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People: Lecturers

Malte Helmert Gabriele Röger

Lecturers

Malte Helmert

email: malte.helmert@unibas.ch

office: room 06.004, Spiegelgasse 1

Gabriele Röger

email: gabriele.roeger@unibas.ch

office: room 04.005, Spiegelgasse 1
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People: Assistant

Tanja Schindler

Assistant

Tanja Schindler

email: tanja.schindler@unibas.ch

office: room 04.005, Spiegelgasse 1
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People: Tutors

Clemens Büchner Esther Mugdan

Tutors

Clemens Büchner

email: clemens.buechner@unibas.ch

office: room 04.001, Spiegelgasse 5

Esther Mugdan

email: esther.mugdan@unibas.ch

office: room 04.001, Spiegelgasse 5
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Time & Place

Lectures

time: Mon 14:15–16:00, Wed 14:15–16:00

place: room 00.003, Spiegelgasse 1

Exercise Sessions

time: Wed 16:15–18:00

place: room 00.003, Spiegelgasse 1

first exercise session: today
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Communication Channels

lecture sessions (Mon, Wed)

exercise sessions (Wed)

course homepage

ADAM workspace

Discord server (invitation link on ADAM workspace)

email

registration:

https://services.unibas.ch/

Please register today to receive all course-related emails!

https://services.unibas.ch/
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Planning and Optimization Course on the Web

Course Homepage

https://dmi.unibas.ch/en/studies/computer-science/

course-offer-fall-semester-25/

lecture-planning-and-optimization/

course information

slides

link to ADAM workspace

bonus materials (not relevant for the exam)

https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
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Target Audience

target audience:

M.Sc. Computer Science

Major in Machine Intelligence:
module Concepts of Machine Intelligence
module Methods of Machine Intelligence
Major in Distributed Systems:
module Applications of Distributed Systems

M.A. Computer Science (“Master-Studienfach”)
module Concepts of Machine Intelligence

M.Sc. Data Science: module Electives in Data Science

other students welcome
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Prerequisites

prerequisites:

general computer science background: good knowledge of

algorithms and data structures
complexity theory
mathematical logic
programming

background in Artificial Intelligence:

Foundations of Artificial Intelligence course (13548)
in particular chapters on state-space search

Gaps?
⇝ talk to us to discuss a self-study plan to catch up
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Exam

written examination (105 min)

date and time: January 28, 14:00–16:00

place: Biozentrum, room U1.131

8 ECTS credits

admission to exam: 50% of the exercise marks

final grade based on exam exclusively

no repeat exam (except in case of illness)
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Exercise Sheets

exercise sheets (homework assignments):

solved in groups of two or three (3 < 4), submitted in ADAM

weekly homework assignments

released Monday before the lecture
have questions or need help?
⇝ assistance provided in Wednesday exercises
not sure if you need help?
⇝ start before Wednesday!
due following Monday at 23:59

mixture of theory, programming and experiments

range from basic understanding to research-oriented
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Programming Exercises

programming exercises:

part of regular assignments

solutions that obviously do not work: 0 marks

work with existing C++ and Python code
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Exercise Sessions

exercise sessions:

ask questions about current assignments (and course)

work on homework assignments

discuss past homework assignments
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Plagiarism

Plagiarism

Plagiarism is presenting someone else’s work, ideas, or words
as your own, without proper attribution.

For example:

Using someone’s text without citation

Paraphrasing too closely

Using information from a source without attribution

Passing off AI-generated content as your own original work

Long-term impact:

You undermine your own learning.

You start to lose confidence in your ability to think, write,
and solve problems independently.

Damage to academic reputation and professional
consequences in future careers
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Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!
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Special Needs?

We (and the university) strive for equality of students
with disabilities or chronic illnesses.

Contact the lecturers for small adaptations.

Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.
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Learning Objectives

Learning Objectives

get to know theoretical and algorithmic foundations of
classical planning and work on practical implementations

understand fundamental concepts underlying modern planning
algorithms and theoretical relationships that connect them

become equipped to understand research papers
and conduct projects in this area
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Course Material

course material:

slides (online)

no textbook

additional material on request
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Git Repository

We use a git repository for programming exercises
and for demos during the lecture.

Setting up the repository is your first task for the exercises.
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Demo Examples

When working with the repository, go to its base directory:

Base Directory for Demos and Exercises

$ cd planopt-hs25

One-time demo set-up (from the base directory)
if the necessary software is installed on your machine:

Demo Set-Up

$ cd demo/fast-downward

$ ./build.py
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Under Construction. . .

Advanced courses are close to the frontiers of research
and therefore constantly change.

We are always happy about feedback,
corrections and suggestions!
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Before We Start. . .

Prelude (Chapters A1–A3): very high-level intro to planning

our goal: give you a little feeling what planning is about

preface to the actual course

⇝ main course content (beginning with Chapter B1)
will be mathematically formal and rigorous

You can ignore the prelude when preparing for the exam.
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Planning
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General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created
in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell
intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle,
by GPS. [. . . ]

GPS was the first computer program which separated its
knowledge of problems (rules represented as input data) from its
strategy of how to solve problems (a generic solver engine).

⇝ these days called “domain-independent automated planning”
⇝ this is what the course is about
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So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)

“Planning is the art and practice of thinking before acting.”
— Patrik Haslum

Automated Planning (More Technical Definition)

“Selecting a goal-leading course of action
based on a high-level description of the world.”

— Jörg Hoffmann

Domain-Independence of Automated Planning

Create one planning algorithm that performs sufficiently well
on many application domains (including future ones).
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General Perspective on Planning
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General Perspective on Planning
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Example: Earth Observation

satellite takes images of patches on Earth

use weather forecast to optimize probability
of high-quality images
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Example: Termes

Harvard TERMES robots, based on termites
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Example: Cybersecurity

CALDERA automated adversary emulation system
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Example: Intelligent Greenhouse

photo © LemnaTec GmbH
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Example: Red-finned Blue-eye

Picture by Iadine Chadès

red-finned blue-eye population threatened by gambusia

springs connected probabilistically during rain season

find strategy to save red-finned blue-eye from extinction
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Classical Planning
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Model-based vs. Data-driven Approaches

Model-based approaches know
the “inner workings” of the world
⇝ reasoning

Data-driven approaches rely only
on collected data from a black-box world
⇝ learning

We focus on model-based approaches.
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Planning Tasks

input to a planning algorithm: planning task

initial state of the world

actions that change the state

goal to be achieved

output of a planning algorithm:

plan: sequence of actions taking initial state to a goal state

or confirmation that no plan exists

⇝ formal definitions later in the course
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The Planning Research Landscape

one of the major subfields of Artificial Intelligence (AI)

represented at major AI conferences (IJCAI, AAAI, ECAI)

annual specialized conference ICAPS (≈ 250 participants)

major journals: general AI journals (AIJ, JAIR)
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Classical Planning

This course covers classical planning:

offline (static)

discrete

deterministic

fully observable

single-agent

sequential (plans are action sequences)

domain-independent

This is just one facet of planning.

Many others are studied in AI. Algorithmic ideas often
(but not always) translate well to more general problems.
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More General Planning Topics

More general kinds of planning include:

offline: online planning; planning and execution

discrete: continuous planning (e.g., real-time/hybrid systems)

deterministic: FOND planning; probabilistic planning

single-agent: multi-agent planning; general game playing;
game-theoretic planning

fully observable: POND planning; conformant planning

sequential: e.g., temporal planning

Domain-dependent planning problems in AI include:

pathfinding, including grid-based and multi-agent (MAPF)

continuous motion planning
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Planning Task Examples
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Example: The Seven Bridges of Königsberg

image credits: Bogdan Giuşcă (public domain)

Demo

$ ls demo/koenigsberg
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Example: Intelligent Greenhouse

photo © LemnaTec GmbH

Demo

$ ls demo/ipc/scanalyzer-08-strips
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Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Demo Material

$ ls demo/ipc/freecell
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Many More Examples

Demo

$ ls demo/ipc

agricola-opt18-strips

agricola-sat18-strips

airport

airport-adl

assembly

barman-mco14-strips

barman-opt11-strips

barman-opt14-strips

. . .

⇝ (most) benchmarks of planning competitions IPC since 1998
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How Hard is Planning?
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Classical Planning as State-Space Search

classical planning as state-space search:

⇝ much more on this later in the course
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Is Planning Difficult?

Classical planning is computationally challenging:

number of states grows exponentially with description size
when using (propositional) logic-based representations

provably hard (PSPACE-complete)

⇝ we prove this later in the course

problem sizes:

Seven Bridges of Königsberg: 64 reachable states

Rubik’s Cube: 4.325 · 1019 reachable states
⇝ consider 2 billion/second ⇝ 1 billion years

standard benchmarks: some with > 10200 reachable states
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Summary

planning = thinking before acting

major subarea of Artificial Intelligence

domain-independent planning = general problem solving

classical planning = the “easy case”
(deterministic, fully observable etc.)

still hard enough!
⇝ PSPACE-complete because of huge number of states

often solved by state-space search

number of states grows exponentially with input size
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Getting to Know a Planner

We now play around a bit with a planner and its input:

look at problem formulation

run a planner (= planning system/planning algorithm)

validate plans found by the planner
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Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

because we know it well (developed by our research group)

because it implements many search algorithms and heuristics

because it is the classical planner most commonly used
as a basis for other planners

⇝ https://www.fast-downward.org

https://www.fast-downward.org
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Validator: VAL

VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

very useful debugging tool

https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL
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15-Puzzle
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Illustrating Example: 15-Puzzle

9 2 12 7

5 6 14 13

3 11 1

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
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Solving the 15-Puzzle

Demo

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzle01.pddl

$ ./fast-downward.py \

tile/puzzle.pddl tile/puzzle01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

$ validate tile/puzzle.pddl tile/puzzle01.pddl \

sas_plan

. . .
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Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:

moving different tiles has different cost

cost of moving tile x = number of prime factors of x

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzle01.pddl tile/weight01.pddl

$ ./fast-downward.py \

tile/weight.pddl tile/weight01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .
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Variation: Glued 15-Puzzle

Glued 15-Puzzle:

some tiles are glued in place and cannot be moved

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/glued.pddl

$ meld tile/puzzle01.pddl tile/glued01.pddl

$ ./fast-downward.py \

tile/glued.pddl tile/glued01.pddl \

--heuristic "h=cg()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Note: different heuristic used!



Fast Downward and VAL 15-Puzzle Summary

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzle01.pddl tile/cheat01.pddl

$ ./fast-downward.py \

tile/cheat.pddl tile/cheat01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .
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Summary

We saw planning tasks modeled in the PDDL language.

We ran the Fast Downward planner and VAL plan validator.

We made some modifications to PDDL problem formulations
and checked the impact on the planner.
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Next Steps

Our next steps are to formally define our problem:

introduce a mathematical model for planning tasks:
transition systems
⇝ Chapter B1

introduce compact representations for planning tasks
suitable as input for planning algorithms
⇝ Chapter B2
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Transition Systems
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Transition System Example

Transition systems are often depicted as directed arc-labeled
graphs with decorations to indicate the initial state and goal states.

ℓ1

ℓ1

ℓ1

ℓ1

ℓ3
ℓ3

ℓ2

ℓ4

ℓ3

ℓ4

ℓ4

ℓ4

ℓ2 ℓ2

c(ℓ1) = 1, c(ℓ2) = 1, c(ℓ3) = 5, c(ℓ4) = 0
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Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = ⟨S , L, c ,T , s0, S⋆⟩ where
S is a finite set of states,

L is a finite set of (transition) labels,

c : L → R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s ′⟩ if ⟨s, ℓ, s ′⟩ ∈ T .

We also write this as s
ℓ−→ s ′, or s → s ′ when not interested in ℓ.

Note: Transition systems are also called state spaces.
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Deterministic Transition Systems

Definition (Deterministic Transition System)

A transition system is called deterministic if for all states s

and all labels ℓ, there is at most one state s ′ with s
ℓ−→ s ′.

Example: previously shown transition system
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Transition System Terminology (1)

We use common terminology from graph theory:

s ′ successor of s if s → s ′

s predecessor of s ′ if s → s ′
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Transition System Terminology (2)

We use common terminology from graph theory:

s ′ reachable from s if there exists a sequence of transitions

s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn s.t. s0 = s and sn = s ′

Note: n = 0 possible; then s = s ′

s0, . . . , sn is called (state) path from s to s ′

ℓ1, . . . , ℓn is called (label) path from s to s ′

s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn is called trace from s to s ′

length of path/trace is n
cost of label path/trace is

∑n
i=1 c(ℓi )
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Transition System Terminology (3)

We use common terminology from graph theory:

s ′ reachable (without reference state) means
reachable from initial state s0
solution or goal path from s: path from s to some s ′ ∈ S⋆

if s is omitted, s = s0 is implied

transition system solvable if a goal path from s0 exists
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Example: Blocks World
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Running Example: Blocks World

Throughout the course, we occasionally use
the blocks world domain as an example.

In the blocks world, a number of different blocks
are arranged on a table.

Our job is to rearrange them according to a given goal.



Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Blocks World Rules (1)

Location on the table does not matter.

≡

Location on a block does not matter.

≡
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Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.
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Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.
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Blocks World Computational Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

Finding a shortest solution is NP-complete
given a compact description of the problem.
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The Need for Compact Descriptions

We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

We therefore need compact descriptions of transition systems.

For this purpose, we will use propositional logic,
which allows expressing information about 2n states
as logical formulas over n state variables.
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Reminder: Propositional Logic
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More on Propositional Logic

Need to Catch Up?

This section is a reminder. We assume you are already
well familiar with propositional logic.

If this is not the case, we recommend Chapters D1–D4
of the Discrete Mathematics in Computer Science course:
https://dmi.unibas.ch/en/studies/
computer-science/course-offer-hs24/
lecture-discrete-mathematics-in-computer-science/

Videos for these chapters are available on request.

https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/


Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Syntax of Propositional Logic

Definition (Logical Formula)

Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

⊤ and ⊥ are logical formulas (truth and falsity).

For all a ∈ A, a is a logical formula (atom).

If φ is a logical formula, then so is ¬φ (negation).

If φ and ψ are logical formulas, then so are
(φ ∨ ψ) (disjunction) and (φ ∧ ψ) (conjunction).
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Syntactical Conventions for Propositional Logic

Abbreviations:

(φ→ ψ) is short for (¬φ ∨ ψ) (implication)

(φ↔ ψ) is short for ((φ→ ψ) ∧ (ψ → φ)) (equijunction)

parentheses omitted when not necessary:

(¬) binds more tightly than binary connectives
(∧) binds more tightly than (∨),
which binds more tightly than (→),
which binds more tightly than (↔)



Transition Systems Example: Blocks World Reminder: Propositional Logic Summary

Semantics of Propositional Logic

Definition (Interpretation, Model)

An interpretation of propositions A is a function I : A → {T,F}.

Define the notation I |= φ (I satisfies φ; I is a model of φ;
φ is true under I ) for interpretations I and formulas φ by

I |= ⊤
I ̸|= ⊥
I |= a iff I (a) = T (for all a ∈ A)

I |= ¬φ iff I ̸|= φ

I |= (φ ∨ ψ) iff (I |= φ or I |= ψ)

I |= (φ ∧ ψ) iff (I |= φ and I |= ψ)

Note: Interpretations are also called valuations

Note:

or truth assignments.
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Propositional Logic Terminology (1)

A logical formula φ is satisfiable
if there is at least one interpretation I such that I |= φ.

Otherwise it is unsatisfiable.

A logical formula φ is valid or a tautology
if I |= φ for all interpretations I .

A logical formula ψ is a logical consequence
of a logical formula φ, written φ |= ψ,
if I |= ψ for all interpretations I with I |= φ.

Two logical formulas φ and ψ are logically equivalent,
written φ ≡ ψ, if φ |= ψ and ψ |= φ.

Question: How to phrase these in terms of models?
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Propositional Logic Terminology (2)

A logical formula that is a proposition a or a negated
proposition ¬a for some atomic proposition a ∈ A is a literal.

A formula that is a disjunction of literals is a clause.
This includes unit clauses ℓ consisting of a single literal
and the empty clause ⊥ consisting of zero literals.

A formula that is a conjunction of literals is a monomial.
This includes unit monomials ℓ consisting of a single literal
and the empty monomial ⊤ consisting of zero literals.

Normal forms:

negation normal form (NNF)

conjunctive normal form (CNF)

disjunctive normal form (DNF)
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Summary
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Summary

Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.

Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.
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Introduction
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The State Explosion Problem

We saw in blocks world:
n blocks ⇝ number of states exponential in n

same is true everywhere we look

known as the state explosion problem

To represent transitions systems compactly,
need to tame these exponentially growing aspects:

states

goal states

transitions
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Running Example: Transition System
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c(m1) = 5, c(m2) = 5, c(l1) = 1, c(l2) = 1, c(u) = 1
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State Variables
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Compact Descriptions of Transition Systems

How to specify huge transition systems
without enumerating the states?

represent different aspects of the world
in terms of different (propositional) state variables

individual state variables are atomic propositions
⇝ a state is an interpretation of state variables

n state variables induce 2n states
⇝ exponentially more compact than “flat” representations

Example: n2 variables suffice for blocks world with n blocks
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Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

A
B

C

⇝ 9 variables for 3 blocks
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Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V , i.e.,
a truth assignment s : V → {T,F}.
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Running Example: Compact State Descriptions

In the running example, we describe 16 states
with 4 propositional state variables (24 = 16).
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Running Example: Opaque States
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Running Example: Using State Variables

state variables V = {i ,w , t1, t2}
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states shown by true literals
example: {i 7→ T,w 7→ F, t1 7→ T, t2 7→ F}⇝ i ¬w t1 ¬t2
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Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R

transition labels:

m1/m2: move first/second truck

l1/l2: load package into first/second truck

u: unload package from a truck

state variables:

t1 true if first truck is at location L (else at R)

t2 true if second truck is at location L (else at R)

i true if package is inside a truck

w encodes where exactly the package is:

if i is true, w true if package in first truck
if i is false, w true if package at location L
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State Formulas
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Representing Sets of States

How do we compactly represent sets of states,
for example the set of goal states?

Idea: formula φ over the state variables represents the models of φ.

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.
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Running Example: Representing Goal States
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goal formula γ = ¬i ∧ ¬w represents goal states S⋆
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Operators and Effects
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Operators Representing Transitions

How do we compactly represent transitions?

most complex aspect of a planning task

central concept: operators

Idea: one operator o for each transition label ℓ, describing

in which states s a transition s
ℓ−→ s ′ exists (precondition)

how state s ′ differs from state s (effect)

what the cost of ℓ is
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Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

a precondition pre(o), a formula over V

an effect eff(o) over V , defined later in this chapter

a cost cost(o) ∈ R+
0

Notes:

Operators are also called actions.

Operators are often written as triples ⟨pre(o), eff(o), cost(o)⟩.
This can be abbreviated to pairs ⟨pre(o), eff(o)⟩
when the cost of the operator is irrelevant.
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Running Example: Operator Preconditions
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Running Example: Operator Preconditions
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¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
1

m
1

m
2

m
2

m
2

m
2

m 1

m 1

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1m 1

m 1

m 2

m 2
m
2

m
2

l1

u

l2

u

l1

u

l2

u

m
2

m
2

m
1

m
1

m
1

m
1

m
2

m
2

m 2

m 2

m
1

m
1

¬i w
¬t1¬t2

¬i w
t1 t2

¬i w
t1 ¬t2

¬i w
¬t1 t2

i w
t1 ¬t2

i w
t1 t2

i ¬w
t1 t2

i ¬w
¬t1 t2

i w
¬t1 t2

i w
¬t1¬t2

i ¬w
¬t1¬t2

i ¬w
t1 ¬t2

¬i ¬w
¬t1¬t2

¬i ¬w
¬t1 t2

¬i ¬w
t1 ¬t2

¬i¬w
t1 t2

m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2
m
2

m
2

m
2

m
2

m
2

m
2

m 2

m 2



Introduction State Variables State Formulas Operators and Effects Summary

Running Example: Operator Preconditions

pre(u) = i
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Running Example: Operator Preconditions

pre(l1) = ¬i ∧ (w ↔ t1)
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Running Example: Operator Preconditions

pre(l2) = ¬i ∧ (w ↔ t2)
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Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that ((e ∧ e ′) ∧ e ′′) behaves identically

Example:

to (e ∧ (e ′ ∧ e ′′)) and will write this as e ∧ e ′ ∧ e ′′.
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Effects: Intuition

Intuition for effects:

The empty effect ⊤ changes nothing.

Atomic effects can be understood as assignments
that update the value of a state variable.

v means “v := T”
¬v means “v := F”

A conjunctive effect e = (e ′ ∧ e ′′) means that both subeffects
e and e ′ take place simultaneously.

A conditional effect e = (χ ▷ e ′) means that subeffect e ′

takes place iff χ is true in the state where e takes place.
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Running Example: Operator Effects

eff(l1) = (i ∧ w)
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Running Example: Operator Effects

eff(l2) = (i ∧ ¬w)
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Running Example: Operator Effects

eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1))
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Running Example: Operator Effects

eff(m2) = ((t2 ▷ ¬t2) ∧ (¬t2 ▷ t2))
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Running Example: Operator Effects

eff(u) = ¬i ∧ (w ▷ ((t1 ▷ w) ∧ (¬t1 ▷ ¬w)))
∧ (¬w ▷ ((t2 ▷ w) ∧ (¬t2 ▷ ¬w)))
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Summary

Propositional state variables let us compactly describe
properties of large transition systems.

A state is an assignment to a set of state variables.

Sets of states are represented as formulas over state variables.

Operators describe when (precondition), how (effect)
and at which cost the state of the world can be changed.

Effects are structured objects including
empty, atomic, conjunctive and conditional effects.
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Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)

Let ℓ be an atomic effect, and let e be an effect.

The effect condition effcond(ℓ, e) under which ℓ triggers
given the effect e is a propositional formula defined as follows:

effcond(ℓ,⊤) = ⊥
effcond(ℓ, e) = ⊤ for the atomic effect e = ℓ

effcond(ℓ, e) = ⊥ for all atomic effects e = ℓ′ ̸= ℓ

effcond(ℓ, (e ∧ e ′)) = (effcond(ℓ, e) ∨ effcond(ℓ, e ′))

effcond(ℓ, (χ ▷ e)) = (χ ∧ effcond(ℓ, e))

Intuition: effcond(ℓ, e) represents the condition that must be true
in the current state for the effect e to lead to the atomic effect ℓ
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Effect Condition: Example (1)

Example

Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).

Under which conditions does it set t1 to false?

effcond(¬t1, eff(m1)) = effcond(¬t1, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))

= effcond(¬t1, (t1 ▷ ¬t1)) ∨

=

effcond(¬t1, (¬t1 ▷ t1))

= (t1 ∧ effcond(¬t1,¬t1)) ∨

=

(¬t1 ∧ effcond(¬t1, t1))
= (t1 ∧ ⊤) ∨ (¬t1 ∧ ⊥)

≡ t1 ∨ ⊥
≡ t1
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Effect Condition: Example (2)

Example

Consider the move operator m1 from the running example:
eff(m1) = ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)).

Under which conditions does it set i to true?

effcond(i , eff(m1)) = effcond(i , ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)))

= effcond(i , (t1 ▷ ¬t1)) ∨

=

effcond(i , (¬t1 ▷ t1))

= (t1 ∧ effcond(i ,¬t1)) ∨

=

(¬t1 ∧ effcond(i , t1))

= (t1 ∧ ⊥) ∨ (¬t1 ∧ ⊥)

≡ ⊥ ∨⊥
≡ ⊥
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Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written sJeK,
is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e)

∧ ¬effcond(v , e)

s(v) otherwise

What is the problem with this definition?
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Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written sJeK,
is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)
s(v) otherwise

What is the problem with this definition?
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Add-after-Delete Semantics

Note:

The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

This is called add-after-delete semantics.

This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.
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Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V , and let o be an operator over V .

Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state sJeff(o)K.
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Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple Π = ⟨V , I ,O, γ⟩ where
V is a finite set of propositional state variables,

I is an interpretation of V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.
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Running Example: Planning Task

Example

From the previous chapter, we see that the running example
can be represented by the task Π = ⟨V , I ,O, γ⟩ with

V = {i ,w , t1, t2}
I = {i 7→ F,w 7→ T, t1 7→ F, t2 7→ F}
O = {m1,m2, l1, l2, u} where

m1 = ⟨⊤, ((t1 ▷ ¬t1) ∧ (¬t1 ▷ t1)), 5⟩
m2 = ⟨⊤, ((t2 ▷ ¬t2) ∧ (¬t2 ▷ t2)), 5⟩
l1 = ⟨¬i ∧ (w ↔ t1), (i ∧ w), 1⟩
l2 = ⟨¬i ∧ (w ↔ t2), (i ∧ ¬w), 1⟩
u = ⟨i ,¬i ∧ (w ▷ ((t1 ▷ w) ∧ (¬t1 ▷ ¬w)))

∧ (¬w ▷ ((t2 ▷ w) ∧ (¬t2 ▷ ¬w))), 1⟩
γ = ¬i ∧ ¬w
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Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.
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Planning Tasks: Terminology

Terminology for transitions systems is also applied
to the planning tasks Π that induce them.

For example, when we speak of the states of Π,
we mean the states of T (Π).

A sequence of operators that forms a solution of T (Π)
is called a plan of Π.
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Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π,

or unsolvable if no plan for Π exists
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Summary

Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

A planning task consists of a set of state variables and an
initial state, operators and goal over these state variables.

We gave formal definitions for these concepts.

In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.
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Reminder & Motivation
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Reminder: Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
e.g. c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷ ¬a)

⇝ Can we make our life easier?
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Reminder: Semantics of Effects

effcond(ℓ, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ℓ

add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v , e) and s |= effcond(¬v , e),
then s ′(v) = T in the resulting state s ′.

This is a very subtle detail.
⇝ Can we make our life easier?
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Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.
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Notation: Applying Operator Sequences

Existing notation:

We already write sJoK for the resulting state
after applying operator o in state s.

New extended notation:

For a sequence π = ⟨o1, . . . , on⟩ of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.
This includes the case of an empty operator sequence:
sJ⟨⟩K = s
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Equivalence Transformations
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Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and e ′ over state variables V are equivalent,
written e ≡ e ′, if sJeK = sJe ′K for all states s.

Definition (Equivalent Operators)

Two operators o and o ′ over state variables V are equivalent,
written o ≡ o ′, if cost(o) = cost(o ′) and for all states s, s ′ over V ,

o induces the transition s
o−→ s ′ iff o ′ induces the transition s

o′
−→ s ′.
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Equivalence of Operators and Effects: Theorem

Theorem

Let o and o ′ be operators with pre(o) ≡ pre(o ′), eff(o) ≡ eff(o ′)
and cost(o) = cost(o ′). Then o ≡ o ′.

Note: The converse is not true. (Why not?)
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Equivalence Transformations for Effects

e ∧ e′ ≡ e′ ∧ e (1)

(e ∧ e′) ∧ e′′ ≡ e ∧ (e′ ∧ e′′) (2)

⊤ ∧ e ≡ e (3)

χ ▷ e ≡ χ′ ▷ e if χ ≡ χ′ (4)

⊤ ▷ e ≡ e (5)

⊥ ▷ e ≡ ⊤ (6)

χ ▷ (χ′ ▷ e) ≡ (χ ∧ χ′) ▷ e (7)

χ ▷ (e ∧ e′) ≡ (χ ▷ e) ∧ (χ ▷ e′) (8)

(χ ▷ e) ∧ (χ′ ▷ e) ≡ (χ ∨ χ′) ▷ e (9)
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Conflict-Freeness: Motivation

The add-after-delete semantics makes effects like
(a ▷ c) ∧ (b ▷ ¬c) somewhat unintuitive to interpret.

⇝ What happens in states where a ∧ b is true?

It would be nicer if effcond(ℓ, e) always were the condition
under which the atomic effect ℓ actually materializes
(because of add-after-delete, it is not)

⇝ introduce normal form where “complicated case” never arises
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Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v , e) ∧ effcond(¬v , e)
is unsatisfiable for all v ∈ V .

An operator o is called conflict-free if eff(o) is conflict-free.



Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Making Operators Conflict-Free

In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)

However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.

Algorithm: given operator o, replace all atomic effects
of the form ¬v by (¬effcond(v , eff(o)) ▷ ¬v).
The resulting operator o ′ is conflict-free and o ≡ o ′. (Why?)
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Flat Effects
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Flat Effects: Motivation

CNF and DNF limit the nesting of connectives
in propositional logic.

For example, a CNF formula is

a conjunction of 0 or more subformulas,
each of which is a disjunction of 0 or more subformulas,
each of which is a literal.

Similarly, we can define a normal form that limits
the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.
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Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect
or of the form (χ ▷ e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff(o) is flat.

Notes: analogously to CNF, we consider

a single simple effect as a conjunction of 1 simple effect

the empty effect as a conjunction of 0 simple effects
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Flat Effect: Example

Example

Consider the effect

c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷¬a)

An equivalent flat (and conflict-free) effect is

c ∧
((a ∧ ¬c) ▷ ¬b) ∧
((a ∧ c) ▷ b) ∧
((a ∧ c) ▷ ¬d) ∧

((¬b ∨ (a ∧ c)) ▷ ¬a)

Note: if we want, we can write c as (⊤ ▷ c) to make the structure
even more uniform, with each simple effect having a condition.
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Producing Flat Operators

Theorem

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.
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Producing Flat Operators: Proof

Proof Sketch.

Replace the effect e over variables V by∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V (effcond(¬v , e) ▷ ¬v),

which is an equivalent flat effect.

To additionally obtain conflict-freeness, use∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V ((effcond(¬v , e) ∧ ¬effcond(v , e)) ▷ ¬v)

instead.

(Conjuncts of the form (χ ▷ e) where χ ≡ ⊥
can be omitted to simplify the effect.)
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Summary

Equivalences can be used to simplify operators and effects.

In conflict-free operators, the “complicated case”
of operator semantics does not arise.

For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.



Planning and Optimization
B5. Positive Normal Form and STRIPS

Malte Helmert and Gabriele Röger
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Motivation
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Example: Freecell

Example (Good and Bad Effects)

If we move K♢ to a free tableau position,
the good effect is that 4♣ is now accessible.
The bad effect is that we lose one free tableau position.
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What is a Good or Bad Effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:

Locking our door is good if we want to keep burglars out.

Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.



Motivation Positive Normal Form STRIPS Summary

Positive Normal Form



Motivation Positive Normal Form STRIPS Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Normal Forms

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints



Motivation Positive Normal Form STRIPS Summary

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula φ is positive if no negation symbols appear in φ.

Note: This includes the negation symbols implied by → and ↔.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff(o) are positive.

Definition (Positive Propositional Planning Task)

A propositional planning task ⟨V , I ,O, γ⟩ is positive
if all operators in O and the goal γ are positive.
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Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify state variable v occurring negatively in conditions.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce new variable v̂ with complementary initial value.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked⟩,
⟨bike ∧ ¬bike-locked, bike-locked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify effects on variable v .
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Introduce complementary effects for v̂ .
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ ¬bike-locked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ ¬bike-locked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Identify negative conditions for v .
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike

Replace by positive condition v̂ .
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {⟨home ∧ bike ∧ bike-unlocked,¬home ∧ uni⟩,

⟨bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked⟩,
⟨bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked⟩,
⟨uni, lecture ∧ ((bike ∧ bike-unlocked) ▷ ¬bike)⟩}

γ = lecture ∧ bike
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Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task Π, there is an equivalent
propositional planning task Π′ in positive normal form.
Moreover, Π′ can be computed from Π in polynomial time.

Note: Equivalence here means that the transition systems induced
by Π and Π′, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)
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Positive Normal Form: Algorithm

Transformation of ⟨V , I ,O, γ⟩ to Positive Normal Form

Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬v :

Let v be a variable which occurs negatively in a condition.
V := V ∪ {v̂} for some new propositional state variable v̂

I (v̂) :=

{
F if I (v) = T

T if I (v) = F

Replace the effect v by (v ∧ ¬v̂) in all operators o ∈ O.
Replace the effect ¬v by (¬v ∧ v̂) in all operators o ∈ O.
Replace ¬v by v̂ in all conditions.

Convert all operators o ∈ O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.
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Why Positive Normal Form is Interesting

In the absence of conditional effects, positive normal form allows
us to distinguish good and bad effects easily:

Effects that make state variables true
(add effects) are good.

Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study in Part D.

(Why restriction “in the absence of conditional effects”?)
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STRIPS
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STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)

An operator o of a prop. planning task is a STRIPS operator if

pre(o) is a conjunction of state variables, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task ⟨V , I ,O, γ⟩ is a STRIPS
planning task if all operators o ∈ O are STRIPS operators
and γ is a conjunction of state variables.

Note: STRIPS operators are conflict-free and flat.

Note:

STRIPS is a special case of positive normal form.
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STRIPS Operators: Remarks

Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vn, ℓ1 ∧ · · · ∧ ℓm⟩

where vi are state variables and ℓj are atomic effects.

Often, STRIPS operators o are described
via three sets of state variables:

the preconditions (state variables occurring in pre(o))
the add effects (state variables occurring positively in eff(o))
the delete effects (state variables occurring negatively in eff(o))

Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.

There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.
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Why STRIPS is Interesting

STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapters B6–B7).

Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STRIPS

STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)
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Transformation to STRIPS

Not every operator is equivalent to a STRIPS operator.

However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)
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Summary
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Summary

A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

A positive task with flat operators is in positive normal form.

STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

Both forms are expressive enough to capture
general propositional planning tasks.

Transformation to positive normal form is possible
with polynomial size increase.

Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.
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Motivation
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How Difficult is Planning?

Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

⇝ Do non-exponential planning algorithms exist?

⇝ What is the precise computational complexity of planning?
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Why Computational Complexity?

understand the problem

know what is not possible

find interesting subproblems that are easier to solve

distinguish essential features from syntactic sugar

Is STRIPS planning easier than general planning?
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Reminder: Complexity Theory

Need to Catch Up?

We assume knowledge of complexity theory:

languages and decision problems
Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
complexity classes: P, NP, PSPACE
polynomial reductions

If you are not familiar with these topics, we recommend
Chapters B11, D1–D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-fs25/

10948-main-lecture-theory-of-computer-science/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
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Turing Machines
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Turing Machines: Conceptually

. . . □ □ □ b a c a c a c a □ □ . . .

infinite tape

read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
⟨Σ,□,Q, q0, qY, δ⟩ with the following components:

input alphabet Σ and blank symbol □ /∈ Σ

alphabets always nonempty and finite
tape alphabet Σ□ = Σ ∪ {□}

finite set Q of internal states with initial state q0 ∈ Q
and accepting state qY ∈ Q

nonterminal states Q ′ := Q \ {qY}
transition relation δ : (Q ′ × Σ□) → 2Q×Σ□×{−1,+1}

Deterministic Turing machine (DTM):
|δ(q, s)| = 1 for all ⟨q, s⟩ ∈ Q ′ × Σ□
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Turing Machines: Accepted Words

Initial configuration

state q0
input word on tape, all other tape cells contain □
head on first symbol of input word

Step

If in state q, reading symbol s, and ⟨q′, s ′, d⟩ ∈ δ(q, s) then
the NTM can transition to state q′, replacing s with s ′ and
moving the head one cell to the left/right (d = −1/+1).

Input word (∈ Σ∗) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state qY.
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Complexity Classes
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let f : N0 → N0.

A NTM accepts language L ⊆ Σ∗ in time f if it accepts each w ∈ L
within f (|w |) steps and does not accept any w /∈ L (in any time).

It accepts language L ⊆ Σ∗ in space f if it accepts each w ∈ L
using at most f (|w |) tape cells and does not accept any w /∈ L.
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f ) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f ) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f ) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f ) contains all languages
accepted in space f by some NTM.
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Polynomial Time and Space Classes

Let P be the set of polynomials p : N0 → N0

whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P =
⋃

p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.

P ⊆ NP and PSPACE ⊆ NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch’s theorem (Savitch 1970).
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Summary
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Summary

We recalled the definitions of the most important
complexity classes from complexity theory:

P: decision problems solvable in polynomial time
NP: decision problems solvable in polynomial time
by nondeterministic algorithms
PSPACE: decision problems solvable in polynomial space
NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

These classes are related by P ⊆ NP ⊆ PSPACE = NPSPACE.
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(Bounded-Cost) Plan Existence
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Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PlanEx) is the following decision problem:

Given: planning task Π
Question: Is there a plan for Π?

⇝ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPlanEx)
is the following decision problem:

Given: planning task Π, cost bound K ∈ N0

Question: Is there a plan for Π with cost at most K?

⇝ decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PlanEx to BCPlanEx)

PlanEx ≤p BCPlanEx

Proof.

Consider a planning task Π with state variables V .

Let cmax be the maximal cost of all operators of Π.

Compute the number of states of Π as N = 2|V |.

Π is solvable iff there is solution with cost at most cmax · (N − 1)
because a solution need not visit any state twice.

⇝ map instance Π of PlanEx to instance ⟨Π, cmax · (N − 1)⟩

⇝

of BCPlanEx

⇝ polynomial reduction
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PSPACE-Completeness of Planning



Plan Existence PSPACE-Completeness More Complexity Results Summary

Membership in PSPACE

Theorem

BCPlanEx ∈ PSPACE

Proof.

Show BCPlanEx ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(⟨V , I ,O, γ⟩, K ):
s := I
k := K
loop forever:

if s |= γ: accept
guess o ∈ O
if o is not applicable in s: fail
if cost(o) > k : fail
s := sJoK
k := k − cost(o)
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PSPACE-Hardness

Idea: generic reduction

For an arbitrary fixed DTM M with space bound polynomial p
and input w , generate propositional planning task
which is solvable iff M accepts w in space p(|w |).
Without loss of generality, we assume p(n) ≥ n for all n.
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Reduction: State Variables

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

State Variables

stateq for all q ∈ Q

headi for all i ∈ X ∪ {−p(n)− 1, p(n) + 1}
contenti ,a for all i ∈ X , a ∈ Σ□

⇝ allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Initial State

Initially true:

stateq0
head1

contenti ,wi
for all i ∈ {1, . . . , n}

contenti ,□ for all i ∈ X \ {1, . . . , n}
Initially false:

all others
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Reduction: Operators

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Operators

One operator for each transition rule δ(q, a) = ⟨q′, a′, d⟩
and each cell position i ∈ X :

precondition: stateq ∧ headi ∧ contenti ,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a
∧ stateq′ ∧ headi+d ∧ contenti ,a′

Note that add-after-delete semantics are important here!
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Reduction: Goal

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Goal

stateqY
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.

Membership for BCPlanEx was already shown.

Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PlanEx and hardness for BCPlanEx follow
from the polynomial reduction from PlanEx to BCPlanEx.
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More Complexity Results
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

different planning formalisms

e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

syntactic restrictions of planning tasks

e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

semantic restrictions of planning task

e.g., restricting variable dependencies (“causal graphs”)

particular planning domains

e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:

nondeterministic effects:

fully observable: EXP-complete (Littman, 1997)
unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
partially observable: 2-EXP-complete (Rintanen, 2004)

schematic operators:

usually adds one exponential level to PlanEx complexity
e.g., classical case EXPSPACE-complete (Erol et al., 1995)

numerical state variables:

undecidable in most variations (Helmert, 2002)
decidable in restricted setting with at most two
numeric state variables (Helal and Lakemeyer, 2025)
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Summary
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Summary

Classical planning is PSPACE-complete.

This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).

The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:

DTM configurations are encoded by state variables.
Operators simulate transitions between DTM configurations.
The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.

This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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The Big Three
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Classical Planning Algorithms

Let’s start solving planning tasks!

This Chapter and the Next

very high-level overview of classical planning algorithms

bird’s eye view: no details, just some very brief ideas
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The Big Three

Of the many planning approaches, three techniques stand out:

explicit search ⇝ Chapters C3–C4, Parts D–F

SAT planning ⇝ Chapters C5–C6

symbolic search ⇝ Chapters C7–C8

also: many algorithm portfolios
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Satisficing or Optimal Planning?

must carefully distinguish:

satisficing planning: any plan is OK (cheaper ones preferred)

optimal planning: plans must have minimum cost

solved by similar techniques, but:

details very different

almost no overlap between best techniques for satisficing
planning and best techniques for optimal planning

many tasks that are trivial for satisficing planners
are impossibly hard for optimal planners
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Explicit Search
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Explicit Search

You know this one already! (Hopefully.)
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Reminder: State-Space Search

Need to Catch Up?

We assume prior knowledge of basic search algorithms:

uninformed vs. informed (heuristic)
satisficing vs. optimal
heuristics and their properties
specific algorithms: e.g., breadth-first search,
greedy best-first search, A∗

If you are not familiar with them, we recommend Part B
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/

computer-science-informatik/lehrangebot-fs25/

13548-lecture-foundations-of-artificial-intelligence/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ⇝ returns initial state

is goal(s) ⇝ tests if s is a goal state

succ(s) ⇝ returns all pairs ⟨a, s ′⟩ with s
a−→ s ′

cost(a) ⇝ returns cost of action a

h(s) ⇝ returns heuristic value for state s

⇝ Foundations of Artificial Intelligence course, Chap. B2 and B9
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State Space vs. Search Space

Planning tasks induce transition systems (a.k.a. state spaces)
with an initial state, labeled transitions and goal states.

State-space search searches state spaces with an initial state,
a successor function and goal states.

⇝ looks like an obvious correspondence

However, in planning as search, the state space being searched
can be different from the state space of the planning task.

When we need to make a distinction, we speak of

the state space of the planning task
whose states are called world states vs.
the search space of the search algorithm
whose states are called search states.
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Design Choice: Search Direction

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Direction

progression: forward from initial state to goal

regression: backward from goal states to initial state

bidirectional search

⇝ Chapters C3–C4
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Design Choice: Search Algorithm

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Algorithm

uninformed search:
depth-first, breadth-first, iterative depth-first, . . .

heuristic search (systematic):
greedy best-first, A∗, weighted A∗, IDA∗, . . .

heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .
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Design Choice: Search Control

How to apply explicit search to planning? ⇝ many design choices!

Design Choice: Search Control

heuristics for informed search algorithms

pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, . . .

How do we find good heuristics in a domain-independent way?

⇝ one of the main focus areas of classical planning research

⇝ Parts D–F
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Summary
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Summary

(Joint summary follows after next chapter.)



Planning and Optimization
C2. Overview of Classical Planning Algorithms (Part 2)

Malte Helmert and Gabriele Röger
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The Big Three (Repeated from Last Chapter)

Of the many planning approaches, three techniques stand out:

explicit search ⇝ Chapters C3–C4, Parts D–F

SAT planning ⇝ Chapters C5–C6

symbolic search ⇝ Chapters C7–C8

also: many algorithm portfolios
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SAT Planning
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SAT Planning: Basic Idea

formalize problem of finding plan with a given horizon
(length bound) as a propositional satisfiability problem
and feed it to a generic SAT solver

to obtain a (semi-) complete algorithm,
try with increasing horizons until a plan is found
(= the formula is satisfiable)

important optimization: allow applying several non-conflicting
operators “at the same time” so that a shorter horizon suffices
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SAT Encodings: Variables

given propositional planning task ⟨V , I ,O, γ⟩
given horizon T ∈ N0

Variables of SAT Encoding

propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan
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Design Choice: SAT Encoding

Again, there are several important design choices.

Design Choice: SAT Encoding

sequential or parallel

many ways of modeling planning semantics in logic

⇝ main focus of research on SAT planning
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Design Choice: SAT Solver

Again, there are several important design choices.

Design Choice: SAT Solver

out-of-the-box like Glucose, CaDiCal, MiniSAT

planning-specific modifications
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Design Choice: Evaluation Strategy

Again, there are several important design choices.

Design Choice: Evaluation Strategy

always advance horizon by +1 or more aggressively

possibly probe multiple horizons concurrently
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Symbolic Search
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Symbolic Search Planning: Basic Ideas

search processes sets of states at a time

operators, goal states, state sets reachable with a given cost
etc. represented by binary decision diagrams (BDDs)
(or similar data structures)

hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

perform symbolic breadth-first search (or something
more sophisticated) on these set representations
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Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

⇝ If we can implement operations models, {I}, ∩, ̸= ∅, ∪,

⇝

apply and = efficiently, this is a reasonable algorithm.
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Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states ̸= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

⇝ If we can implement operations models, {I}, ∩, ̸= ∅, ∪,

⇝

apply and = efficiently, this is a reasonable algorithm.
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Design Choice: Symbolic Data Structure

Again, there are several important design choices.

Design Choice: Symbolic Data Structure

BDDs

ADDs

EVMDDs

SDDs
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Other Design Choices

additionally, same design choices as for explicit search:

search direction
search algorithm
search control (incl. heuristics)

in practice, hard to make heuristics and other
advanced search control efficient for symbolic search
⇝ rarely used
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Planning System Examples
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Planning Systems: FF

FF (Hoffmann & Nebel, 2001)

problem class: satisficing

algorithm class: explicit search

search direction: forward search

search algorithm: enforced hill-climbing

heuristic: FF heuristic (inadmissible)

other aspects: helpful action pruning; goal agenda manager

⇝ breakthrough for heuristic search planning;

⇝

winner of IPC 2000
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Planning Systems: LAMA

LAMA (Richter & Westphal, 2008)

problem class: satisficing

algorithm class: explicit search

search direction: forward search

search algorithm: restarting Weighted A* (anytime)

heuristic: FF heuristic and landmark heuristic (inadmissible)

other aspects: preferred operators; deferred heuristic
evaluation; multi-queue search

⇝ still one of the leading satisficing planners;

⇝

winner of IPC 2008 and IPC 2011 (satisficing tracks)
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Planning Systems: Madagascar-pC

Madagascar (Rintanen, 2014)

problem class: satisficing

algorithm class: SAT planning

encoding: parallel ∃-step encoding

SAT solver: using planning-specific action variable selection

evaluation strategy: exponential horizons, parallelized probing

other aspects: invariants

⇝ second place at IPC 2014 (agile track)
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Planning Systems: SymBA∗

SymBA∗ (Torralba, 2015)

problem class: optimal

algorithm class: symbolic search

symbolic data structure: BDDs

search direction: bidirectional

search algorithm: mixture of (symbolic) Dijkstra and A∗

heuristic: perimeter abstractions/blind

⇝ winner of IPC 2014 (optimal track)
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Planning Systems: Scorpion

Scorpion 2023 (Seipp, 2023)

problem class: optimal

algorithm class: explicit search

search direction: forward search

search algorithm: A∗

heuristic: abstraction heuristics and cost partitioning

⇝ runner-up of IPC 2023 (optimal track)
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Planning Systems: Fast Downward Stone Soup

Fast Downward Stone Soup 2023, optimal version
(Büchner et al., 2023)

problem class: optimal

algorithm class: (portfolio of) explicit search

search direction: forward search

search algorithm: A∗

heuristic: all admissible heuristics considered in the course

⇝ winner of IPC 2011 (optimal track);

⇝

various awards in IPC 2011–2023
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Planning Systems: SymK

SymK (Speck et al., 2025)

problem class: optimal

algorithm class: symbolic search

symbolic data structure: BDDs

search direction: bidirectional

search algorithm: symbolic Dijkstra algorithm

heuristic: blind
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Summary
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Summary

big three classes of algorithms for classical planning:

explicit search

design choices: search direction, search algorithm,
search control (incl. heuristics)

SAT planning

design choices: SAT encoding, SAT solver, evaluation strategy

symbolic search

design choices: symbolic data structure
+ same ones as for explicit search
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Introduction
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Search Direction

Search direction

one dimension for classifying search algorithms

forward search from initial state to goal based on progression

backward search from goal to initial state based on regression

bidirectional search

In this chapter we look into progression and regression planning.



Introduction Progression Regression Regression for STRIPS Tasks Summary

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ⇝ returns initial state

is goal(s) ⇝ tests if s is a goal state

succ(s) ⇝ returns all pairs ⟨a, s ′⟩ with s
a−→ s ′

cost(a) ⇝ returns cost of action a

h(s) ⇝ returns heuristic value for state s
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Progression
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Planning by Forward Search: Progression

Progression: Computing the successor state sJoK of a state s
with respect to an operator o.

Progression planners find solutions by forward search:

start from initial state

iteratively pick a previously generated state and progress it
through an operator, generating a new state

solution found when a goal state generated

pro: very easy and efficient to implement
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Search Space for Progression

Search Space for Progression

search space for progression in a planning task Π = ⟨V , I ,O, γ⟩
(search states are world states s of Π;
actions of search space are operators o ∈ O)

init() ⇝ returns I

is goal(s) ⇝ tests if s |= γ

succ(s) ⇝ returns all pairs ⟨o, sJoK⟩

⇝

where o ∈ O and o is applicable in s

cost(o) ⇝ returns cost(o) as defined in Π

h(s) ⇝ estimates cost from s to γ (⇝ Parts D–F)
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Regression
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Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states

when applying an operator o in a state s in forward direction,
there is a unique successor state s ′;
if we just applied operator o and ended up in state s ′,
there can be several possible predecessor states s

⇝ in most natural representation for backward search in planning,

⇝

each search state corresponds to a set of world states
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Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S ′, o)
of a set of states S ′ (“subgoal”) given the last operator o
that was applied.

⇝ formal definition in next chapter

Regression planners find solutions by backward search:

start from set of goal states

iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive
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Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

each search state corresponds to a set of world states
(“subgoal”)

each search state is represented by a logical formula:
φ represents {s ∈ S | s |= φ}
many basic search operations like detecting duplicates
are NP-complete or coNP-complete
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Search Space for Regression

Search Space for Regression

search space for regression in a planning task Π = ⟨V , I ,O, γ⟩
(search states are formulas φ describing sets of world states;
actions of search space are operators o ∈ O)

init() ⇝ returns γ

is goal(φ) ⇝ tests if I |= φ

succ(φ) ⇝ returns all pairs ⟨o, regr(φ, o)⟩

⇝

where o ∈ O and regr(φ, o) is defined

cost(o) ⇝ returns cost(o) as defined in Π

h(φ) ⇝ estimates cost from I to φ (⇝ Parts D–F)
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Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3
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Regression Planning Example (Depth-first Search)

γ

φ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3
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Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→)

φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3
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Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3
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Regression Planning Example (Depth-first Search)

γφ1φ1 = regr(γ,−→) φ2

φ2 = regr(φ1,−→)

φ3

φ3 = regr(φ2,−→), I |= φ3
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Regression for STRIPS Tasks
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Regression for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

Consider subgoal φ that is conjunction of atoms a1 ∧ · · · ∧ an
(e.g., the original goal γ of the planning task).

First step: Choose an operator o that deletes no ai .

Second step: Remove any atoms added by o from φ.

Third step: Conjoin pre(o) to φ.

⇝ Outcome of this is regression of φ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one ai
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STRIPS Regression

Definition (STRIPS Regression)

Let φ = φ1 ∧ · · · ∧ φn be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms a1, . . . , ak
and deletes the atoms d1, . . . , dl .

The STRIPS regression of φ with respect to o is

sregr(φ, o) :=

{
⊥ if φi = dj for some i , j

pre(o) ∧
∧
({φ1, . . . , φn} \ {a1, . . . , ak}) else

Note: sregr(φ, o) is again a conjunction of atoms, or ⊥.
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Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ,
all states s and all STRIPS operators o,

s |= sregr(φ, o) iff sJoK |= φ.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.
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Summary
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Summary

Progression search proceeds forward from the initial state.

In progression search, the search space is identical
to the state space of the planning task.

Regression search proceeds backwards from the goal.

Each search state corresponds to a set of world states,
for example represented by a formula.

Regression is simple for STRIPS operators.

The theory for general regression is more complex.
This is the topic of the following chapter.
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Regression for General Planning Tasks

With disjunctions and conditional effects, things become more
tricky. How to regress a ∨ (b ∧ c) with respect to ⟨q, d ▷ b⟩?
In this chapter, we show how to regress general sets of states
through general operators.

We extensively use the idea of representing sets of states
as formulas.
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Regressing State Variables
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Regressing State Variables: Motivation

Key question for general regression:

Assume we are applying an operator with effect e.

What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.
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Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s ′.

Propositional state variable v is true in s ′ iff

effect e makes it true, or

it remains true, i.e., it is true in s and not made false by e.
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Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v , e),
is defined as the following logical formula:

regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).

Does this capture add-after-delete semantics correctly?
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Regressing State Variables: Example

Example

Let e = (b ▷ a) ∧ (c ▷ ¬a) ∧ b ∧ ¬d .

v effcond(v , e) effcond(¬v , e) regr(v , e)

a b c b ∨ (a ∧ ¬c)
b ⊤ ⊥ ⊤ ∨ (b ∧ ¬⊥) ≡ ⊤
c ⊥ ⊥ ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ⊤ ⊥ ∨ (d ∧ ¬⊤) ≡ ⊥

Reminder: regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))
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Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v , e))

Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v , e) iff sJeK |= v.
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Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .
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Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .
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Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. B3).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s ̸|= effcond(¬v , e).
We may additionally assume s ̸|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .
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Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .



Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .
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Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .
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Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .
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Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s ̸|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).
Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).
From the first conjunct, we get s |= ¬effcond(v , e)
and hence s ̸|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).
Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK ̸|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK ̸|= v .
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Regressing State Variables: Correctness (3)

Proof (continued).
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Regressing Formulas Through Effects
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Regressing Formulas Through Effects: Idea

We can now generalize regression from state variables
to general formulas over state variables.

The basic idea is to replace every occurrence of every state
variable v by regr(v , e) as defined in the previous section.

The following definition makes this more formal.
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Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,
and let φ be a formula over propositional state variables.

The regression of φ through e, written regr(φ, e),
is defined as the following logical formula:

regr(⊤, e) = ⊤
regr(⊥, e) = ⊥
regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))

regr(¬ψ, e) = ¬regr(ψ, e)
regr(ψ ∨ χ, e) = regr(ψ, e) ∨ regr(χ, e)

regr(ψ ∧ χ, e) = regr(ψ, e) ∧ regr(χ, e).
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Regressing Formulas Through Effects: Example

Example

Let e = (b ▷ a) ∧ (c ▷ ¬a) ∧ b ∧ ¬d .
Recall:

regr(a, e) ≡ b ∨ (a ∧ ¬c)
regr(b, e) ≡ ⊤
regr(c , e) ≡ c

regr(d , e) ≡ ⊥
We get:

regr((a ∨ d) ∧ (c ∨ d), e) ≡ ((b ∨ (a ∧ ¬c)) ∨ ⊥) ∧ (c ∨ ⊥)

≡ (b ∨ (a ∧ ¬c)) ∧ c

≡ b ∧ c
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Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(φ, e))

Let φ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s |= regr(φ, e) iff sJeK |= φ.
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Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of φ.

Base case φ = ⊤:

We have regr(⊤, e) = ⊤, and s |= ⊤ iff sJeK |= ⊤ is correct.

Base case φ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case φ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .
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Regressing Formulas Through Effects: Correctness (2)
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case φ = ¬ψ:
s |= regr(¬ψ, e) iff s |= ¬regr(ψ, e)

iff s ̸|= regr(ψ, e)
iff sJeK ̸|= ψ
iff sJeK |= ¬ψ

Inductive case φ = ψ ∨ χ:
s |= regr(ψ ∨ χ, e) iff s |= regr(ψ, e) ∨ regr(χ, e)

iff s |= regr(ψ, e) or s |= regr(χ, e)
iff sJeK |= ψ or sJeK |= χ
iff sJeK |= ψ ∨ χ

Inductive case φ = ψ ∧ χ:
Like previous case, replacing “∨” by “∧”
and replacing “or” by “and”.
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).
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Regressing Formulas Through
Operators
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Regressing Formulas Through Operators: Idea

We can now regress arbitrary formulas
through arbitrary effects.

The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula φ.

There are two requirements:

The operator o must be applicable in the state s.
The resulting state sJoK must satisfy φ.
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Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let φ be a formula over state variables.

The regression of φ through o, written regr(φ, o),
is defined as the following logical formula:

regr(φ, o) = pre(o) ∧ regr(φ, eff(o)).
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Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(φ, o))

Let φ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s |= regr(φ, o) iff o is applicable in s and sJoK |= φ.
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Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(φ, o) = pre(o) ∧ regr(φ, eff(o))

Proof.

Case 1: s |= pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(φ, e) iff sJeK |= φ, where e = eff(o).
This was proved in the previous lemma.

Case 2: s ̸|= pre(o).

Then s ̸|= regr(φ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.
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Regressing Formulas Through Operators: Correctness (2)
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simplifies to: s |= regr(φ, e) iff sJeK |= φ, where e = eff(o).
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Case 2: s ̸|= pre(o).

Then s ̸|= regr(φ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.
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Regression Examples (1)

Examples: compute regression and simplify to DNF

regr(b, ⟨a, b⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥))
≡ a

regr(b ∧ c ∧ d , ⟨a, b⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥))
≡ a ∧ c ∧ d

regr(b ∧ ¬c , ⟨a, b ∧ c⟩)
≡ a ∧ (⊤ ∨ (b ∧ ¬⊥)) ∧ ¬(⊤ ∨ (c ∧ ¬⊥))
≡ a ∧ ⊤ ∧ ⊥
≡ ⊥
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Regression Examples (2)

Examples: compute regression and simplify to DNF

regr(b, ⟨a, c ▷ b⟩)
≡ a ∧ (c ∨ (b ∧ ¬⊥))
≡ a ∧ (c ∨ b)
≡ (a ∧ c) ∨ (a ∧ b)

regr(b, ⟨a, (c ▷ b) ∧ ((d ∧ ¬c) ▷ ¬b)⟩)
≡ a ∧ (c ∨ (b ∧ ¬(d ∧ ¬c)))
≡ a ∧ (c ∨ (b ∧ (¬d ∨ c)))
≡ a ∧ (c ∨ (b ∧ ¬d) ∨ (b ∧ c))
≡ a ∧ (c ∨ (b ∧ ¬d))
≡ (a ∧ c) ∨ (a ∧ b ∧ ¬d)
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Summary



Regressing State Variables Regressing Formulas Through Effects Regressing Formulas Through Operators Summary

Summary

Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

state variables made true (by add effects)
state variables remaining true (by absence of delete effects)

Regression of propositional state variables can be generalized
to arbitrary formulas φ by replacing each occurrence
of a state variable in φ by its regression.

Regressing a formula φ through an operator involves
regressing φ through the effect and enforcing the precondition.


