut Landmarks The LM-Cut Heuristic Summary

Summary

Cuts in justification graphs are a general method to find
disjunctive action landmarks.

The minimum hitting set over all cut landmarks is a
perfect heuristic for delete-free planning tasks.

The LM-cut heuristic is an admissible heuristic
based on these ideas.

Planning and Optimization
F6. Linear & Integer Programming

Malte Helmert and Gabriele Röger

Universität Basel

December 3, 2025

Integer Programs Linear Programs Normal Forms and Duality Summary

Content of the Course (Timeline)

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Integer Programs Linear Programs Normal Forms and Duality Summary

Content of the Course (Relevance)

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Integer Programs Linear Programs Normal Forms and Duality Summary

Not Content of this Course (Relevance)

Computer Science

Artificial
Intelligence

Operations
Research

Machine
Learning

Robotics

. . .

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Programs

Integer Programs Linear Programs Normal Forms and Duality Summary

Motivation

This goes on beyond Computer Science

Active research on IPs and LPs in

Operation Research
Mathematics

Many application areas, for instance:

Manufacturing
Agriculture
Mining
Logistics
Planning

As an application, we treat LPs / IPs as a blackbox

We just look at the fundamentals

However, even on the application side there is much more
(e.g., modelling tricks or solver parameters to speed up
computation)

Integer Programs Linear Programs Normal Forms and Duality Summary

Motivation

Example (Optimization Problem)

Consider the following scenario:

A factory produces two products A and B

Selling one (unit of) B yields 5 times the profit of selling one A

A client places the unusual order to “buy anything that can
be produced on that day as long as two plus twice the units of
A is not smaller than the number of B”

More than 12 products in total cannot be produced per day

There is only material for 6 units of A
(there is enough material to produce any amount of B)

How many units of A and B does the client receive
if the factory owner aims to maximize her profit?

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

Example (Optimization Problem)

“one B yields 5 times the profit of one A”

“the factory owner aims to maximize her profit”

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

Example (Optimization Problem)

“one B yields 5 times the profit of one A”

“the factory owner aims to maximize her profit”

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

Example (Optimization Problem)

“two plus twice the units of A may not be

smaller than the number of B”

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

Example (Optimization Problem)

“More than 12 products in total cannot be produced per day”

“the factory owner aims to maximize her profit”

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

Example (Optimization Problem)

“There is only material for 6 units of A”

“the factory owner aims to maximize her profit”

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program: Example

Let XA and XB be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

⇝ unique optimal solution:
produce 4 A (XA = 4) and 8 B (XB = 8) for a profit of 44

Integer Programs Linear Programs Normal Forms and Duality Summary

Same Program as Input for the Solver

File ip.lp

Maximize

obj: X_A + 5 X_B

Subject To

c1: -2 X_A + X_B <= 2

c2: X_A + X_B <= 12

Bounds

0 <= X_A <= 6

0 <= X_B

General

X_A X_B

End

→ Demo (Gurobi; same format also works with CPLEX and others)

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

2
+
2X

A
≥
XB

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

X
A
≤

6

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

X
A
≤

6

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

X
A
≤

6

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8
X

A
≥

0

XB ≥ 0

X
A
≤

6

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Integer Programs

Integer Program

An integer program (IP) consists of:

a finite set of integer-valued variables V

a finite set of linear inequalities (constraints) over V

an objective function, which is a linear combination of V

which should be minimized or maximized.

Integer Programs Linear Programs Normal Forms and Duality Summary

Terminology

An integer assignment to all variables in V is feasible if it
satisfies the constraints.

An integer program is feasible if there is such a feasible
assignment. Otherwise it is infeasible.

A feasible maximum (resp. minimum) problem is
unbounded if the objective function can assume arbitrarily
large positive (resp. negative) values at feasible assignments.
Otherwise it is bounded.

The objective value of a bounded feasible maximum
(resp. minimum) problem is the maximum (resp. minimum)
value of the objective function with a feasible assignment.

Integer Programs Linear Programs Normal Forms and Duality Summary

Another Example

Example

minimize 3Xo1 + 4Xo2 + 5Xo3 subject to

Xo4 ≥ 1

Xo1 + Xo2 ≥ 1

Xo1 + Xo3 ≥ 1

Xo2 + Xo3 ≥ 1

Xo1 ≥ 0, Xo2 ≥ 0, Xo3 ≥ 0, Xo4 ≥ 0

What example from a recent chapter does this IP encode?

⇝ the minimum hitting set from Chapter F4

Integer Programs Linear Programs Normal Forms and Duality Summary

Another Example

Example

minimize 3Xo1 + 4Xo2 + 5Xo3 subject to

Xo4 ≥ 1

Xo1 + Xo2 ≥ 1

Xo1 + Xo3 ≥ 1

Xo2 + Xo3 ≥ 1

Xo1 ≥ 0, Xo2 ≥ 0, Xo3 ≥ 0, Xo4 ≥ 0

What example from a recent chapter does this IP encode?

⇝ the minimum hitting set from Chapter F4

Integer Programs Linear Programs Normal Forms and Duality Summary

Complexity of Solving Integer Programs

As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

Reminder: MHS is a “classical” NP-complete problem

Good news: Solving an IP is not harder

⇝ Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be
integer-valued leads to a simpler problem

Integer Programs Linear Programs Normal Forms and Duality Summary

Complexity of Solving Integer Programs

As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

Reminder: MHS is a “classical” NP-complete problem

Good news: Solving an IP is not harder

⇝ Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be
integer-valued leads to a simpler problem

Integer Programs Linear Programs Normal Forms and Duality Summary

Linear Programs

Integer Programs Linear Programs Normal Forms and Duality Summary

Linear Programs

Linear Program

A linear program (LP) consists of:

a finite set of real-valued variables V

a finite set of linear inequalities (constraints) over V

an objective function, which is a linear combination of V

which should be minimized or maximized.

We use the introduced IP terminology also for LPs.

Mixed IPs (MIPs) are something between IPs and LPs:
some variables are integer-valued, some are real-valued.

Integer Programs Linear Programs Normal Forms and Duality Summary

Linear Program: Example

Let XA and XB be the (real-valued) number of produced A and B

Example (Optimization Problem as Linear Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

⇝ unique optimal solution:
XA = 31

3 and XB = 82
3 with objective value 462

3

Integer Programs Linear Programs Normal Forms and Duality Summary

Linear Program: Example

Let XA and XB be the (real-valued) number of produced A and B

Example (Optimization Problem as Linear Program)

maximize XA + 5XB subject to

2 + 2XA ≥ XB

XA + XB ≤ 12

XA ≤ 6

XA ≥ 0, XB ≥ 0

⇝ unique optimal solution:
XA = 31

3 and XB = 82
3 with objective value 462

3

Integer Programs Linear Programs Normal Forms and Duality Summary

Same Program as Input for the Solver

File lp.lp

Maximize

obj: X_A + 5 X_B

Subject To

c1: -2 X_A + X_B <= 2

c2: X_A + X_B <= 12

Bounds

0 <= X_A <= 6

0 <= X_B

End

→ Demo (Gurobi; same format also works with CPLEX and others)

Integer Programs Linear Programs Normal Forms and Duality Summary

Linear Program Example: Visualization

0 1 2 3 4 5 6

0

2

4

6

8

X
A
≥

0

XB ≥ 0

X
A
≤

6

2
+
2X

A
≥
XB

X
A +

X
B ≤

12

XA

X
B

Integer Programs Linear Programs Normal Forms and Duality Summary

Solving Linear Programs

Observation:
Here, LP solution is an upper bound for the corresponding IP.

Complexity:
LP solving is a polynomial-time problem.

Common idea:
Approximate IP solution with corresponding LP
(LP relaxation).

Integer Programs Linear Programs Normal Forms and Duality Summary

Solving Linear Programs

Observation:
Here, LP solution is an upper bound for the corresponding IP.

Complexity:
LP solving is a polynomial-time problem.

Common idea:
Approximate IP solution with corresponding LP
(LP relaxation).

Integer Programs Linear Programs Normal Forms and Duality Summary

Solving Linear Programs

Observation:
Here, LP solution is an upper bound for the corresponding IP.

Complexity:
LP solving is a polynomial-time problem.

Common idea:
Approximate IP solution with corresponding LP
(LP relaxation).

Integer Programs Linear Programs Normal Forms and Duality Summary

LP Relaxation

Theorem (LP Relaxation)

The LP relaxation of an integer program is the problem that arises
by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective
value of the LP relaxation is an upper (resp. lower) bound on the
value of the IP.

Proof idea.

Every feasible assignment for the IP is also feasible for the LP.

Integer Programs Linear Programs Normal Forms and Duality Summary

LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)

minimize 3Xo1 + 4Xo2 + 5Xo3 subject to

Xo4 ≥ 1

Xo1 + Xo2 ≥ 1

Xo1 + Xo3 ≥ 1

Xo2 + Xo3 ≥ 1

Xo1 ≥ 0, Xo2 ≥ 0, Xo3 ≥ 0, Xo4 ≥ 0

⇝ optimal solution of LP relaxation:
Xo4 = 1 and Xo1 = Xo2 = Xo3 = 0.5 with objective value 6

⇝ LP relaxation of MHS heuristic is admissible
and can be computed in polynomial time

Integer Programs Linear Programs Normal Forms and Duality Summary

Normal Forms and Duality

Integer Programs Linear Programs Normal Forms and Duality Summary

Standard Maximum Problem

Normal form for maximization problems:

Definition (Standard Maximum Problem)

Find values for x1, . . . , xn, to maximize

c1x1 + c2x2 + · · ·+ cnxn

subject to the constraints

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

Integer Programs Linear Programs Normal Forms and Duality Summary

Standard Maximum Problem: Matrix and Vectors

A standard maximum problem is often given by

an m-vector b = ⟨b1, . . . , bm⟩T (bounds),

an n-vector c = ⟨c1, . . . , cn⟩T (objective coefficients),

and an m × n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 (coefficients)

Then the problem is to find a vector x = ⟨x1, . . . , xn⟩T to
maximize cTx subject to Ax ≤ b and x ≥ 0.

Integer Programs Linear Programs Normal Forms and Duality Summary

Standard Minimum Problem

there is also a standard minimum problem

it’s form is identical to the standard maximum problem,
except that

the aim is to minimize the objective function
subject to Ax ≥ b

All linear programs can efficiently be converted into a
standard maximum/minimum problem.

Integer Programs Linear Programs Normal Forms and Duality Summary

Some LP Theory: Duality

Every LP has an alternative view (its dual LP).

Primal Dual

maximization (or minimization) minimization (or maximization)
objective coefficients bounds

bounds objective coefficients
bounded variable ≥-constraint
≤-constraint bounded variable
free variable =-constraint
=-constraint free variable

dual of dual: original LP

Integer Programs Linear Programs Normal Forms and Duality Summary

Dual Problem

Definition (Dual Problem)

The dual of the standard maximum problem

maximize cTx subject to Ax ≤ b and x ≥ 0

is the standard minimum problem

minimize bTy subject to ATy ≥ c and y ≥ 0

Integer Programs Linear Programs Normal Forms and Duality Summary

Dual Problem: Example

Example (Dual of the Optimization Problem)

maximize XA + 5XB subject to

[Y1]

−2XA + XB ≤ 2

[Y2]

XA + XB ≤ 12

[Y3]

XA ≤ 6

XA ≥ 0, XB ≥ 0

Integer Programs Linear Programs Normal Forms and Duality Summary

Dual Problem: Example

Example (Dual of the Optimization Problem)

maximize XA + 5XB subject to

[Y1] −2XA + XB ≤ 2

[Y2] XA + XB ≤ 12

[Y3] XA ≤ 6

XA ≥ 0, XB ≥ 0

Integer Programs Linear Programs Normal Forms and Duality Summary

Dual Problem: Example

Example (Dual of the Optimization Problem)

minimize 2Y1 + 12Y2 + 6Y3 subject to

[XA] −2Y1 + Y2 + Y3 ≥ 1

[XB] Y1 + Y2 ≥ 5

Y1 ≥ 0, Y2 ≥ 0, Y3 ≥ 0

Integer Programs Linear Programs Normal Forms and Duality Summary

Duality Theorem

Theorem (Duality Theorem)

If a standard linear program is bounded feasible, then so is its dual,
and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.

Integer Programs Linear Programs Normal Forms and Duality Summary

Summary

Integer Programs Linear Programs Normal Forms and Duality Summary

Summary

Linear (and integer) programs consist of an objective function
that should be maximized or minimized subject to a set of
given linear constraints.

Finding solutions for integer programs is NP-complete.

LP solving is a polynomial time problem.

The dual of a maximization LP is a minimization LP
and vice versa.

The dual of a bounded feasible LP has the
same objective value.

Integer Programs Linear Programs Normal Forms and Duality Summary

Further Reading

The slides in this chapter are based on the following
excellent tutorial on LP solving:

Thomas S. Ferguson.
Linear Programming – A Concise Introduction.
UCLA, unpublished document available online.

Planning and Optimization
F7. Cost Partitioning

Malte Helmert and Gabriele Röger

Universität Basel

December 8, 2025

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Introduction

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Exploiting Additivity

Additivity allows to add up heuristic estimates admissibly.
This gives better heuristic estimates than the maximum.

For example, the canonical heuristic for PDBs sums up where
addition is admissible (by an additivity criterion) and takes the
maximum otherwise.

Cost partitioning provides a more general additivity criterion,
based on an adaption of the operator costs.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Combining Heuristics (In)admissibly: Example

Let h = h1 + h2 + h3.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h3
2

A
1

B
0

C
o2 o4

o1, o3 o1, o3 o1, o3

⟨o2, o3, o4⟩ is a plan for s = ⟨B,A,A⟩ but h(s) = 4.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Combining Heuristics (In)admissibly: Example

Let h = h1 + h2 + h3.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h3
2

A
1

B
0

C
o2 o4

o1, o3 o1, o3 o1, o3

⟨o2, o3, o4⟩ is a plan for s = ⟨B,A,A⟩ but h(s) = 4.
Heuristics h2 and h3 both account for the single application of o2.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Combining Heuristics Admissibly: Example

Let h′ = h1 + h2 + h′3, where h′3 = hv3 assuming cost3(o2) = 0.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2 o3

o1, o4 o1, o4 o1, o4

h′3

1

A
1

B
0

C
o2 o4

o1, o3

0-cost

o1, o3 o1, o3

⟨o2, o3, o4⟩ is an optimal plan for s = ⟨B,A,A⟩ and
h′(s) = 3 an admissible estimate.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Combining Heuristics Admissibly: Example

Let h′ = h′1 + h′2 + h′3, where h′i = hvi assuming
cost1(o2) = 0, cost2(o2) = cost3(o2) = 0.5.

h1
1

A
0

B
o1

o2, o3, o4 o2, o3, o4

h2
2

A
1

B
0

C
o2

cost 0.5

o3

o1, o4 o1, o4 o1, o4

h′3

1

A
1

B
0

C
o2 o4

o1, o3

cost 0.5

o1, o3 o1, o3

⟨o2, o3, o4⟩ is an optimal plan for s = ⟨B,A,A⟩ and
h′(s) = 0 + 1.5 + 1.5 = 3 an admissible estimate.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Solution: Cost Partitioning

The reason that h2 and h3 are not additive is because
the cost of o2 is considered in both.

Solution 1: We can ignore the cost of o2 in all but one heuristic by
setting its cost to 0 (e.g., cost3(o2) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o2 between the
abstractions that use it (i.e. cost1(o2) = 0,
cost2(o2) = cost3(o2) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n∑
i=1

costi (o) ≤ cost(o) for all o ∈ O

What about o1, o3 and o4?

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple ⟨cost1, . . . , costn⟩, where
costi : O → R+

0 for 1 ≤ i ≤ n and∑n
i=1 costi (o) ≤ cost(o) for all o ∈ O.

The cost partitioning induces a tuple ⟨Π1, . . . ,Πn⟩ of planning
tasks, where each Πi is identical to Π except that the cost
of each operator o is costi (o).

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, ⟨cost1, . . . , costn⟩ be a cost partitioning
and ⟨Π1, . . . ,Πn⟩ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for Π, i.e.,

∑n
i=1 h

∗
Πi

≤ h∗Π.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Admissibility (2)

Proof of Theorem.

If there is no plan for state s of Π, both sides are ∞. Otherwise,
let π = ⟨o1, . . . , om⟩ be an optimal plan for s. Then

n∑
i=1

h∗Πi
(s) ≤

n∑
i=1

m∑
j=1

costi (oj) (π plan in each Πi)

=
m∑
j=1

n∑
i=1

costi (oj) (comm./ass. of sum)

≤
m∑
j=1

cost(oj) (cost partitioning)

= h∗Π(s) (π optimal plan in Π)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write hΠ to denote heuristic h
evaluated on task Π.

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let ⟨Π1, . . . ,Πn⟩ be induced by a cost
partitioning.

For admissible heuristics h1, . . . , hn, the sum h(s) =
∑n

i=1 hi ,Πi
(s)

is an admissible estimate for s in Π.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let ⟨Π1, . . . ,Πn⟩ be induced
by a cost partitioning ⟨cost1, . . . , costn⟩.

If h1, . . . , hn are consistent heuristics then h =
∑n

i=1 hi ,Πi

is a consistent heuristic for Π.

Proof.

Let o be an operator that is applicable in state s.

h(s) =
n∑

i=1

hi ,Πi
(s) ≤

n∑
i=1

(costi (o) + hi ,Πi
(sJoK))

=
n∑

i=1

costi (o) +
n∑

i=1

hi ,Πi
(sJoK) ≤ cost(o) + h(sJoK)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

Heuristic value:

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

Heuristic value:

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example (No Cost Partitioning)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

2 2

2

2

2

Heuristic value: max{2, 2} = 2

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example (Cost Partitioning 1)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

1 1

1

1

1

Heuristic value: 1 + 1 = 2

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example (Cost Partitioning 2)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

0 0

2

2

0

Heuristic value: 2 + 2 = 4

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Example

Example (Cost Partitioning 3)

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

2 2

0

0

2

Heuristic value: 0 + 0 = 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Cost Partitioning: Quality

h(s) = h1,Π1(s) + · · ·+ hn,Πn(s)
can be better or worse than any hi ,Π(s)
→ depending on cost partitioning

strategies for defining cost-functions

uniform (now)
zero-one
saturated (afterwards)
optimal (next chapter)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Uniform Cost Partitioning

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Idea

Principal idea: Distribute the cost of each operator equally
(= uniformly) among all heuristics.

But: Some heuristics do only account for the cost of certain
operators and the cost of other operators does not affect the
heuristic estimate. For example:

a disjunctive action landmark accounts for the contained
operators,
a PDB heuristic accounts for all operators affecting the
variables in the pattern.

⇒ Distribute the cost of each operator uniformly among all
heuristics that account for this operator.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Idea

Principal idea: Distribute the cost of each operator equally
(= uniformly) among all heuristics.

But: Some heuristics do only account for the cost of certain
operators and the cost of other operators does not affect the
heuristic estimate. For example:

a disjunctive action landmark accounts for the contained
operators,
a PDB heuristic accounts for all operators affecting the
variables in the pattern.

⇒ Distribute the cost of each operator uniformly among all
heuristics that account for this operator.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

For disjunctive action landmark L of state s in task Π′, let
hL,Π′(s) be the cost of L in Π′.

Then hL,Π′(s) is admissible (in Π′).

Consider set L = {L1, . . . , Ln} of disjunctive action landmarks
for state s of task Π.

Use cost partitioning ⟨costL1 , . . . , costLn⟩, where

costLi (o) =

{
cost(o)/|{L ∈ L | o ∈ L}| if o ∈ Li

0 otherwise

Let ⟨ΠL1 , . . . ,ΠLn⟩ be the tuple of induced tasks.

h(s) =
∑n

i=1 hLi ,ΠLi
(s) is an admissible estimate for s in Π.

h is the uniform cost partitioning heuristic for landmarks.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let L be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic hUCP(L) is defined as

hUCP(L) =
∑
L∈L

min
o∈L

c ′(o) with

c ′(o) = cost(o)/|{L ∈ L | o ∈ L}|.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks
L1 = {o1, o3}, L2 = {o1, o2, o4}, L3 = {o1, o4, o5}

with operator cost function
c(o1) = 6, c(o2) = 4, c(o3) = 1, c(o4) = 6, c(o5) = 3

UCP for landmarks uses adapted costs
c ′(o1) = 2, c ′(o2) = 4, c ′(o3) = 1, c ′(o4) = 3, c ′(o5) = 3

with resulting heuristic estimate
hUCP({L1, L2, L3}) = 1 + 2 + 2 = 5.

(MHS heuristic estimate: 6)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks
L1 = {o1, o3}, L2 = {o1, o2, o4}, L3 = {o1, o4, o5}

with operator cost function
c(o1) = 6, c(o2) = 4, c(o3) = 1, c(o4) = 6, c(o5) = 3

UCP for landmarks uses adapted costs
c ′(o1) = 2, c ′(o2) = 4, c ′(o3) = 1, c ′(o4) = 3, c ′(o5) = 3

with resulting heuristic estimate
hUCP({L1, L2, L3}) = 1 + 2 + 2 = 5.

(MHS heuristic estimate: 6)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks
L1 = {o1, o3}, L2 = {o1, o2, o4}, L3 = {o1, o4, o5}

with operator cost function
c(o1) = 6, c(o2) = 4, c(o3) = 1, c(o4) = 6, c(o5) = 3

UCP for landmarks uses adapted costs
c ′(o1) = 2, c ′(o2) = 4, c ′(o3) = 1, c ′(o4) = 3, c ′(o5) = 3

with resulting heuristic estimate
hUCP({L1, L2, L3}) = 1 + 2 + 2 = 5.

(MHS heuristic estimate: 6)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks
L1 = {o1, o3}, L2 = {o1, o2, o4}, L3 = {o1, o4, o5}

with operator cost function
c(o1) = 6, c(o2) = 4, c(o3) = 1, c(o4) = 6, c(o5) = 3

UCP for landmarks uses adapted costs
c ′(o1) = 2, c ′(o2) = 4, c ′(o3) = 1, c ′(o4) = 3, c ′(o5) = 3

with resulting heuristic estimate
hUCP({L1, L2, L3}) = 1 + 2 + 2 = 5.

(MHS heuristic estimate: 6)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Idea

Heuristics do not always “need” all operator costs

Pick a heuristic and use
minimum costs preserving all estimates

Continue with remaining cost
until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff
between computation time and heuristic guidance in practice.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and h be a heuristic.
A cost function scf is saturated for h and cost if

1 scf(o) ≤ cost(o) for all operators o and

2 hΠscf
(s) = hΠ(s) for all states s,

where Πscf is Π with cost function scf.

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Minimal Saturated Cost Function

For abstractions, there exists a unique
minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction heuristic.
The minimal saturated cost function for α is

mscf(o) = max(max
α(s)

o−→α(t)

hα(s)− hα(t), 0)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

1 Pick a heuristic hi that hasn’t been picked before.
Terminate if none is left.

2 Compute hi given current cost

3 Compute an (ideally minimal) saturated cost function scfi
for hi

4 Decrease cost(o) by scfi (o) for all operators o

⟨scf1, . . . , scfn⟩ is a saturated cost partitioning (SCP)
for ⟨h1, . . . , hn⟩ (in pick order)

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi

2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi

2 Compute hi

3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi

3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

mscf1 0 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 0 0 1

mscf1 0 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi

2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 0 0 1

mscf1 0 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1

1

s2

0

s3

0

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi

2 Compute hi

3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 0 0 1

mscf1 0 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1

1

s2

0

s3

0

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi

3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 0 0 1

mscf1 0 1 1 0

mscf2 1 0 0 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1

1

s2

0

s3

0

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 0

mscf1 0 1 1 0

mscf2 1 0 0 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Example

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

2

s4

1

s5

0

o2 o3

o1, o3, o4

h2

s1

1

s2

0

s3

0

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 0

mscf1 0 1 1 0

mscf2 1 0 0 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Influence of Selected Order

quality highly susceptible to selected order

there are almost always orders where SCP performs much
better than uniform or zero-one cost partitioning

but there are also often orders where SCP performs worse

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1 s2

s3

s4, s5
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi

2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi

2 Compute hi

3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi

3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 1 1 1 1

mscf2 1 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3 s4 s5
o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi

2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

0

s4

0

s5

0

o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi

2 Compute hi

3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

0

s4

0

s5

0

o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi

3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

mscf1 0 0 0 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

0

s4

0

s5

0

o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi

4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

mscf1 0 0 0 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h1 and h2

h1 s1, s2, s3

0

s4

0

s5

0

o2 o3

o1, o3, o4

h2

s1

2

s2

1

s3

2

s4, s5

0
o1

o
4

o2

o 3

o3

1 Pick a heuristic hi . Terminate if none is left.

1 Pick a heuristic hi2 Compute hi3 Compute minimal saturated cost function mscfi for hi4 Decrease cost(o) by mscfi (o) for all operators o

o1 o2 o3 o4
cost 0 0 0 1

mscf2 1 1 1 0

mscf1 0 0 0 0

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Influence of Selected Order

quality highly susceptible to selected order

there are almost always orders where SCP performs much
better than uniform or zero-one cost partitioning

but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a
minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and L be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(o) =

{
mino∈L cost(o) if o ∈ L
0 otherwise

Does this look familiar?

LM-Cut computes a SCP over disjunctive action landmarks

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a
minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and L be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(o) =

{
mino∈L cost(o) if o ∈ L
0 otherwise

Does this look familiar?

LM-Cut computes a SCP over disjunctive action landmarks

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Reminder: LM-Cut

i

a

b

c

d

g

oblue = ⟨{i}, {a, b}, {}, 4⟩
ogreen = ⟨{i}, {a, c}, {}, 5⟩
oblack = ⟨{i}, {b, c}, {}, 3⟩
ored = ⟨{b, c}, {d}, {}, 2⟩

oorange = ⟨{a, d}, {g}, {}, 0⟩

round P(oorange) P(ored) landmark cost

1 d b {ored} 2

2 a b {ogreen, oblue} 4

3 d c {ogreen, oblack} 1

hLM-cut(I) 7

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks,
where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and L be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(o) =

{
mino∈L cost(o) if o ∈ L
0 otherwise

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Summary

Introduction Cost Partitioning Uniform Cost Partitioning Saturated Cost Partitioning Summary

Summary

Cost partitioning allows to admissibly add up estimates of
several heuristics.

This can be better or worse than the best individual heuristic
on the original problem, depending on the cost partitioning.

Uniform cost partitioning distributes the cost of each operator
uniformly among all heuristics that account for it.

Saturated cost partitioning offers a good tradeoff between
computation time and heuristic guidance.

LM-Cut computes a SCP over disjunctive action landmarks.

Planning and Optimization
F8. Optimal and General Cost-Partitioning

Malte Helmert and Gabriele Röger

Universität Basel

December 8, 2025

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning

Optimal Cost Partitioning General Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning: General Approach

Can we find a better cost partitioning than with the uniform
or saturation strategy? Even an optimal one?

Idea: exploit linear programming

Use variables for cost of each operator in each task copy
Express heuristic values with linear constraints
Maximize sum of heuristic values subject to these constraints

LPs known for

abstraction heuristics (not covered in this course)

disjunctive action landmarks (now)

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning: General Approach

Can we find a better cost partitioning than with the uniform
or saturation strategy? Even an optimal one?

Idea: exploit linear programming

Use variables for cost of each operator in each task copy
Express heuristic values with linear constraints
Maximize sum of heuristic values subject to these constraints

LPs known for

abstraction heuristics (not covered in this course)

disjunctive action landmarks (now)

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning for Landmarks: Basic Version

Use an LP that covers the heuristic computation and
the cost partitioning.

LP variable CL,o for cost of operator o in induced task for
disjunctive action landmark L (cost partitioning)

LP variable CostL for cost of disjunctive action landmark L in
induced task (value of individual heuristics)

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning for Landmarks: Basic LP

Variables

Non-negative variable CostL for each disj. action landmark L ∈ L
Non-negative variable CL,o for each L ∈ L and operator o

Objective

Maximize
∑

L∈L CostL

Subject to ∑
L∈L

CL,o ≤ cost(o) for all operators o

CostL ≤ CL,o for all L ∈ L and o ∈ L

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning for Landmarks: Improved

Observation: Explicit variables for cost partitioning not
necessary.

Use implicitly costL(o) = CostL for all o ∈ L and 0 otherwise.

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning for Landmarks: Improved LP

Variables

Non-negative variable CostL for each disj. action landmark L ∈ L

Objective

Maximize
∑

L∈L CostL

Subject to ∑
L∈L:o∈L

CostL ≤ cost(o) for all operators o

Optimal Cost Partitioning General Cost Partitioning Summary

Example (1)

Example

Let Π be a planning task with operators o1, . . . , o4 and
cost(o1) = 3, cost(o2) = 4, cost(o3) = 5 and cost(o4) = 0.
Let the following be disjunctive action landmarks for Π:

L1 = {o4}
L2 = {o1, o2}
L3 = {o1, o3}
L4 = {o2, o3}

Optimal Cost Partitioning General Cost Partitioning Summary

Example (2)

Example

Maximize CostL1 + CostL2 + CostL3 + CostL4 subject to

[o1] CostL2 + CostL3 ≤ 3

[o2] CostL2 + CostL4 ≤ 4

[o3] CostL3 + CostL4 ≤ 5

[o4] CostL1 ≤ 0

CostLi
≥ 0 for i ∈ {1, 2, 3, 4}

Optimal Cost Partitioning General Cost Partitioning Summary

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Non-negative variable Appliedo for each operator o

Objective

Minimize
∑

o Appliedo · cost(o)

Subject to ∑
o∈L

Appliedo ≥ 1 for all landmarks L

Minimize “plan cost” with all landmarks satisfied.

Optimal Cost Partitioning General Cost Partitioning Summary

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)

Minimize 3Appliedo1 + 4Appliedo2 + 5Appliedo3 subject to

Appliedo4 ≥ 1

Appliedo1 + Appliedo2 ≥ 1

Appliedo1 + Appliedo3 ≥ 1

Appliedo2 + Appliedo3 ≥ 1

Appliedoi ≥ 0 for i ∈ {1, 2, 3, 4}

This is equal to the LP relaxation of the MHS heuristic

Optimal Cost Partitioning General Cost Partitioning Summary

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)

Minimize 3Appliedo1 + 4Appliedo2 + 5Appliedo3 subject to

Appliedo4 ≥ 1

Appliedo1 + Appliedo2 ≥ 1

Appliedo1 + Appliedo3 ≥ 1

Appliedo2 + Appliedo3 ≥ 1

Appliedoi ≥ 0 for i ∈ {1, 2, 3, 4}

This is equal to the LP relaxation of the MHS heuristic

Optimal Cost Partitioning General Cost Partitioning Summary

Reminder: LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)

minimize 3Xo1 + 4Xo2 + 5Xo3 subject to

Xo4 ≥ 1

Xo1 + Xo2 ≥ 1

Xo1 + Xo3 ≥ 1

Xo2 + Xo3 ≥ 1

Xo1 ≥ 0, Xo2 ≥ 0, Xo3 ≥ 0, Xo4 ≥ 0

⇝ optimal solution of LP relaxation:
Xo4 = 1 and Xo1 = Xo2 = Xo3 = 0.5 with objective value 6

⇝ LP relaxation of MHS heuristic is admissible
and can be computed polynomial time

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning

Optimal Cost Partitioning General Cost Partitioning Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning Concept

Uniform CP

Saturated CP

Optimal CP

General CP

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning

Cost functions are usually non-negative.

We tacitly also required this for task copies

Makes intuitively sense: original costs are non-negative

But: not necessary for cost-partitioning!

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple ⟨cost1, . . . , costn⟩,
where

costi : O → R for 1 ≤ i ≤ n and∑n
i=1 costi (o) ≤ cost(o) for all o ∈ O.

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, ⟨cost1, . . . , costn⟩ be a general cost
partitioning and ⟨Π1, . . . ,Πn⟩ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for Π, i.e.,

∑n
i=1 h

∗
Πi

≤ h∗Π.

(Proof omitted.)

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

Heuristic value:

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

Heuristic value:

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

00 0

2

2

0

Heuristic value: 2 + 2 = 4

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

00 0

2

4

−2

Heuristic value: 4 + 2 = 6

Optimal Cost Partitioning General Cost Partitioning Summary

General Cost Partitioning: Example

00

01

10

11

2 2 2

0∗ 1∗

∗0

∗1

00 0

2

5

−3

Heuristic value: −∞+ 5 = −∞

Optimal Cost Partitioning General Cost Partitioning Summary

Summary

Optimal Cost Partitioning General Cost Partitioning Summary

Summary

For abstraction heuristics and disjunctive action landmarks,
we know how to determine an optimal cost partitioning, using
linear programming.

Although solving a linear program is possible in polynomial
time, the better heuristic guidance often does not outweigh
the overhead (in particular for abstraction heuristics).

In constrast to standard (non-negative) cost partitioning,
general cost partitioning allows negative operators costs.

General cost partitioning has the same relevant properties as
non-negative cost partitioning but is more powerful.

Planning and Optimization
F9. Post-hoc Optimization

Malte Helmert and Gabriele Röger

Universität Basel

December 10, 2025

Introduction Post-hoc Optimization Comparison Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Post-hoc Optimization Comparison Summary

Introduction

Introduction Post-hoc Optimization Comparison Summary

Example Task (1)

Example (Example Task)

SAS+ task Π = ⟨V , I ,O, γ⟩ with
V = {A,B,C} with dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

I = {A 7→ 0,B 7→ 0,C 7→ 0}
O = {incvx | v ∈ V , x ∈ {0, 1, 2}} ∪ {jumpv | v ∈ V }

incvx = ⟨v = x , v := x + 1, 1⟩
jumpv = ⟨

∧
v ′∈V :v ′ ̸=v v

′ = 4, v := 3, 1⟩
γ = A = 3 ∧ B = 3 ∧ C = 3

Each optimal plan consists of three increment operators for
each variable ⇝ h∗(I) = 9

Each operator affects only one variable.

Introduction Post-hoc Optimization Comparison Summary

Example Task (2)

In projections on single variables we can reach the goal with a
jump operator: h{A}(I) = h{B}(I) = h{C}(I) = 1.

In projections on more variables, we need for each variable
three applications of increment operators to reach the
abstract goal from the abstract initial state:
h{A,B}(I) = h{A,C}(I) = h{B,C}(I) = 6

Example (Canonical Heuristic)

C = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}

hC(s) = max{h{A}(s) + h{B}(s) + h{C}(s), h{A}(s) + h{B,C}(s),

h{B}(s) + h{A,C}(s), h{C}(s) + h{A,B}(s)}

hC(I) = 7

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

can be computed for any kind of heuristic . . .

. . . as long as we are able to determine relevance of operators

if in doubt, it’s always safe to assume
an operator is relevant for a heuristic

but for PhO to work well, it’s important that the set of
relevant operators is as small as possible

Introduction Post-hoc Optimization Comparison Summary

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let T be a transition system, and let ℓ be one of its labels.

We say that ℓ affects T if T has a transition s
ℓ−→ t with s ̸= t.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects T α.

We can efficiently determine operator relevance for abstractions.

Introduction Post-hoc Optimization Comparison Summary

Linear Program (1)

For a given set of abstractions {α1, . . . , αn}, we construct
a linear program:

variable Xo for each operator o ∈ O

intuitively, Xo is cost incurred by operator o

abstraction heuristics are admissible∑
o∈O

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

can tighten these constraints to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Introduction Post-hoc Optimization Comparison Summary

Linear Program (2)

For set of abstractions {α1, . . . , αn}:

Variables

Non-negative variables Xo for all operators o ∈ O

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP

Reduce the size of the LP by aggregating variables
which always occur together in constraints.

Happens if several operators are relevant
for exactly the same heuristics.

Partitioning O/∼ induced by this equivalence relation

One variable X[o] for each [o] ∈ O/∼

Introduction Post-hoc Optimization Comparison Summary

Example

Example

only operators o1, o2, o3 and o4 are relevant for h1
and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2
and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3
and h3(s0) = 8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}

Introduction Post-hoc Optimization Comparison Summary

Example

Example

only operators o1, o2, o3 and o4 are relevant for h1
and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2
and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3
and h3(s0) = 8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP: Example

LP before aggregation

Variables

Non-negative variable X1, . . . ,X6

for operators o1, . . . , o6

Minimize X1 + X2 + X3 + X4 + X5 + X6 subject to

X1 + X2 + X3 + X4

+ X5 + X6

≥ 11

X1 + X2 +

X3 + X4 + X5 + X6 ≥ 11

X1 + X2

+ X3 + X4 + X5

+ X6 ≥ 8

Xi ≥ 0 for i ∈ {1, . . . , 6}

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable X[1],X[3],X[5],X[6]

for equivalence classes [o1], [o3], [o5], [o6]

Minimize X[1] + X[3] + X[5] + X[6] subject to

X[1] + X[3]

+ X[5] + X[6]

≥ 11

X[1] +

X[3] + X[5] + X[6] ≥ 11

X[1] +

+ X[3] + X[5]

+ X[6] ≥ 8

Xi ≥ 0 for i ∈ {[1], [3], [5], [6]}

Introduction Post-hoc Optimization Comparison Summary

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO{α1,...,αn} for abstractions
α1, . . . , αn is the objective value of the following linear program:

Minimize
∑

[o]∈O/∼

X[o] subject to

∑
[o]∈O/∼:o relevant for α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼,

where o ∼ o ′ iff o and o ′ are relevant for exactly the same
abstractions in α1, . . . , αn.

Introduction Post-hoc Optimization Comparison Summary

PhO Heuristic

hPhO

1 Precompute all abstraction heuristics hα1 , . . . , hαn .

2 Create LP for initial state s0.
3 For each new state s:

Look up hα(s) for all α ∈ {α1, . . . , αn}.
Adjust LP by replacing bounds with the hα(s) values.

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and {α1, . . . , αn} be a set of abstractions.
We show that there is a feasible variable assignment with objective
value equal to the cost of an optimal plan.
Let π be an optimal plan for state s and let costπ(O

′) be the cost
incurred by operators from O ′ ⊆ O in π.

Setting each X[o] to costπ([o]) is a feasible variable assignment:
Constraints X[o] ≥ 0 are satisfied. . . .

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each α ∈ {α1, . . . , αn}, π is a solution in the abstract
transition system and the sum in the corresponding constraint
equals the cost of the state-changing abstract state transitions
(i.e.. not accounting for self-loops). As hα(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value h∗(s)
(cost of π), so the objective value of the LP is admissible.

Introduction Post-hoc Optimization Comparison Summary

Comparison

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

. . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

. . . dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than hC .

. . . is very expensive to compute
(recomputing all abstract goal distances in every state).

Introduction Post-hoc Optimization Comparison Summary

PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.

Introduction Post-hoc Optimization Comparison Summary

PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.

Introduction Post-hoc Optimization Comparison Summary

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment ⟨Yα1 , . . . ,Yαn⟩ for the variables of
the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
⟨Yα1cost, . . . ,Yαncost⟩.

Introduction Post-hoc Optimization Comparison Summary

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.

Introduction Post-hoc Optimization Comparison Summary

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.

Introduction Post-hoc Optimization Comparison Summary

hPhO vs hC

For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

The post-hoc optimization heuristic solves an LP in each
state.

With post-hoc optimization, a large number of small patterns
works well.

Introduction Post-hoc Optimization Comparison Summary

Summary

Introduction Post-hoc Optimization Comparison Summary

Summary

Post-hoc optimization heuristic constraints express
admissibility of heuristics

exploits (ir-)relevance of operators for heuristics

explores the middle ground between canonical heuristic and
optimal cost partitioning.

For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

The computation can be done in polynomial time.

Planning and Optimization
F10. Network Flow Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

December 10, 2025

Introduction Transition Normal Form Flow Heuristic Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Transition Normal Form Flow Heuristic Summary

Introduction

Introduction Transition Normal Form Flow Heuristic Summary

Reminder: SAS+ Planning Tasks

For a SAS+ planning task Π = ⟨V , I ,O, γ⟩:
V is a set of finite-domain state variables,

Each atom has the form v = d with v ∈ V , d ∈ dom(v).

Operator preconditions and the goal formula γ
are satisfiable conjunctions of atoms.

Operator effects are conflict-free conjunctions of
atomic effects of the form v1 := d1 ∧ · · · ∧ vn := dn.

Introduction Transition Normal Form Flow Heuristic Summary

Example Task (1)

One package, two trucks, two locations

Variables:

pos-p with dom(pos-p) = {loc1, loc2, t1, t2}
pos-t-i with dom(pos-t-i) = {loc1, loc2} for i ∈ {1, 2}

The package is at location 1 and the trucks at location 2,

I = {pos-p 7→ loc1, pos-t-1 7→ loc2, pos-t-2 7→ loc2)

The goal is to have the package at location 2 and
truck 1 at location 1.

γ = (pos-p = loc2) ∧ (pos-t-1 = loc1)

Introduction Transition Normal Form Flow Heuristic Summary

Example Task (2)

Operators: for i , j , k ∈ {1, 2}:

load(ti , locj) = ⟨pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti , 1⟩
unload(ti , locj) = ⟨pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj , 1⟩
drive(ti , locj , lock) = ⟨pos-t-i = locj ,

pos-t-i := lock , 1⟩

Introduction Transition Normal Form Flow Heuristic Summary

Example Task: Observations

Consider some atoms of the example task:

pos-p = loc1 initially true and must be false in the goal
▷ at location 1 the package must be loaded
▷ once more than it is unloaded.

pos-p = loc2 initially false and must be true in the goal
▷ at location 2 the package must be unloaded
▷ once more than it is loaded.

pos-p = t1 initially false and must be false in the goal
▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Introduction Transition Normal Form Flow Heuristic Summary

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let
#o denote the number of occurrences of operator o in π.
Then the following holds:

pos-p = loc1 initially true and must be false in the goal
▷ at location 1 the package must be loaded
▷ once more than it is unloaded.
#load(t1, loc1) + #load(t2, loc1) =
1 +#unload(t1, loc1) + #unload(t2, loc1)

pos-p = t1 initially false and must be false in the goal
▷ same number of load and unload actions for truck 1.
#unload(t1, loc1) + #unload(t1, loc2) =
#load(t1, loc1) + #load(t1, loc2)

Introduction Transition Normal Form Flow Heuristic Summary

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.

These are satisfied by every plan of the task.

The cost of a plan is
∑

o∈O cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?

Introduction Transition Normal Form Flow Heuristic Summary

How to Derive Flow Constraints?

The constraints formulate how often an atom can be
produced or consumed.

“Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

For general SAS+ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) ̸= d .

For general SAS+ tasks, the goal does not have to specify a
value for every variable.

All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

Introduction Transition Normal Form Flow Heuristic Summary

Transition Normal Form

Introduction Transition Normal Form Flow Heuristic Summary

Variables Occurring in Conditions and Effects

Many algorithmic problems for SAS+ planning tasks
become simpler when we can make two further restrictions.

These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(φ), vars(e))

For a logical formula φ over finite-domain variables V ,
vars(φ) denotes the set of finite-domain variables occurring in φ.

For an effect e over finite-domain variables V ,
vars(e) denotes the set of finite-domain variables occurring in e.

Introduction Transition Normal Form Flow Heuristic Summary

Transition Normal Form

Definition (Transition Normal Form)

A SAS+ planning task Π = ⟨V , I ,O, γ⟩
is in transition normal form (TNF) if

for all o ∈ O, vars(pre(o)) = vars(eff(o)), and

vars(γ) = V .

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

There exists a variable v ∈ vars(pre(o)) \ vars(eff(o)).
There exists a variable v ∈ vars(eff(o)) \ vars(pre(o)).

The first case is easy to address: if v = d is a precondition
with no effect on v , just add the effect v := d .

The second case is more difficult: if we have the effect v := d
but no precondition on v , how can we add a precondition on v
without changing the meaning of the operator?

Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out
1 While there exists an operator o and a variable

v ∈ vars(eff(o)) with v /∈ vars(pre(o)):

For each d ∈ dom(v), add a new operator that is like o
but with the additional precondition v = d .
Remove the original operator.

2 Repeat the previous step until no more such variables exist.

Problem:

If an operator o has n such variables, each with k values
in its domain, this introduces kn variants of o.

Hence, this is an exponential transformation.

Introduction Transition Normal Form Flow Heuristic Summary

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

1 For every variable v , add a new auxiliary value u to its domain.

2 For every variable v and value d ∈ dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: ⟨v = d , v := u, 0⟩.

3 For all operators o and all variables
v ∈ vars(eff(o)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

Transformation can be computed in linear time.

Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.

Introduction Transition Normal Form Flow Heuristic Summary

Converting Goals to TNF

The auxiliary value idea can also be used
to convert the goal γ to TNF.

For every variable v /∈ vars(γ), add the condition v = u to γ.

With these ideas, every SAS+ planning task can be
converted into transition normal form in linear time.

Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (1)

The example task is not in transition normal form:

Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

The goal does not specify a value for variable pos-t-2.

Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (2)

Operators in transition normal form: for i , j , k ∈ {1, 2}:

load(ti , locj) = ⟨pos-t-i = locj ∧ pos-p = locj ,

pos-p := ti ∧ pos-t-i := locj , 1⟩
unload(ti , locj) = ⟨pos-t-i = locj ∧ pos-p = ti ,

pos-p := locj ∧ pos-t-i := locj , 1⟩
drive(ti , locj , lock) = ⟨pos-t-i = locj ,

pos-t-i := lock , 1⟩

Introduction Transition Normal Form Flow Heuristic Summary

TNF for Example Task (3)

To bring the goal in normal form,

add an additional value u to dom(pos-t-2)

add zero-cost operators
o1 = ⟨pos-t-2 = loc1, pos-t-2 := u, 0⟩ and
o2 = ⟨pos-t-2 = loc2, pos-t-2 := u, 0⟩
Add pos-t-2 = u to the goal:
γ = (pos-p = loc2) ∧ (pos-t-1 = loc1) ∧ (pos-t-2 = u)

Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic

Introduction Transition Normal Form Flow Heuristic Summary

Notation

In SAS+ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

For state s, we write (v = d) ∈ s to express that s(v) = d .

For a conjunction of atoms φ, we write (v = d) ∈ φ to express
that φ has a conjunct v = d (or alternatively φ |= v = d).

For effect e, we write (v = d) ∈ e to express that e contains
the atomic effect v := d .

Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:

o produces atom a iff a ∈ eff(o) and a ̸∈ pre(o).

o consumes atom a iff a ∈ pre(o) and a ̸∈ eff(o).

Otherwise o is neutral wrt. atom a.

⇝ State-independent

Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal γ.
If γ mentions all variables (as in TNF), the following holds:

If a ∈ s and a ∈ γ then atom a must be equally often
produced and consumed.

Analogously for a ̸∈ s and a ̸∈ γ.

If a ∈ s and a ̸∈ γ then a must be consumed once more than
it is produced.

If a ̸∈ s and a ∈ γ then a must be produced once more than it
is consumed.

Introduction Transition Normal Form Flow Heuristic Summary

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

[P] =

{
1 if P is true

0 if P is false.

Example: [2 ̸= 3] = 1

Introduction Transition Normal Form Flow Heuristic Summary

Flow Constraints (3)

Definition (Flow Constraint)

Let Π = ⟨V , I ,O, γ⟩ be a task in transition normal form.
The flow constraint for atom a in state s is

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

Counto is an LP variable for the number of occurrences of
operator o.

Neutral operators either appear on both sides or on none.

Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic

Definition (Flow Heuristic)

Let Π = ⟨V , I ,O, γ⟩ be a SAS+ task in transition normal form and
let A = {(v = d) | v ∈ V , d ∈ dom(v)} be the set of atoms of Π.

The flow heuristic hflow(s) is the objective value of the following
LP or ∞ if the LP is infeasible:

minimize
∑

o∈O cost(o) · Counto subject to

[a ∈ s] +
∑

o∈O:a∈eff(o)
Counto = [a ∈ γ] +

∑
o∈O:a∈pre(o)

Counto for all a ∈ A

Counto ≥ 0 for all o ∈ O

Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic on Example Task

⇝ Demo

Introduction Transition Normal Form Flow Heuristic Summary

Visualization of Flow in Example Task

loc1 loc2

drive-t1-l1-l2

drive-t1-l2-l1

load-t1-l1,unload-t1-l2, o2

.

loc1 loc2

u

drive-t2-l1-l2

drive-t2-l2-l1

o
1 o 2

load-t1-l1
unload-t1-l2
drive-t1-l2-l1

.

. . .

loc1

t1 t2

loc2

un
lo
ad
-t 1

-l 1lo
ad
-t 1

-l 1

unload-t
2 -l1load-t

2 -l1

load-t
1 -l2unload-t

1 -l2 lo
ad
-t 2

-l 2un
lo
ad
-t 2

-l 2

drive-t1-l2-l1,o2

. . .

. . .

.

Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic: Properties (1)

Theorem

The flow heuristic hflow is goal-aware, safe, consistent and
admissible.

Proof Sketch.

It suffices to prove goal-awareness and consistency.

Goal-awareness: If s |= γ then Counto = 0 for all o ∈ O is feasible
and the objective function has value 0. As Counto ≥ 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller. . . .

Introduction Transition Normal Form Flow Heuristic Summary

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s ′ = sJoK.
Increasing Counto by one in an optimal feasible assignment for the
LP for state s ′ yields a feasible assignment for the LP for state s,
where the objective function is hflow(s ′) + cost(o).

This is an upper bound on hflow(s), so in total
hflow(s) ≤ hflow(s ′) + cost(o).

Introduction Transition Normal Form Flow Heuristic Summary

Summary

Introduction Transition Normal Form Flow Heuristic Summary

Summary

A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.

Planning and Optimization
F11. Operator Counting

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2025

Introduction Operator-counting Framework Properties Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Operator-counting Framework Properties Summary

Introduction

Introduction Operator-counting Framework Properties Summary

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let Π be a planning problem with operators {ored, ogreen, oblue}.
The flow constraint for some atom a is the constraint

1 + Countogreen = Countored if

a is true in the initial state

a is false in the goal

ogreen produces a

ored consumes a

In natural language, the flow constraint expresses that

every plan uses ored once more than ogreen.

Introduction Operator-counting Framework Properties Summary

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let Π be a planning problem with operators {ored, ogreen, oblue}.
The flow constraint for some atom a is the constraint

1 + Countogreen = Countored if

a is true in the initial state

a is false in the goal

ogreen produces a

ored consumes a

In natural language, the flow constraint expresses that

every plan uses ored once more than ogreen.

Introduction Operator-counting Framework Properties Summary

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

0 0 0

1 0 0

2 1 1

0 1 1

3 2 2

1 2 0

2 0 1

1 1 0

2 2 1

2 2 0

1 1 1

0 2 2

3 1 0

2 1 0

0 0 1

· · ·

3 0 2

Introduction Operator-counting Framework Properties Summary

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

“plans that use
once more than ”

0 0 0

1 0 0

2 1 1

0 1 1

3 2 2

1 2 0

2 0 1

1 1 0

2 2 1

2 2 0

1 1 1

0 2 2

3 1 0

2 1 0

0 0 1

· · ·

3 0 2

Introduction Operator-counting Framework Properties Summary

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

“plans that use
as often as ”

“plans that use
once more than ”

0 0 0

1 0 0

2 1 1

0 1 1

3 2 2

1 2 0

2 0 1

1 1 0

2 2 1

2 2 0

1 1 1

0 2 2

3 1 0

2 1 0

0 0 1

· · ·

3 0 2

Introduction Operator-counting Framework Properties Summary

Operator-counting Framework

Introduction Operator-counting Framework Properties Summary

Operator Counting

Operator counting

generalizes this idea to a framework that allows to
admissibly combine different heuristics.

uses linear constraints . . .

. . . that describe number of occurrences of an operator . . .

. . . and must be satisfied by every plan.

provides declarative way to describe
knowledge about solutions.

allows reasoning about solutions to derive heuristic estimates.

Introduction Operator-counting Framework Properties Summary

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let Π be a planning task with operators O and let s be a state.
Let V be the set of integer variables Counto for each o ∈ O.

A linear inequality over V is called an operator-counting constraint
for s if for every plan π for s setting each Counto to the number of
occurrences of o in π is a feasible variable assignment.

Introduction Operator-counting Framework Properties Summary

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IPC for a set C of
operator-counting constraints for state s is

Minimize
∑
o∈O

cost(o) · Counto subject to

C and Counto ≥ 0 for all o ∈ O,

where O is the set of operators.

The IP heuristic hIPC is the objective value of IPC ,
the LP heuristic hLPC is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is ∞.

Introduction Operator-counting Framework Properties Summary

Operator-counting Constraints

Adding more constraints can only remove feasible solutions.

Fewer feasible solutions can only increase the objective value.

Higher objective value means better informed heuristic

⇒ Have we already seen other operator-counting constraints?

Introduction Operator-counting Framework Properties Summary

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable Appliedo for each operator o

Objective

Minimize
∑

o cost(o) · Appliedo

Subject to ∑
o∈L

Appliedo ≥ 1 for all landmarks L

Introduction Operator-counting Framework Properties Summary

Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable Counto for each operator o

Objective

Minimize
∑

o cost(o) · Counto

Subject to ∑
o∈L

Counto ≥ 1 for all landmarks L

Introduction Operator-counting Framework Properties Summary

Reminder: Post-hoc Optimization Heuristic

For set of abstractions {α1, . . . , αn}:

Variables

Non-negative variables Xo for all operators o ∈ O
Xo is cost incurred by operator o

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o relev. for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O

Introduction Operator-counting Framework Properties Summary

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions {α1, . . . , αn}:

Variables

Non-negative variables Counto for all operators o ∈ O
Counto · cost(o) is cost incurred by operator o

Objective

Minimize
∑

o∈O cost(o) · Counto

Subject to∑
o∈O:o relev. for α

cost(o) · Counto ≥ hα(s) for α ∈ {α1, . . . , αn}

cost(o) · Counto ≥ 0 for all o ∈ O

Introduction Operator-counting Framework Properties Summary

Example

“plans where and
cost 4 or more together”

“plans that use
once more than ”

0 0 1

2 0 1

3 0 2

1 1 2

3 2 2

1 2 0

1 0 0

1 1 0

2 2 0

1 3 1

1 2 1

3 1 0

2 1 0

0 0 0

· · ·

2 2 1

Introduction Operator-counting Framework Properties Summary

Example

“plans that use
at least once”

“plans where and
cost 4 or more together”

“plans that use
once more than ”

0 0 1

2 0 1

3 0 2

1 1 2

3 2 2

1 2 0

1 0 0

1 1 0

2 2 0

1 3 1

1 2 1

3 1 0

2 1 0

0 0 0

· · ·

2 2 1

Introduction Operator-counting Framework Properties Summary

Example

“plans that use
at least once”

“plans where and
cost 4 or more together” “plans that use

once more than ”

0 0 1

2 0 1

3 0 2

1 1 2

3 2 2

1 2 0

1 0 0

1 1 0

2 2 0

1 3 1

1 2 1

3 1 0

2 1 0

0 0 0

· · ·

2 2 1

Introduction Operator-counting Framework Properties Summary

Example

“plans that use
at least once”

“plans where and
cost 4 or more together” “plans that use

once more than ”

0 0 1

2 0 1

3 0 2

1 1 2

3 2 2

1 2 0

1 0 0

1 1 0

2 2 0

1 3 1

1 2 1

3 1 0

2 1 0

0 0 0

· · ·

2 2 1

Introduction Operator-counting Framework Properties Summary

Further Examples?

The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.

With this extended definition we could also cover
more heuristics, e.g., the perfect relaxation heuristic h+

Introduction Operator-counting Framework Properties Summary

Properties

Introduction Operator-counting Framework Properties Summary

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Proof.

Let C be a set of operator-counting constraints for state s and π
be an optimal plan for s. The number of operator occurrences of π
are a feasible solution for C . As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of π and is
therefore an admissible estimate.

Introduction Operator-counting Framework Properties Summary

Dominance

Theorem

Let C and C ′ be sets of operator-counting constraints for s and let
C ⊆ C ′. Then IPC ≤ IPC ′ and LPC ≤ LPC ′ .

Proof.

Every feasible solution of C ′ is also feasible for C . As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C ′.

Adding more constraints can only improve the heuristic estimate.

Introduction Operator-counting Framework Properties Summary

Heuristic Combination

Operator counting as heuristic combination

Multiple operator-counting heuristics can be combined by
computing hLPC /hIPC for the union of their constraints.

This is an admissible combination.

Never worse than maximum of individual heuristics
Sometimes even better than their sum

We already know a way of admissibly combining heuristics:
cost partitioning.

⇒ How are they related?

Introduction Operator-counting Framework Properties Summary

Connection to Cost Partitioning

Theorem

Let C1, . . . ,Cn be sets of operator-counting constraints for s and
C =

⋃n
i=1 Ci . Then hLPC is the optimal general cost partitioning

over the heuristics hLPCi
.

Proof Sketch.

In LPC , add variables Countio and constraints Counto = Countio
for all operators o and 1 ≤ i ≤ n. Then replace Counto by
Countio in Ci .
Dualizing the resulting LP shows that hLPC computes a cost
partitioning. Dualizing the component heuristics of that cost
partitioning shows that they are hLPCi

.

Introduction Operator-counting Framework Properties Summary

Comparison to Optimal Cost Partitioning

some heuristics are more compact if expressed as operator
counting

some heuristics cannot be expressed as operator counting

operator counting IP even better than optimal cost
partitioning

Cost partitioning maximizes, so heuristics must be encoded
perfectly to guarantee admissibility.
Operator counting minimizes, so missing information just
makes the heuristic weaker.

Introduction Operator-counting Framework Properties Summary

Summary

Introduction Operator-counting Framework Properties Summary

Summary

Many heuristics can be formulated in terms of
operator-counting constraints.

The operator counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

Operator counting is equivalent to optimal general cost
partitioning over individual constraints.

Planning and Optimization
F12. Potential Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

December 15, 2025

Introduction Potential Heuristics Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

Introduction Potential Heuristics Summary

Introduction

Introduction Potential Heuristics Summary

Reminder: Transition Normal Form

In this chapter, we consider SAS+ tasks in transition normal form.

A TNF operator mentions the same variables in the
precondition and in the effect.

A TNF goal specifies a value for every variable.

Introduction Potential Heuristics Summary

Material Value of a Chess Position

8 rZ0Z0ZkZ
7 obZpZ0O0
6 0o0Z0Z0Z
5 Z0ZPZpZ0
4 0ZPZ0Z0Z
3 O0M0s0O0
2 0O0M0Z0Z
1 S0ZQZKAq

a b c d e f g h

Material value for white:

+ 1 · 6 (white pawns)

− 1 · 4 (black pawns)

+ 3 · 2 (white knights)

− 3 · 0 (black knights)

+ 3 · 1 (white bishops)

− 3 · 1 (black bishops)

+ 5 · 1 (white rooks)

− 5 · 2 (black rooks)

+ 9 · 1 (white queen)

− 9 · 1 (black queen)

= 3

Introduction Potential Heuristics Summary

Idea

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
heuristic very fast to compute if feature values are

Introduction Potential Heuristics Summary

Potential Heuristics

Introduction Potential Heuristics Summary

Definition

Definition (Feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.

Definition (Potential Heuristic)

A potential heuristic for a set of features F = {f1, . . . , fn}
is a heuristic function h defined as a linear combination
of the features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R.

Many possibilities ⇒ need some restrictions

Introduction Potential Heuristics Summary

Definition

Definition (Feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.

Definition (Potential Heuristic)

A potential heuristic for a set of features F = {f1, . . . , fn}
is a heuristic function h defined as a linear combination
of the features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R.

Many possibilities ⇒ need some restrictions

Introduction Potential Heuristics Summary

Features for SAS+ Planning Tasks

Which features are good for planning?

Atomic features test if some atom is true in a state:

Definition (Atomic Feature)

Let v = d be an atom of a FDR planning task.

The atomic feature fv=d is defined as:

fv=d(s) = [(v = d) ∈ s] =

{
1 if variable v has value d in state s

0 otherwise

Offer good tradeoff between computation time and guidance

Introduction Potential Heuristics Summary

Example: Atomic Features

Example

Consider a planning task Π with state variables v1 and v2 and
dom(v1) = dom(v2) = {d1, d2, d3}. The set

F = {fvi=dj | i ∈ {1, 2}, j ∈ {1, 2, 3}}

is the set of atomic features of Π and the function

h(s) = 3fv1=d1 + 0.5fv1=d2 − 2fv1=d3 + 2.5fv2=d1

is a potential heuristic for F .
The heuristic estimate for a state s = {v1 7→ d2, v2 7→ d1} is

h(s) = 3 · 0 + 0.5 · 1− 2 · 0 + 2.5 · 1 = 3.

Introduction Potential Heuristics Summary

Potentials for Optimal Planning

Which potentials are good for optimal planning
and how can we compute them?

We seek potentials for which h is admissible and well-informed
⇒ declarative approach to heuristic design

We derive potentials for atomic features by solving an
optimization problem

How to achieve this? Linear programming to the rescue!

Introduction Potential Heuristics Summary

Admissible and Consistent Potential Heuristics

We achieve admissibility through goal-awareness and consistency

Goal-awareness ∑
a ∈ γ

wa = 0

Consistency∑
a∈s

wa −
∑
a∈s′

wa ≤ cost(o) for all transitions s
o−→ s ′

One constraint transition per transition.
Can we do this more compactly?

Introduction Potential Heuristics Summary

Admissible and Consistent Potential Heuristics

We achieve admissibility through goal-awareness and consistency

Goal-awareness ∑
a ∈ γ

wa = 0

Consistency∑
a∈s

wa −
∑
a∈s′

wa ≤ cost(o) for all transitions s
o−→ s ′

One constraint transition per transition.
Can we do this more compactly?

Introduction Potential Heuristics Summary

Admissible and Consistent Potential Heuristics

Consistency for a transition s
o−→ s ′

cost(o) ≥
∑
a∈s

wa −
∑
a∈s′

wa

=
∑
a

wa[a ∈ s]−
∑
a

wa[a ∈ s ′]

=
∑
a

wa([a ∈ s]− [a ∈ s ′])

=
∑
a

wa[a ∈ s but a /∈ s ′]−
∑
a

wa[a /∈ s but a ∈ s ′]

=
∑

a consumed
by o

wa −
∑

a produced
by o

wa

Introduction Potential Heuristics Summary

Admissible and Consistent Potential Heuristics

Goal-awareness and Consistency independent of s

Goal-awareness ∑
a ∈ γ

wa = 0

Consistency∑
a consumed

by o

wa −
∑

a produced
by o

wa ≤ cost(o) for all operators o

Introduction Potential Heuristics Summary

Potential Heuristics

All atomic potential heuristics that satisfy these constraints
are admissible and consistent

Furthermore, all admissible and consistent atomic potential
heuristics satisfy these constraints

Constraints are a compact characterization of all admissible and
consistent atomic potential heuristics.

LP can be used to find the best admissible and consistent potential
heuristics by encoding a quality metric in the objective function

Introduction Potential Heuristics Summary

Well-Informed Potential Heuristics

What do we mean by the best potential heuristic?
Different possibilities, e.g., the potential heuristic that

maximizes heuristic value of a given state s (e.g., initial state)

maximizes average heuristic value of all states
(including unreachable ones)

maximizes average heuristic value of some sample states

minimizes estimated search effort

Introduction Potential Heuristics Summary

Potential and Flow Heuristic

Theorem

For state s, let hmaxpot(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaxpot(s) = hflow(s).

Proof idea: compare dual of hflow(s) LP to potential heuristic
Proof idea: constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.

Introduction Potential Heuristics Summary

Summary

Introduction Potential Heuristics Summary

Summary

Potential heuristics are computed as a weighted sum of state
features

Admissibility and consistency can be encoded compactly in
constraints

With linear programming, we can efficiently compute the best
potential heuristic wrt some objective

Potential heuristics can be used as fast admissible
approximations of hflow.

