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People: Lecturers

Malte Helmert Gabriele Roger

Malte Helmert

m email: malte.helmert@unibas.ch

m office: room 06.004, Spiegelgasse 1

Gabriele Roger

m email: gabriele.roeger@unibas.ch

m office: room 04.005, Spiegelgasse 1
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People: Assistant

Tanja Schindler

Tanja Schindler

m email: tanja.schindler@unibas.ch

m office: room 04.005, Spiegelgasse 1
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People: Tutors

Clemens Biichner Esther Mugdan

Clemens Biichner
m email: clemens.buechner@unibas.ch
m office: room 04.001, Spiegelgasse 5
Esther Mugdan

m email: esther .mugdan@unibas.ch

m office: room 04.001, Spiegelgasse 5
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Time & Place

m time: Mon 14:15-16:00, Wed 14:15-16:00
m place: room 00.003, Spiegelgasse 1

Exercise Sessions
m time: Wed 16:15-18:00
m place: room 00.003, Spiegelgasse 1

first exercise session: today
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Communication Channels

lecture sessions (Mon, Wed)
exercise sessions (Wed)
course homepage

ADAM workspace

Discord server (invitation link on ADAM workspace)

email

registration:
® https://services.unibas.ch/

m Please register today to receive all course-related emails!


https://services.unibas.ch/
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Planning and Optimization Course on the Web

Course Homepage

https://dmi.unibas.ch/en/studies/computer-science/
course-offer-fall-semester-25/
lecture-planning-and-optimization/

m course information

m slides

m link to ADAM workspace

m bonus materials (not relevant for the exam)



https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
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Target Audience

target audience:
m M.Sc. Computer Science
m Major in Machine Intelligence:
module Concepts of Machine Intelligence
module Methods of Machine Intelligence
m Major in Distributed Systems:
module Applications of Distributed Systems
m M.A. Computer Science (“Master-Studienfach™)
module Concepts of Machine Intelligence

m M.Sc. Data Science: module Electives in Data Science

m other students welcome




Coordinates Target Audience & Rules

00@0000000

Prerequisites

prerequisites:
m general computer science background: good knowledge of
m algorithms and data structures
m complexity theory
® mathematical logic
® programming
m background in Artificial Intelligence:

m Foundations of Artificial Intelligence course (13548)
m in particular chapters on state-space search

Gaps?
~ talk to us to discuss a self-study plan to catch up
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written examination (105 min)

date and time: January 28, 14:00-16:00
place: Biozentrum, room U1.131

8 ECTS credits

admission to exam: 50% of the exercise marks

final grade based on exam exclusively

no repeat exam (except in case of illness)
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Exercise Sheets

exercise sheets (homework assignments):
m solved in groups of two or three (3 < 4), submitted in ADAM

m weekly homework assignments
m released Monday before the lecture
m have questions or need help?
~> assistance provided in Wednesday exercises
m not sure if you need help?
~~ start before Wednesday!
m due following Monday at 23:59

m mixture of theory, programming and experiments

m range from basic understanding to research-oriented
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Programming Exercises

programming exercises:
m part of regular assignments
m solutions that obviously do not work: 0 marks

m work with existing C4++ and Python code
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Exercise Sessions

exercise sessions:
m ask questions about current assignments (and course)
m work on homework assignments

m discuss past homework assignments
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Plagiarism

Plagiarism

Plagiarism is presenting someone else's work, ideas, or words
as your own, without proper attribution.

For example:
m Using someone’s text without citation
m Paraphrasing too closely
m Using information from a source without attribution
m Passing off Al-generated content as your own original work
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Plagiarism

Plagiarism

Plagiarism is presenting someone else's work, ideas, or words
as your own, without proper attribution.

For example:
m Using someone’s text without citation
m Paraphrasing too closely
m Using information from a source without attribution
m Passing off Al-generated content as your own original work

Long-term impact:
m You undermine your own learning.
m You start to lose confidence in your ability to think, write,
and solve problems independently.
m Damage to academic reputation and professional
consequences in future careers
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Plagiarism in Exercises

®m You may discuss material from the course,
including the exercise assignments, with your peers.

m But: You have to independently write down your exercise
solutions (in your team).

m Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.
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Plagiarism in Exercises

®m You may discuss material from the course,
including the exercise assignments, with your peers.

m But: You have to independently write down your exercise
solutions (in your team).

m Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

m 0 marks for the exercise sheet (first time)

m exclusion from exam (second time)
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Plagiarism in Exercises

®m You may discuss material from the course,
including the exercise assignments, with your peers.

m But: You have to independently write down your exercise
solutions (in your team).

m Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

m 0 marks for the exercise sheet (first time)

m exclusion from exam (second time)

If in doubt: check with us what is (and isn't) OK before submitting
Exercises too difficult? We are happy to help!



Coordinates Target Audience & Rules
0000000000

Special Needs?

m We (and the university) strive for equality of students
with disabilities or chronic illnesses.

m Contact the lecturers for small adaptations.

m Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.
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Learning Objectives

Learning Objectives

m get to know theoretical and algorithmic foundations of
classical planning and work on practical implementations

m understand fundamental concepts underlying modern planning
algorithms and theoretical relationships that connect them

m become equipped to understand research papers
and conduct projects in this area
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Course Material

course material:
m slides (online)
m no textbook

m additional material on request
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Git Repository

m We use a git repository for programming exercises
and for demos during the lecture.

m Setting up the repository is your first task for the exercises.
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Demo Examples

When working with the repository, go to its base directory:

Base Directory for Demos and Exercises
$ cd planopt-hs25

One-time demo set-up (from the base directory)
if the necessary software is installed on your machine:

Demo Set-Up

$ cd demo/fast-downward
$ ./build.py
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Under Construction. ..

m Advanced courses are close to the frontiers of research
and therefore constantly change.

m We are always happy about feedback,
corrections and suggestions!
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Examples How Hard is Planning?

Before We Start. . .

Prelude (Chapters A1-A3): very high-level intro to planning
m our goal: give you a little feeling what planning is about
m preface to the actual course

~~ main course content (beginning with Chapter B1)
will be mathematically formal and rigorous

m You can ignore the prelude when preparing for the exam.
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General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created
in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell
intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle,
by GPS. [...]

GPS was the first computer program which separated its
knowledge of problems (rules represented as input data) from its
strategy of how to solve problems (a generic solver engine).

~> these days called “domain-independent automated planning”
~ this is what the course is about
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So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)

“Planning is the art and practice of thinking before acting.”
— Patrik Haslum

Automated Planning (More Technical Definition)

“Selecting a goal-leading course of action
based on a high-level description of the world.”
— Jorg Hoffmann

Domain-Independence of Automated Planning

Create one planning algorithm that performs sufficiently well
on many application domains (including future ones).
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General Perspective on Planning
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Planning Task Examples How Hard is Planning? Summar

General Perspective on Planning
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General Perspective on Planning
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Example: Earth Observation

m satellite takes images of patches on Earth

m use weather forecast to optimize probability
of high-quality images
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Example: Termes

Harvard TERMES robots, based on termites
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Example: Cybersecurity

DB Server |
SENSITIVE USERS

CALDERA automated adversary emulation system
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Example: Intelligent Greenhouse

photo (© LemnaTec GmbH
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Example: Red-finned Blue-eye

' Edgbaston Reserve
' (QLD, Australia)

Picture by ladine Chadés

m red-finned blue-eye population threatened by gambusia
m springs connected probabilistically during rain season
m find strategy to save red-finned blue-eye from extinction
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Classical Planning
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Model-based vs. Data-driven Approaches

O Model-based approaches know
@'@ the “inner workings” of the world
~> reasoning

Data-driven approaches rely only
on collected data from a black-box world
~ learning

We focus on model-based approaches.
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Planning Tasks

input to a planning algorithm: planning task
m initial state of the world
m actions that change the state

m goal to be achieved

output of a planning algorithm:
m plan: sequence of actions taking initial state to a goal state

m or confirmation that no plan exists

~ formal definitions later in the course
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The Planning Research Landscape

m one of the major subfields of Artificial Intelligence (Al)
m represented at major Al conferences (IJCAI, AAAI, ECAI)
m annual specialized conference ICAPS (= 250 participants)

m major journals: general Al journals (AlJ, JAIR)
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Classical Planning

This course covers classical planning:
m offline (static)
m discrete
m deterministic
m fully observable
m single-agent
m sequential (plans are action sequences)
m domain-independent
This is just one facet of planning.

Many others are studied in Al. Algorithmic ideas often
(but not always) translate well to more general problems.
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More General Planning Topics

More general kinds of planning include:
m offline: online planning; planning and execution
m diserete: continuous planning (e.g., real-time/hybrid systems)
m deterministie:. FOND planning; probabilistic planning

m single-agent: multi-agent planning; general game playing;
game-theoretic planning

m fuly-ebservable: POND planning; conformant planning
B sequential: e.g., temporal planning

Domain-dependent planning problems in Al include:
m pathfinding, including grid-based and multi-agent (MAPF)

m continuous motion planning
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Planning Task Examples
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Example: The Seven Bridges of Konigsberg

image credits: Bogdan Giusc3 (public domain)

$ 1s demo/koenigsberg I
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$ 1s demo/ipc/scanalyzer-08-strips
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image credits: GNOME Project (GNU General Public License)

Demo Material

$ 1s demo/ipc/freecell
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Many More Examples

$ 1s demo/ipc
agricola-opt18-strips
agricola-sat18-strips
airport

airport-adl

assembly
barman-mcol4-strips
barman-optll-strips
barman-opt14-strips

~~ (most) benchmarks of planning competitions IPC since 1998



How Hard is Planning?



How Hard is Planning? Summar

oeo

Classical Planning as State-Space Search

classical planning as state-space search:

~~ much more on this later in the course
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Is Planning Difficult?

Classical planning is computationally challenging:

m number of states grows exponentially with description size
when using (propositional) logic-based representations

m provably hard (PSPACE-complete)

~ we prove this later in the course

problem sizes:

m Seven Bridges of Konigsberg: 64 reachable states

m Rubik's Cube: 4.325 - 10%° reachable states
~~ consider 2 billion/second ~~ 1 billion years

m standard benchmarks: some with > 10290 reachable states
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Summary

planning = thinking before acting
major subarea of Artificial Intelligence
domain-independent planning = general problem solving

classical planning = the “easy case”
(deterministic, fully observable etc.)

still hard enough!
~» PSPACE-complete because of huge number of states

often solved by state-space search

number of states grows exponentially with input size
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Getting to Know a Planner

We now play around a bit with a planner and its input:
m look at problem formulation

m run a planner (= planning system/planning algorithm)
m validate plans found by the planner
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Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

m because we know it well (developed by our research group)
m because it implements many search algorithms and heuristics

m because it is the classical planner most commonly used
as a basis for other planners

~> https://www.fast-downward.org
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Validator: VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

m very useful debugging tool
m https://github.com/KCL-Planning/VAL
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15-Puzzle
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[llustrating Example: 15-Puzzle

9 2 12 7 1 2 3 4

5 6 14 | 13 5 6 7 8
Z. 11 1 ' 9 10 | 11 | 12
| 15 4 10 8 13 | 14 | 15 .

Summary
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Solving the 15-Puzzle

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzleOl.pddl

$ ./fast-downward.py \
tile/puzzle.pddl tile/puzzleOl.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"

$ validate tile/puzzle.pddl tile/puzzleO1.pddl \
sas_plan
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Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:
m moving different tiles has different cost

m cost of moving tile x = number of prime factors of x

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzleOl.pddl tile/weightO1.pddl

$ ./fast-downward.py \
tile/weight.pddl tile/weightO1.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"
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Variation: Glued 15-Puzzle

Glued 15-Puzzle:

m some tiles are glued in place and cannot be moved

$ cd demo
$ meld tile/puzzle.pddl tile/glued.pddl
$ meld tile/puzzleOl.pddl tile/gluedOl.pddl

$ ./fast-downward.py \
tile/glued.pddl tile/glued01.pddl \
——heuristic "h=cgO" \
--search "eager_greedy([h],preferred=[h])"

Note: different heuristic used!
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Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

m Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzleOl.pddl tile/cheatO1l.pddl

$ ./fast-downward.py \
tile/cheat.pddl tile/cheat01.pddl \
--heuristic "h=£ff(" \
--search "eager_greedy([h],preferred=[h])"
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Summary

m We saw planning tasks modeled in the PDDL language.
m We ran the Fast Downward planner and VAL plan validator.

m We made some modifications to PDDL problem formulations
and checked the impact on the planner.
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Next Steps

Our next steps are to formally define our problem:

m introduce a mathematical model for planning tasks:
transition systems
~ Chapter B1

m introduce compact representations for planning tasks
suitable as input for planning algorithms
~> Chapter B2



Transition Systems
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Transition System Example

Transition systems are often depicted as directed arc-labeled
graphs with decorations to indicate the initial state and goal states.

U £l
c(li) =1, c(f2) =1, c(f3) =5, c(ls) =0
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Transition Systems

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Sx) where

m S is a finite set of states,
L is a finite set of (transition) labels,
c:L— ]RaL is a label cost function,
T C S x L xS is the transition relation,
sp € S is the initial state, and
m S, C S is the set of goal states.
We say that T has the transition (s,¢,s) if (s,£,s') € T.

} . ) ; .
We also write this as s — s’, or s — s’ when not interested in ¢.

Note: Transition systems are also called state spaces.
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Deterministic Transition Systems

Definition (Deterministic Transition System)

A transition system is called deterministic if for all states s
. . ¢
and all labels ¢, there is at most one state s’ with s — s’.

Example: previously shown transition system
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Transition System Terminology (1)

We use common terminology from graph theory:
m s’ successor of s if s — ¢

m s predecessor of s’ if s — &’
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Transition System Terminology (2)

We use common terminology from graph theory:
m s’ reachable from s if there exists a sequence of transitions

V4 1 ¢
O st "l Ls"st.s9=sand s" = ¢
m Note: n= 0 possible; then s = ¢
m sO ... s"is called (state) path from s to s’
m (l1,..., 0, is called (label) path from s to s’
¢ A .
ms® st ., 5" 5 57 s called trace from s to s’
m length of path/trace is n
m cost of label path/trace is "7 ; c(¢;)
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Transition System Terminology (3)

We use common terminology from graph theory:
m s’ reachable (without reference state) means
reachable from initial state s
m solution or goal path from s: path from s to some s’ € S,
m if s is omitted, s = sq is implied

m transition system solvable if a goal path from sy exists
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Example: Blocks World
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Running Example: Blocks World

m Throughout the course, we occasionally use
the blocks world domain as an example.

m In the blocks world, a number of different blocks
are arranged on a table.

m Our job is to rearrange them according to a given goal.



Example: Blocks World
[e]e] lelele]e]

Blocks World Rules (1)

Location on the table does not matter.

ﬂ i ' )

Location on a block does not matter.
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Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.
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Blocks World Transition System for Three Blocks

.

b f
iﬁﬂ

e "\

Labels omitted for clarity. All label costs are 1. Initial /goal states not marked.
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Blocks World Computational Properties

blocks states blocks states
1 1 10 58941091
2 3 11 824073141
3 13 12 12470162233
4 73 13 202976401213
5 501 14 3535017524403
6 4051 15 65573803186921
7 37633 16 1290434218669921
8 394353 17 26846616451246353
9 4596553 18 588633468315403843

m Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

m Finding a shortest solution is NP-complete
given a compact description of the problem.
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The Need for Compact Descriptions

m We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

m We therefore need compact descriptions of transition systems.

m For this purpose, we will use propositional logic,
which allows expressing information about 2" states
as logical formulas over n state variables.
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Reminder: Propositional Logic
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More on Propositional Logic

Need to Catch Up?

m This section is a reminder. We assume you are already
well familiar with propositional logic.

m If this is not the case, we recommend Chapters D1-D4

of the Discrete Mathematics in Computer Science course:
https://dmi.unibas.ch/en/studies/
computer-science/course-offer-hs24/
lecture-discrete-mathematics-in-computer-science/

m Videos for these chapters are available on request.
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Syntax of Propositional Logic

Definition (Logical Formula)

Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

m T and L are logical formulas (truth and falsity).
For all a € A, ais a logical formula (atom).

If ¢ is a logical formula, then so is = (negation).

If © and 1) are logical formulas, then so are
(¢ V1) (disjunction) and (¢ A 1) (conjunction).
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Syntactical Conventions for Propositional Logic

Abbreviations:
m (¢ — 1)) is short for (=g V 9) (implication)
m (¢ <> 1)) is short for ((¢ — ) A (¥ — ¢)) (equijunction)
m parentheses omitted when not necessary:

m (—) binds more tightly than binary connectives
m (A) binds more tightly than (V),

which binds more tightly than (—),

which binds more tightly than ()
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Semantics of Propositional Logic

Definition (Interpretation, Model)

An interpretation of propositions A is a function / : A — {T,F}.
Define the notation / |= ¢ (/ satisfies ¢; I is a model of ¢;
@ is true under /) for interpretations / and formulas ¢ by

m /=T

m/EL

m/Ea iff I(a)=T (forall a € A)

m/Ep iff |

mlE=(pvy) iff (IEeorlEqY)

=/ E=(pAy) i (IEpand /=) )

Note: Interpretations are also called valuations
or truth assignments.
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Propositional Logic Terminology (1)

A logical formula ¢ is satisfiable
if there is at least one interpretation / such that | = .

m Otherwise it is unsatisfiable.

m A logical formula ¢ is valid or a tautology
if | |= ¢ for all interpretations /.

m A logical formula v is a logical consequence
of a logical formula ¢, written ¢ = 1),
if | = 4 for all interpretations | with | = .

m Two logical formulas ¢ and 1 are logically equivalent,
written © = ), if ¢ =19 and ¥ = ¢.

Question: How to phrase these in terms of models?
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Propositional Logic Terminology (2)

m A logical formula that is a proposition a or a negated
proposition —a for some atomic proposition a € A is a literal.

m A formula that is a disjunction of literals is a clause.
This includes unit clauses ¢ consisting of a single literal
and the empty clause L consisting of zero literals.

m A formula that is a conjunction of literals is a monomial.
This includes unit monomials ¢ consisting of a single literal
and the empty monomial T consisting of zero literals.

Normal forms:
m negation normal form (NNF)
m conjunctive normal form (CNF)

m disjunctive normal form (DNF)
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Summary

m Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.

m Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.
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State Formulas O and Effects

The State Explosion Problem

m We saw in blocks world:
n blocks ~~» number of states exponential in n

m same is true everywhere we look

m known as the state explosion problem

To represent transitions systems compactly,
need to tame these exponentially growing aspects:

m states
m goal states

m transitions



c(my) =5, c(mp) =5, c(h) =1, c(h)=1, c(u)=1
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Compact Descriptions of Transition Systems

How to specify huge transition systems
without enumerating the states?

m represent different aspects of the world
in terms of different (propositional) state variables

m individual state variables are atomic propositions
~> a state is an interpretation of state variables

m n state variables induce 2" states
~ exponentially more compact than “flat” representations

Example: n? variables suffice for blocks world with n blocks



St t Formulas O tor’s ind Effects Summary

Inm du tion State Variables

00e00000

Blocks World State with Prop05|t|ona| Variables

s(A-on-B) =
s(A-on-C) =
s(A-on-table) =

~~ 9 variables for 3 blocks
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Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.
Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V, i.e.,
a truth assignment s : V — {T,F}.




State Variables
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Running Example: Compact State Descriptions

m In the running example, we describe 16 states
with 4 propositional state variables (2* = 16).



State Variables State Formulas Operators and Effects Summary

00000800 ocoo 0000000

Running Example: Opaque States
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Running Example: Using State Variables

state variables V = {i,w, t;, to}

states shown by true literals
example: {i—» T, w—F ti— T, b F}~i-w it -t
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Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R
transition labels:

m my/my: move first/second truck

m /1/h: load package into first/second truck

m u: unload package from a truck

state variables:
m t; true if first truck is at location L (else at R)
m tp true if second truck is at location L (else at R)

m / true if package is inside a truck
m w encodes where exactly the package is:

m if / is true, w true if package in first truck
m if / is false, w true if package at location L



State Formulas
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State Formulas
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Representing Sets of States

How do we compactly represent sets of states,
for example the set of goal states?

Idea: formula ¢ over the state variables represents the models of ¢.

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.




goal formula v = =/ A —w represents goal states S,



Operators and Effects
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Operators and Effects
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State Formulas

Introduction

Operators Representing Transitions

How do we compactly represent transitions?
m most complex aspect of a planning task

m central concept: operators

Idea: one operator o for each transition label ¢, describing
m in which states s a transition s - s exists (precondition)
m how state s’ differs from state s (effect)

m what the cost of 7 is
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000 B o 000 00®0000

Syntax of Operators

Definition (Operator)
An operator o over state variables V' is an object
with three properties:
m a precondition pre(o), a formula over V
m an effect eff0) over V, defined later in this chapter

m a cost cost(o) € RY

Notes:
m Operators are also called actions.
m Operators are often written as triples (pre(o), eff(0), cost(0)).

m This can be abbreviated to pairs (pre(o), eff(0))
when the cost of the operator is irrelevant.
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Running Example: Operator Preconditions






Running Example: Operator Preconditions
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Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

m If e and € are effects, then (e A €') is an effect
(conjunctive effect).

m If y is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that ((e A €’) A €”) behaves identically
to (e A (€' A €”)) and will write this as e A e’ A €”.
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Introduction S ables State Formulas Operators and Effects

Effects: Intuition

Intuition for effects:
m The empty effect T changes nothing.
m Atomic effects can be understood as assignments
that update the value of a state variable.
m v means “v:=T"

m —v means “v:=F
m A conjunctive effect e = (€’ A €”) means that both subeffects
e and €’ take place simultaneously.

m A conditional effect e = (x > €’) means that subeffect ¢’
takes place iff x is true in the state where e takes place.



Running Example: Operator Effects



Running Example: Operator Effects



Summar

State Variables State Formulas
00000000 coo  000000@

Running Example: Operator Effects

eff(ml) = ((tl > ﬁ1'1) A (—\tl > tl))
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Running Example: Operator Effects

eff(mz) = ((tz > —|t2) A (—|t2 > t2))




)
)

—iA(w > ((t > w)A (-t > —w
A(w (k> w)A (ot > —w

)

eff(u

Running Example: Operator Effects
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Summary

m Propositional state variables let us compactly describe
properties of large transition systems.

A state is an assignment to a set of state variables.

Sets of states are represented as formulas over state variables.

Operators describe when (precondition), how (effect)
and at which cost the state of the world can be changed.

m Effects are structured objects including
empty, atomic, conjunctive and conditional effects.
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Semantics of Effects and Operators
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Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)
Let ¢ be an atomic effect, and let e be an effect.

The effect condition effcond(¥, e) under which ¢ triggers
given the effect e is a propositional formula defined as follows:

m effcond(¢, T) = L

m effcond(¢,e) = T for the atomic effect e = ¢

m effcond({, e) = L for all atomic effects e = ¢/ # /£
m effcond(?, (e A €')) = (effcond(¢, e) \ effcond(?, €'))
m effcond(?, (x > €)) = (x A effcond(¢, €)) )

Intuition: effcond(?, €) represents the condition that must be true
in the current state for the effect e to lead to the atomic effect ¢



Semantics of Effects and Operators
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Effect Condition: Example (1)

Consider the move operator m; from the running example:
effmy) = ((t1 > —t1) A (—t1 > t1)).

Under which conditions does it set t; to false?

effcond(—ty, efimy)) = effcond(—t1, ((t1 > —t1) A (—t1 > t1)))
= effcond(—ty, (t1 > —t1)) V
effcond(—ty, (—ty > t1))
= (t1 A effcond(—t1, —t1)) V
(—t1 A effcond(—ty, t1))
=(t1 AT)V(-t1 A L)
=t VL

=t
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Effect Condition: Example (2)

Consider the move operator m; from the running example:
effmy) = ((t1 > —t1) A (—t1 > t1)).

Under which conditions does it set / to true?

effcond(i, efmy)) = effcond(i, ((t1 > —t1) A (—t1 > t1)))
= effcond(i, (t; > —t1)) V
effcond(i, (—t1 > t1))
= (t1 A effcond(i, —t1)) V
(—t1 A effcond(i, t1))
=(ttAL)V(-t1AL)
=1lvl
=1L
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Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V/, and let e be an effect over V.

The resulting state of applying e in s, written s[e],
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, €)
s'(v)=<(F if s = effcond(—v, e)

s(v) otherwise

What is the problem with this definition?



Semantics of Effects and Operators
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Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e],
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, €)
s'(v)=<F if s |= effcond(—v, e) A —effcond(v, e)
s(v) otherwise




Semantics of Effects and Operators
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Add-after-Delete Semantics

Note:

m The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

m This is called add-after-delete semantics.

m This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.



Summar

Semantics of Effects and Operators
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Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V/, and let o be an operator over V.

Operator o is applicable in s if s = pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff{0)].
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Planning Tasks
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Planning Tasks

Definition (Planning Task)
A (propositional) planning task is a 4-tuple N = (V. I, O, ) where

V is a finite set of propositional state variables,

[
m / is an interpretation of V called the initial state,
m O is a finite set of operators over V, and

[

v is a formula over V called the goal.
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Planning Tasks

Summary
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Running Example: Planning Task

From the previous chapter, we see that the running example

can be represented by the task M= (V,/, O,~) with
V = {i, w, t1, tg}
I={i=»F,w—T,t; = F th— F}
O ={my,my, h,h,u} where

A(=w > ((t > w)

my = <T, ((fl > —|t1) A (_‘tl > t'l)),
my = <T, ((t2 > —|t2) AN (—|t2 > fz)),
= (mi A (w o ), (i Aw),1)
/2 = <_|I N (W <~ tg), (I N _\W)
u=(i,=iN(wp> ((t1 > w)A

(
A

1)

5)
5)

ty > —w)))
(-2 > —w))), 1)
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Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task I = (V, I, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, Sx), where
S is the set of all states over V,

L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€ S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skE=v}
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Planning Tasks: Terminology

m Terminology for transitions systems is also applied
to the planning tasks 1 that induce them.

m For example, when we speak of the states of [1,
we mean the states of 7 (I).

m A sequence of operators that forms a solution of 7 ()
is called a plan of IN.
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Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Il
Output: a plan for I, or unsolvable if no plan for I1 exists

N

Definition (Optimal Planning)

Given: a planning task I1
Output: a plan for 1 with minimal cost among all plans for I,
or unsolvable if no plan for I exists

.
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Summary

Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

A planning task consists of a set of state variables and an
initial state, operators and goal over these state variables.

We gave formal definitions for these concepts.

In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

m In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.
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Reminder: Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

m If e and € are effects, then (e A €') is an effect
(conjunctive effect).

m If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
eg. cA(a> (=bA(c> (bA—dA=a))))A(—b> —a)
~ Can we make our life easier?
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Reminder: Semantics of Effects

m effcond(?, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ¢

m add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v, €) and s |= effcond(—v, e),
then s’(v) = T in the resulting state s’.

This is a very subtle detail.
~~» Can we make our life easier?
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Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.
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Notation: Applying Operator Sequences

Existing notation:

m We already write s[o] for the resulting state
after applying operator o in state s.

New extended notation:

m For a sequence m = (oy, ..., 0n) of operators
that are consecutively applicable in s,
we write s[r] for s[o1][oz2] - - - [on]-

m This includes the case of an empty operator sequence:

s[O1=s
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Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and €’ over state variables V are equivalent,
written e = €', if s[e] = s[[¢'] for all states s.

Definition (Equivalent Operators)

Two operators o and o’ over state variables V are equivalent,
written o = o', if cost(o) = cost(0’) and for all states s, s’ over V,

/
o induces the transition s = s’ iff o’ induces the transition s = s’.
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Equivalence of Operators and Effects: Theorem

Let 0 and o’ be operators with pre(o) = pre(0’), eff(o) = eff{0’)
and cost(o) = cost(o'). Then o = o’.

Note: The converse is not true. (Why not?)
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Equivalence Transformations for Effects

ene = € Ae (1)
(ene)ne” = en(ene’) (2)
The = e (3)
x>e=yxD>e if x =% (4)

Tre =ce (5)
lpe=T (6)

x> (xX'>e) = (xAxX)>e (7)
x> (ene) = (x>e)A(x>e) (8)
(x>e)A(X'>e) = (xVX)>e (9)
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Conflict-Freeness: Motivation

m The add-after-delete semantics makes effects like
(a> c) A (b > —c) somewhat unintuitive to interpret.

~» What happens in states where a A b is true?

m It would be nicer if effcond(¢, e) always were the condition
under which the atomic effect ¢ actually materializes
(because of add-after-delete, it is not)

~> introduce normal form where “complicated case” never arises
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Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v, e) A effcond(—v, e)
is unsatisfiable for all v € V.

An operator o is called conflict-free if eff0) is conflict-free.
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Making Operators Conflict-Free

m In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)
m However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.
m Algorithm: given operator o, replace all atomic effects
of the form —v by (—effcond(v, ef0)) > —v).
The resulting operator o’ is conflict-free and o = o'. (Why?)
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Flat Effects: Motivation
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CNF and DNF limit the nesting of connectives

in propositional logic.

For example, a CNF formula is
m a conjunction of 0 or more subformulas,
m each of which is a disjunction of 0 or more subformulas,
m each of which is a literal.

Similarly, we can define a normal form that limits

the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.
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Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect

or of the form (x > e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff{0) is flat.

Notes: analogously to CNF, we consider
m a single simple effect as a conjunction of 1 simple effect

m the empty effect as a conjunction of 0 simple effects
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Flat Effect: Example

Consider the effect

cA(a> (b A(c> (bA—dA=a)))) A (—b>—a)

An equivalent flat (and conflict-free) effect is

cA
((aA—c) > —b) A
((anc)>b)A
((anc) > —d) A
(=bV(aNc)) > —a)

v

Note: if we want, we can write ¢ as (T > ¢) to make the structure
even more uniform, with each simple effect having a condition.
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Producing Flat Operators

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.
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Producing Flat Operators: Proof

Proof Sketch.
Replace the effect e over variables V' by

A, cv(effcond(v,e) > v)
A Nyey(effcond(—v, e) > —v),

which is an equivalent flat effect.

To additionally obtain conflict-freeness, use

Avcy(effcond(v,e) > v)
A Nvev((effcond(=v, e) A —effcond(v, e)) > —v)

instead.

(Conjuncts of the form (x > e) where y = L
can be omitted to simplify the effect.)
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Summary

m Equivalences can be used to simplify operators and effects.

m In conflict-free operators, the “complicated case”
of operator semantics does not arise.

m For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

m For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

m Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.



Planning and Optimization
B5. Positive Normal Form and STRIPS

Malte Helmert and Gabriele Roger

Universitat Basel

September 29, 2025



Motivation
©00

Motivation



Motivation
0e0

Example: Freecell

Example (Good and Bad Effects)

If we move K¢ to a free tableau position,
the good effect is that 4é is now accessible.
The bad effect is that we lose one free tableau position.
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What is a Good or Bad Effect?

lormal Form

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:
m Locking our door is good if we want to keep burglars out.
m Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.
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Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula ¢ is positive if no negation symbols appear in (.

Note: This includes the negation symbols implied by — and <.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff{0) are positive.

.

Definition (Positive Propositional Planning Task)

A propositional planning task (V/, /1, O, ) is positive
if all operators in O and the goal «y are positive.

.
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Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked'}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike)) }
~v = lecture A bike
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked'}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike \ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture N ((bike N\ —bike-locked) > —bike))}
~v = lecture A bike

Identify state variable v occurring negatively in conditions.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}
~v = lecture A bike

Introduce new variable ¥ with complementary initial value.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}
~v = lecture A bike

Identify effects on variable v.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike N\ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N\ —bike-locked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike N\ —bike-locked) t> —bike))}

~v = lecture A bike

Introduce complementary effects for ¥.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike \ —bike-locked, —home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N\ —bike-locked, bike-locked N\ —bike-unlocked),
(uni, lecture N ((bike N\ —bike-locked) > —bike))}
~v = lecture A bike

Identify negative conditions for v.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike \ bike-unlocked, ~home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike A bike-unlocked) > —bike))}

~v = lecture A bike

Replace by positive condition ¥.
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Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike \ bike-unlocked, ~home A uni),
(bike A bike-locked, —bike-locked A bike-unlocked),
(bike N bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A ((bike A\ bike-unlocked) > —bike))}

~v = lecture A bike
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Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task I, there is an equivalent
propositional planning task I in positive normal form.
Moreover, I can be computed from I in polynomial time.

Note: Equivalence here means that the transition systems induced
by M and I, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)
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Positive Normal Form S 2S Summary

Positive Normal Form: Algorithm

Transformation of (V, [, O,~) to Positive Normal Form

Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal —v:
Let v be a variable which occurs negatively in a condition.
V.=V U{V} for some new propositional state variable ¥
15} = {F 1) =T
T ifl(v)=F
Replace the effect v by (v A =¥) in all operators o € O.
Replace the effect =v by (—v A ¥) in all operators o € O.
Replace —v by ¥ in all conditions.
Convert all operators o € O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.
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Why Positive Normal Form is Interesting

In the absence of conditional effects, positive normal form allows
us to distinguish good and bad effects easily:

m Effects that make state variables true
(add effects) are good.

m Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study in Part D.

(Why restriction “in the absence of conditional effects”?)
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STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)
An operator o of a prop. planning task is a STRIPS operator if

m pre(o) is a conjunction of state variables, and

m eff{0) is a conflict-free conjunction of atomic effects.

.

Definition (STRIPS Planning Task)

A propositional planning task (V/,/,0,v) is a STRIPS
planning task if all operators o € O are STRIPS operators
and «y is a conjunction of state variables.

.

Note: STRIPS operators are conflict-free and flat.
STRIPS is a special case of positive normal form.



Po rmal Form STRIPS

STRIPS Operators: Remarks

m Every STRIPS operator is of the form
(ViA- Ay N NLlp)

where v; are state variables and ¢; are atomic effects.
m Often, STRIPS operators o are described
via three sets of state variables:
m the preconditions (state variables occurring in pre(o))
m the add effects (state variables occurring positively in eff0))
m the delete effects (state variables occurring negatively in eff{0))
m Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.
m There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.




Normal Form

Why STRIPS is Interesting

STRIPS Summar,
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m STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.
m In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapters B6-B7).
m Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)
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Transformation to STRIPS

m Not every operator is equivalent to a STRIPS operator.

m However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

m However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

m There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)

Summary
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Summary

A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

m A positive task with flat operators is in positive normal form.

m STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

m Both forms are expressive enough to capture
general propositional planning tasks.

m Transformation to positive normal form is possible
with polynomial size increase.

m Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.
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§

How Difficult is Planning?

Using state-space search (e.g., using Dijkstra’s algorithm

on the transition system), planning can be solved

in polynomial time in the number of states.

However, the number of states is exponential in the number
of state variables, and hence in general exponential

in the size of the input to the planning algorithm.

Do non-exponential planning algorithms exist?

What is the precise computational complexity of planning?
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Why Computational Complexity?

m understand the problem
m know what is not possible
m find interesting subproblems that are easier to solve

m distinguish essential features from syntactic sugar
m Is STRIPS planning easier than general planning?
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Reminder: Complexity Theory

Need to Catch Up?

m We assume knowledge of complexity theory:
m languages and decision problems
m Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
m complexity classes: P, NP, PSPACE
m polynomial reductions
m If you are not familiar with these topics, we recommend
Chapters B11, D1-D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
10948-main-lecture-theory-of-computer-science/



https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/

Turing Machines



Turing Machines
0®00

Turing Machines: Conceptually

infinite tape
- Jo[a[als[al[a[{ale = [00] T
|
read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0, Q, qo, gy, 6) with the following components:
m input alphabet X and blank symbol O ¢ X
m alphabets always nonempty and finite
m tape alphabet ¥ =X U {J}
m finite set @ of internal states with initial state gg € @
and accepting state gy € Q
m nonterminal states Q" := Q \ {gv}

m transition relation § : (@ x Xg) — 29xTox{-1+1}

Deterministic Turing machine (DTM):
|6(g,s)| =1 for all (g,s) € Q' x X



Turing Machines
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Turing Machines: Accepted Words

m Initial configuration
m state go
® input word on tape, all other tape cells contain [
m head on first symbol of input word
m Step
m If in state g, reading symbol s, and (¢',s’, d) € 6(q, s) then
m the NTM can transition to state ¢’, replacing s with s’ and
moving the head one cell to the left/right (d = —1/4+1).
m Input word (€ ¥*) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state gy.
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)
Let f : Ngp — Np.

A NTM accepts language L C * in time f if it accepts each w € L
within f(Jw|) steps and does not accept any w ¢ L (in any time).

It accepts language L C X* in space f if it accepts each w € L
using at most f(|w|) tape cells and does not accept any w ¢ L.

4
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f: Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.
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Summar

Polynomial Time and Space Classes

Let P be the set of polynomials p : Ng — Ny
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P = U,cp DTIME(p)

NP = ,cp NTIME(p)
PSPACE = (J,,.» DSPACE(p)
NPSPACE = J,,» NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P € NP € PSPACE = NPSPACE

P C NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result

known as Savitch's theorem (Savitch 1970). O

A\
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Summary

m We recalled the definitions of the most important
complexity classes from complexity theory:

m P: decision problems solvable in polynomial time

m NP: decision problems solvable in polynomial time
by nondeterministic algorithms

m PSPACE: decision problems solvable in polynomial space

m NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

m These classes are related by P C NP C PSPACE = NPSPACE.
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Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PLANEX) is the following decision problem:

GIVEN: planning task I
QUESTION: Is there a plan for 1?7

~ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPLANEX)

is the following decision problem:

GIVEN: planning task I1, cost bound K € Ny
QUESTION: s there a plan for I with cost at most K7

~> decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX)

PLANEX <, BCPLANEX

Consider a planning task 1 with state variables V.

Let cmax be the maximal cost of all operators of I1.
Compute the number of states of 1 as N = 2/VI.

I is solvable iff there is solution with cost at most cmax - (N — 1)
because a solution need not visit any state twice.

~» map instance [1 of PLANEX to instance (I, cmax - (N — 1))
of BCPLANEX

~» polynomial reduction O
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PSPACE-Completeness of Planning
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Membership in PSPACE

BCPLANEX € PSPACE I

Show BCPLANEX € NPSPACE and use Savitch's theorem.
Nondeterministic algorithm:
def plan((V, 1, 0,~), K):
s:=1
k=K
loop forever:
if s |=: accept
guess o0 € O
if o is not applicable in s: fail
if cost(o) > k: fail
s :=s[o]
k := k — cost(o) O
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PSPACE-Hardness

Idea: generic reduction

m For an arbitrary fixed DTM M with space bound polynomial p
and input w, generate propositional planning task
which is solvable iff M accepts w in space p(|w|).

m Without loss of generality, we assume p(n) > n for all n.
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Reduction: State Variables

Let M = (¥X,00,Q, qo, gv,9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}

State Variables
m state, forall g € Q
m head; for all i € X U{—p(n) — 1, p(n)+ 1}
m content; , forall i € X, a€ ¥

~ allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = (¥X,00, Q, qo, gv,9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}

Initial State

Initially true:

B stateg,

m head;

m content;,, forall i€ {1,...,n}

m content; for all i € X\ {1,...,n}
Initially false:

m all others
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Plan Existence PSPACE-Completeness More Complexity Results

Reduction: Operators

Let M = (¥,0, Q, qo, gv, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),...,p(n)}

Operators

One operator for each transition rule §(g,a) = (¢’,d’, d)
and each cell position i € X:

m precondition: state; A head; A content; ,

m effect: —state; A —head; A —content; ,
N statey A head;; 4 A content;

Note that add-after-delete semantics are important here!
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Reduction: Goal

Let M = (¥,00,Q, qo, gv,9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}

stateqy I
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PLANEX and BCPLANEX are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

.

Membership for BCPLANEX was already shown.

Hardness for PLANEX follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PLANEX. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PLANEX and hardness for BCPLANEX follow
from the polynomial reduction from PLANEX to BCPLANEX. DJ
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

m different planning formalisms

m e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

m syntactic restrictions of planning tasks

m e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

m semantic restrictions of planning task

m e.g., restricting variable dependencies (“causal graphs”)
m particular planning domains

m e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
m nondeterministic effects:
m fully observable: EXP-complete (Littman, 1997)
m unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
m partially observable: 2-EXP-complete (Rintanen, 2004)
m schematic operators:
m usually adds one exponential level to PLANEX complexity
m e.g., classical case EXPSPACE-complete (Erol et al., 1995)
m numerical state variables:
m undecidable in most variations (Helmert, 2002)
m decidable in restricted setting with at most two
numeric state variables (Helal and Lakemeyer, 2025)
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Summary

Classical planning is PSPACE-complete.

This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).

m The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:
m DTM configurations are encoded by state variables.
m Operators simulate transitions between DTM configurations.
m The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.

This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

m It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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Classical Planning Algorithms

Let's start solving planning tasks!

This Chapter and the Next
very high-level overview of classical planning algorithms

m bird’s eye view: no details, just some very brief ideas
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The Big Three

Of the many planning approaches, three techniques stand out:
m explicit search ~> Chapters C3-C4, Parts D-F
m SAT planning ~> Chapters C5-C6
m symbolic search  ~~» Chapters C7—C8

also: many algorithm portfolios
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Satisficing or Optimal Planning?

must carefully distinguish:

m satisficing planning: any plan is OK (cheaper ones preferred)

m optimal planning: plans must have minimum cost

solved by similar techniques, but:
m details very different

m almost no overlap between best techniques for satisficing
planning and best techniques for optimal planning

m many tasks that are trivial for satisficing planners
are impossibly hard for optimal planners
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Explicit Search

You know this one already! (Hopefully.)
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The Big Three Explicit Search Summary

Reminder: State-Space Search

Need to Catch Up?

m We assume prior knowledge of basic search algorithms:
m uninformed vs. informed (heuristic)
m satisficing vs. optimal
m heuristics and their properties
m specific algorithms: e.g., breadth-first search,
greedy best-first search, A*

m If you are not familiar with them, we recommend Part B
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
13548-lecture-foundations-of-artificial-intelligence/ )



https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

m init() ~> returns initial state
m is_goal(s)  ~- tests if s is a goal state
m succ(s) ~ returns all pairs (a, s’) with s % s’
m cost(a) ~~ returns cost of action a
m h(s) ~~ returns heuristic value for state s
~> Foundations of Artificial Intelligence course, Chap. B2 and B9
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The Big Three Explicit Search

State Space vs. Search Space

m Planning tasks induce transition systems (a.k.a. state spaces)
with an initial state, labeled transitions and goal states.

m State-space search searches state spaces with an initial state,
a successor function and goal states.

~= looks like an obvious correspondence

m However, in planning as search, the state space being searched
can be different from the state space of the planning task.
m When we need to make a distinction, we speak of
m the state space of the planning task
whose states are called world states vs.
m the search space of the search algorithm
whose states are called search states.
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Design Choice: Search Direction

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Direction

m progression: forward from initial state to goal
m regression: backward from goal states to initial state

m bidirectional search

~> Chapters C3-C4
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Design Choice: Search Algorithm

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Algorithm

m uninformed search:
depth-first, breadth-first, iterative depth-first, ...

m heuristic search (systematic):
greedy best-first, A*, weighted A*, IDA*, ...
m heuristic search (local):
hill-climbing, simulated annealing, beam search, ...
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Design Choice: Search Control

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Control

m heuristics for informed search algorithms

® pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, ...

How do we find good heuristics in a domain-independent way?

~» one of the main focus areas of classical planning research
~+ Parts D-F
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Summary

(Joint summary follows after next chapter.)
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The Big Three (Repeated from Last Chapter)

Of the many planning approaches, three techniques stand out:
m explicit search ~> Chapters C3-C4, Parts D-F
m SAT planning ~> Chapters C5-C6
m symbolic search  ~~» Chapters C7—C8

also: many algorithm portfolios
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SAT Planning: Basic ldea

m formalize problem of finding plan with a given horizon
(length bound) as a propositional satisfiability problem
and feed it to a generic SAT solver

m to obtain a (semi-) complete algorithm,

try with increasing horizons until a plan is found
(= the formula is satisfiable)

m important optimization: allow applying several non-conflicting
operators “at the same time” so that a shorter horizon suffices
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SAT Planning
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SAT Encodings: Variables

m given propositional planning task (V. /, O,~)
m given horizon T € Np

Variables of SAT Encoding

m propositional variables viforallve V,0<i<T
encode state after / steps of the plan

m propositional variables o/ foralloe 0,1<i< T
encode operator(s) applied in i-th step of the plan
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Design Choice: SAT Encoding

Again, there are several important design choices.

Design Choice: SAT Encoding

m sequential or parallel

m many ways of modeling planning semantics in logic

~» main focus of research on SAT planning
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Design Choice: SAT Solver

Again, there are several important design choices.

Design Choice: SAT Solver

m out-of-the-box like Glucose, CaDiCal, MiniSAT

m planning-specific modifications
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Design Choice: Evaluation Strategy

Again, there are several important design choices.

Design Choice: Evaluation Strategy

m always advance horizon by +1 or more aggressively
m possibly probe multiple horizons concurrently
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Symbolic Search Planning: Basic Ideas

m search processes sets of states at a time

B operators, goal states, state sets reachable with a given cost
etc. represented by binary decision diagrams (BDDs)
(or similar data structures)

m hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

m perform symbolic breadth-first search (or something
more sophisticated) on these set representations
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Symbolic Breadth-First Progression Search

prototypical algorithm:

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1
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Symbolic Breadth-First Progression Search

prototypical algorithm:

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states + ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

~ If we can implement operations models, {I}, N, # 0, U,
apply and = efficiently, this is a reasonable algorithm.
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Design Choice: Symbolic Data Structure

Again, there are several important design choices.

Design Choice: Symbolic Data Structure

m BDDs
m ADDs
= EVMDDs
m SDDs




SAT Planning Symbolic Search °la em Examples

[e]e]e]e] }

Other Design Choices

m additionally, same design choices as for explicit search:
m search direction
m search algorithm
m search control (incl. heuristics)
m in practice, hard to make heuristics and other
advanced search control efficient for symbolic search
~> rarely used
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Planning Systems: FF

FF (Hoffmann & Nebel, 2001)

problem class: satisficing

algorithm class: explicit search
search direction: forward search
search algorithm: enforced hill-climbing

heuristic: FF heuristic (inadmissible)

other aspects: helpful action pruning; goal agenda manager

~> breakthrough for heuristic search planning;
winner of IPC 2000
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Planning Systems: LAMA

LAMA (Richter & Westphal, 2008)

problem class: satisficing

algorithm class: explicit search
search direction: forward search
search algorithm: restarting Weighted A* (anytime)

heuristic: FF heuristic and landmark heuristic (inadmissible)

other aspects: preferred operators; deferred heuristic
evaluation; multi-queue search

~ still one of the leading satisficing planners;
winner of IPC 2008 and IPC 2011 (satisficing tracks)
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Planning Systems: Madagascar-pC

Madagascar (Rintanen, 2014)

Planning System Examples Summar
000@0000 00

problem class: satisficing

algorithm class: SAT planning

encoding: parallel 3-step encoding

SAT solver: using planning-specific action variable selection

evaluation strategy: exponential horizons, parallelized probing

other aspects: invariants

~+ second place at IPC 2014 (agile track)
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Planning Systems: SymBA*

SymBA* (Torralba, 2015)

Planning System Examples Summar
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problem class: optimal
algorithm class: symbolic search
symbolic data structure: BDDs
search direction: bidirectional

search algorithm: mixture of (symbolic) Dijkstra and A*

heuristic: perimeter abstractions/blind

~~ winner of IPC 2014 (optimal track)
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Planning Systems: Scorpion

Scorpion 2023 (Seipp, 2023)

problem class: optimal

algorithm class: explicit search

search direction: forward search

]
]
m search algorithm: A*
]

heuristic: abstraction heuristics and cost partitioning

~» runner-up of IPC 2023 (optimal track)
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Planning Systems: Fast Downward Stone Soup

Fast Downward Stone Soup 2023, optimal version

(Biichner et al., 2023)

problem class: optimal

algorithm class: (portfolio of) explicit search

search direction: forward search

]
]
m search algorithm: A*
]

heuristic: all admissible heuristics considered in the course

~~ winner of IPC 2011 (optimal track);
various awards in IPC 2011-2023
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Planning Systems: SymK

SymK (Speck et al., 2025)

m problem class: optimal

algorithm class: symbolic search

symbolic data structure: BDDs

search direction: bidirectional

search algorithm: symbolic Dijkstra algorithm

heuristic: blind
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Summary

big three classes of algorithms for classical planning:
m explicit search

m design choices: search direction, search algorithm,
search control (incl. heuristics)

m SAT planning
m design choices: SAT encoding, SAT solver, evaluation strategy
m symbolic search

m design choices: symbolic data structure
+ same ones as for explicit search
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Search Direction

Search direction
m one dimension for classifying search algorithms
m forward search from initial state to goal based on progression
m backward search from goal to initial state based on regression

m bidirectional search

In this chapter we look into progression and regression planning.
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ~~ returns initial state

m is_goal(s)  ~ tests if s is a goal state

m succ(s) ~~ returns all pairs (a,s’) with s 2 &’
m cost(a) ~> returns cost of action a
[ ] s

h(s)

returns heuristic value for state s
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Planning by Forward Search: Progression

Progression: Computing the successor state s[o] of a state s
with respect to an operator o.
Progression planners find solutions by forward search:

m start from initial state

m iteratively pick a previously generated state and progress it
through an operator, generating a new state

m solution found when a goal state generated

pro: very easy and efficient to implement
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Search Space for Progression

Search Space for Progression

search space for progression in a planning task M= (V. /I, O,~)
(search states are world states s of [1;
actions of search space are operators o € O)

m init() ~> returns /

m is.goal(s) ~>testsifsf=+

m succ(s) ~ returns all pairs (o, s[o])
where o € O and o is applicable in s
m cost(o) ~> returns cost(o) as defined in I
m h(s) ~~ estimates cost from s to y (~ Parts D-F)
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Progression Planning Example

Example of a progression search
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Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:
m forward search starts from a single initial state;
backward search starts from a set of goal states
m when applying an operator o in a state s in forward direction,
there is a unique successor state s';
if we just applied operator o and ended up in state s/,
there can be several possible predecessor states s
~> in most natural representation for backward search in planning,
each search state corresponds to a set of world states
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Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S’, 0)
of a set of states S’ (“subgoal”) given the last operator o
that was applied.

~> formal definition in next chapter

Regression planners find solutions by backward search:
m start from set of goal states

m iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

m solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive



Introduction 1 Siol Regression .‘ on for STRIPS Tasks Summar

0O00e00

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

m each search state corresponds to a set of world states
(“subgoal™)

m each search state is represented by a logical formula:
¢ represents {s € S | s |= ¢}

B many basic search operations like detecting duplicates
are NP-complete or coNP-complete
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Search Space for Regression

Search Space for Regression

search space for regression in a planning task M = (V,/, 0, ~)
(search states are formulas ¢ describing sets of world states;
actions of search space are operators o € O)

init()
is_goal(yp)
succ(p)

cost(o)
h(«)

i d

~

~

i rd

returns -~y
tests if | = ¢

returns all pairs (o, regr(, 0))
where o € O and regr(p, 0) is defined

returns cost(o) as defined in I

estimates cost from / to ¢ (~ Parts D-F)

v




R

egression
00000@

Regression Planning Example (Depth-first Search)

VAN

~—C0 ~—0
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Regression Planning Example (Depth-first Search)
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Regression Planning Example (Depth-first Search)

1 = regr(y, —) P1 ——> 7
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Regression Planning Example (Depth-first Search)

1 = regr(vy, —) p2 —> 1 ——> 7
@2 = regr{¢1, —)

—0

.———>

O O O
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Regression Planning Example (Depth-first Search)

01 = regr(y, —) 3 —> P2 —> P1 —> 7

2 = regr(p1, —)
3 = regr{¢2, —), | = ¢3
O
/. J\
O— O

O O O O
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Regressmn for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

m Consider subgoal ¢ that is conjunction of atoms a; A --- A a,
(e.g., the original goal ~y of the planning task).
m First step: Choose an operator o that deletes no a;.
m Second step: Remove any atoms added by o from ¢.
m Third step: Conjoin pre(o) to .
~> Qutcome of this is regression of ¢ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one a;
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STRIPS Regression

Definition (STRIPS Regression)

Let o = @1 A--- A @, be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms ay, ..., ak
and deletes the atoms d, ..., d;.

The STRIPS regression of ¢ with respect to o is

s if ¢; = d; for some i,

sregr{(p, 0) = {pre(o)A/\({ma---v%}\{al""’ak})

else

Summary

Note: sregr(i, 0) is again a conjunction of atoms, or L.
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Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms ¢,
all states s and all STRIPS operators o,

s = sregr(p,0) iff s[o] | ¢.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.
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Summary

m Progression search proceeds forward from the initial state.

m In progression search, the search space is identical
to the state space of the planning task.

m Regression search proceeds backwards from the goal.

m Each search state corresponds to a set of world states,
for example represented by a formula.

m Regression is simple for STRIPS operators.

m The theory for general regression is more complex.
This is the topic of the following chapter.
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Regression for General Planning Tasks

m With disjunctions and conditional effects, things become more
tricky. How to regress a V(b A ¢) with respect to (q,d > b)?

m In this chapter, we show how to regress general sets of states
through general operators.

m We extensively use the idea of representing sets of states
as formulas.
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Regressing State Variables
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Regressing State Variables: Motivation

Key question for general regression:
m Assume we are applying an operator with effect e.

m What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.



Regressing State Variables R Formulas Through Effects R Formulas Through Operators Summar
00®00000 o ofe 00

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s’.

Propositional state variable v is true in s’ iff
m effect e makes it true, or

m it remains true, i.e., it is true in s and not made false by e.
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Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v, e),
is defined as the following logical formula:

regr(v, e) = effcond(v, e) V (v A —effcond(—v, €)).

Does this capture add-after-delete semantics correctly?



Regressing State Variables Formulas Through Effects > Formulas Through Operators

[e]e]e]e] lelele)

Regressing State Variables: Example

Lete=(b>a)A(c>—-a)AbA—d.

v | effcond(v, e) effcond(—v, e) | regr(v, e)

alb c bV (aA-c)

b|T 1 TV(bA-L)=T
c|l 1 Lv(cn-l)=c
d| L T LV(dA-T)=1

Reminder: regr(v, e) = effcond(v, e) V (v A —effcond(—v, e))
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Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v, e))

Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v, e) iff s[e] = v.
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Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.
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Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v, e).
Then s[e] |= v by the first case in the definition of s[e] (Ch. B3).
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Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v, e).
Then s[e] |= v by the first case in the definition of s[e] (Ch. B3).

Case 2: s = (v A —effcond(—v, €)).

Then s = v and s [~ effcond(—v, e).

We may additionally assume s [~ effcond(v, e)

because otherwise we can apply Case 1 of this proof.
Then s[e] = v by the third case in the definition of s[e].

V.
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).




Regressing State Variables Regressing Formulas Through Effects Re g Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).

m From the second conjunct, we get s |= —v V effcond(—v, e).
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).

m From the second conjunct, we get s |= —v V effcond(—v, e).

m Case 1: s = —wv. Then v is false before applying e
and remains false, so s[e] b~ v.
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Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).
m From the first conjunct, we get s = —effcond(v, e)

and hence s [~ effcond(v, e).
m From the second conjunct, we get s |= —v V effcond(—v, e).
m Case 1: s = —wv. Then v is false before applying e

and remains false, so s[e] b~ v.

m Case 2: s |= effcond(—v, e). Then v is deleted by e
and not simultaneously added, so s[e] }~= v.
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Regressing Formulas Through Effects
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Summar

Regressing Formulas Through Effects: Idea

m We can now generalize regression from state variables
to general formulas over state variables.

m The basic idea is to replace every occurrence of every state
variable v by regr(v, e) as defined in the previous section.

m The following definition makes this more formal.
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Regressmg Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,
and let ¢ be a formula over propositional state variables.

The regression of ¢ through e, written regr(e, €),
is defined as the following logical formula:

regr(T,e) =
regr(L,e) =
regr(v,e) = fcond(v e) V (v A —effcond(—v, e))
regr(—, ) = —regr(¢, e)
regr(v V x, e) = regr(1, e) V regr(x; €)
regr(y A x, e) = regr(y), e) A regr(x; e).
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Regressing Formulas Through Effects: Example

Let e=(b>a)A(c> —-a)AbA—d.
Recall:

m regr(a,e) = bV (a A —c)

m regr(b,e) =T

m regr(c,e) =c

m regr(d,e) = L
We get:

regr((aVd)A(cVvd),e)=((bV(aA—c)VL)A(cV L)
(bv(an-c))Nc
bAc




Regressing Formulas Through Effects
0000e00

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(¢p, €))

Let ¢ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s |= regr(p, e) iff s[e] E ¢.
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Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.
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Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .
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Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.




State Variables Regressing Formulas Through Effects R ng Formulas Through Operators

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.

Base case p = L:
We have regr(L,e) = L, and s |= L iff s[e] = L is correct.
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Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.
Base case p = L:
We have regr(L,e) = L, and s |= L iff s[e] = L is correct.
Base case p = v:

We have s = regr(v, e) iff s[e] = v from the previous lemma.
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢

Inductive case p =¥ V x:

s = regr(v V x, e) iff s |= regr(v, e) V regr(x, €)
iff s |= regr(1), e) or s |= regr(x, €)
iff s[e] = v or s[e] E x
iff sfe] =E¢ Vv x
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢
Inductive case p =¥ V x:
s = regr(v V x, e) iff s |= regr(v, e) V regr(x, e)
iff s |= regr(1), e) or s |= regr(x, €)
iff s[e] = v or s[e] E x
iff sfe] =E¢ Vv x
Inductive case p = ¥ A :

Like previous case, replacing “V" by “A”
and replacing “or” by “and”. Ol
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Regressing Formulas Through
Operators
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Regressing Formulas Through Operators: Idea

m We can now regress arbitrary formulas
through arbitrary effects.

m The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula .

m There are two requirements:

m The operator o must be applicable in the state s.
m The resulting state s[o] must satisfy ¢.
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Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let ¢ be a formula over state variables.

The regression of ¢ through o, written regr(y, o),
is defined as the following logical formula:

regr(p, 0) = pre(o) A regr(p, eff(0)). )
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Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(p, 0))

Let ¢ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s = regr(p, 0) iff o is applicable in s and s[o] = ¢.
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Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(p, 0) = pre(o) A regr(p, eff{0))

Case 1: s = pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ip, e) iff s[e] = ¢, where e = eff{0).
This was proved in the previous lemma.
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Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(p, 0) = pre(o) A regr(p, eff{0))
Case 1: s = pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ip, e) iff s[e] = ¢, where e = eff{0).

This was proved in the previous lemma.

Case 2: s [~ pre(o).

Then s [~ regr(¢, 0) and o is not applicable in s.

Hence both statements are false and therefore equivalent. O
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Regression Examples (1)

Examples: compute regression and simplify to DNF
m regr(b, (a, b))
=an(TV(bA—-L1))
=a
m regr(bA cAd,(a,b))
an(TV(bA=L)A(LV(cA-L)A(LV(dA-L))
aNcANd
m regr(b A —c,(a, b A c))
A(TV(BA-L))A(TV(cA-L))
aNTAL
L
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Summar

Regression Examples (2)

Examples: compute regression and simplify to DNF

regr(b, (a,c > b))

an(cVv(bA-l))

aA(cVb)

(anc)Vv(anb)

regr(b, (a,(c > b) A ((d A —c) > —b)))
an(cV(bA—(dA=c)))
aN(cV(bA(—dVc)))
an(cV(bA-d)V(bAc))
aN(cV(bA—d))
(anc)V(aAnbA—d)
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Summary

m Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

m state variables made true (by add effects)
m state variables remaining true (by absence of delete effects)
m Regression of propositional state variables can be generalized
to arbitrary formulas ¢ by replacing each occurrence
of a state variable in ¢ by its regression.

m Regressing a formula ¢ through an operator involves
regressing ¢ through the effect and enforcing the precondition.
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SAT Solvers

Introduction Formula Overview Initial State, Goal, Operator Selection

m SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

m Can we leverage them for classical planning?

~ SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
~» Foundations of Artificial Intelligence Course, Ch. E4—Eb
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Complexity Mismatch

m The SAT problem is NP-complete,
while PLANEX is PSPACE-complete.

~> one-shot polynomial reduction from PLANEX to SAT
not possible (unless NP = PSPACE)



Introduction Formula Overview

Initial State, Goal, Operator Selection

Solution: lterative Deepening

m We can generate a propositional formula that tests
if task I has a plan with horizon (length bound) T
in time O(||M||* - T) (~ pseudo-polynomial reduction).
m Use as building block of algorithm that probes
increasing horizons (a bit like IDA™).
m Can be efficient if there exist plans
that are not excessively long.
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SAT Planning: Main Loop

basic SAT planning algorithm:

SAT Planning

def satplan(I):
for T €{0,1,2,...}:
¢ := build_sat_formula(I, T)
| = sat_solver(y) > returns a model or none
if / is not none:
return extract_plan(I, T, /)

Termination criterion for unsolvable tasks?
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Formula Overview
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SAT Formula: CNF?

m SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

m We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

m We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.
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SAT Formula: Variables

m given propositional planning task N = (V,/, 0,~)
m given horizon T € Ny

Variables of the SAT Formula

m propositional variables v/ forallve V,0<i< T
encode state after / steps of the plan

m propositional variables o foralloe 0,1<i<T
encode operator(s) applied in i-th step of the plan
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Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let © be a propositional logic formula over the variables V.
Let0</<T.

We write ¢’ for the formula obtained from ¢
by replacing each v € V with v'.

Example: ((aAb)V —c)® = (a3 A b3V -3



Formula Overview Initial State, Goal, Operator Selection

(o]e]e]e] ]

SAT Formula: Motivation

We want to express a formula whose models

are exactly the plans/traces with T steps.

For this, the formula must express four things:
m The variables v° (v € V) define the initial state.
m The variables v (v € V) define a goal state.

m We select exactly one operator variable o’ (o € O)
for each time step 1 </ < T.

m If we select o, then variables v/~ and v/ (v € V)
describe a state transition from the (i — 1)-th state of the plan
to the /-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.
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Initial State, Goal, Operator Selection



Initial State, Goal, Operator Selection
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SAT Formula: Initial State

SAT Formula: Initial State

initial state clauses:

m 0 forall ve V with I(v) =T
m v forallveVwith/(v)=F
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SAT Formula: Goal

SAT Formula: Goal

goal clauses:

T

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.
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SAT Formula: Operator Selection

Let O ={o01,...,0n}.

SAT Formula: Operator Selection

operator selection clauses:
[ o{\/---\/o[, forall1<i<T
operator exclusion clauses:
lﬁoj\/ﬁo,’; forall 1<i<T,1<j<k<n
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SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.
Key observations: if we apply operator o at time i,
m its precondition must be satisfied at time i — 1:
o' — pre(o)~1
m variable v is true at time / iff its regression is true at i — 1:
o — (v « regr(v, ef{0)) 1)

Question: Why regr(v, eff0)), not regr(v,0)?
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Simplifications and Abbreviations

m Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

m Let us call the formula 7 (“transition”):
T=0 — (v & regr(v,effo))1).

m First, some abbreviations:
m Let e = eff{0).
m Let p = regr(v, e) (“regression”).

We have p = effcond(v, e) V (v A —effcond(—v, €)).

m Let a = effcond(v, e) (“added").
m Let § = effcond(—v, e) ("deleted").

~ =0 = (v < pmh) with p= a Vv (v A )
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Picking it Apart (1)

Reminder: 7 =o' — (v « p'~1) with p = a V (v A —6)

r=0 = (v & ph
=o' = ((v' = P YA = V)

=0 = (V' = p ) A = (P = V)

v

~~
1 T2

~+ consider this two separate constraints 71 and ™
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Plcklng it Apart (2)

Reminder: 7, = o' — (v — p'~1) with p = a V (v A =0)
=0 — (v = p1
i

=0 — (—p' = )

= (o' A—p'1) = v

= (o' A—(a 1V (VI A =8TT))) o v

= (o' A(=a/TEA (VT ETh)) = v

= ((0' A= L A=V 5 V) A ((0F A =T A ST V)
T11 7?].r2

~> consider this two separate constraints 711 and 712
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Interpreting the Constraints (1)

Can we give an intuitive description of 711 and 7427



Formula Overview State, Goal, Operator Selection Transitions

) 0000 000008000

Interpreting the Constraints (1)

Can we give an intuitive description of 711 and 7427
~> Yes!
7= (0 A=t AT o Y
“When applying o, if v is false and o does not add it,
it remains false.”
m called negative frame clause
m in clause form: =o' Vo't v vty Sy
BT = (0 A=A = Y
“"When applying o, if o deletes v and does not add it,
it is false afterwards.” (Note the add-after-delete semantics.)
m called negative effect clause
m in clause form: =o' Va/~t v =5t v

For STRIPS tasks, these are indeed clauses. (And in general?)
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Picking it Apart (3)

Almost done!
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Picking it Apart (3)

Almost done!

Reminder: 7, = o — (p'~1 = v/) with p = a' Vv (v A —6)

=0 —(pt = V')
="' ApH =V
= AV (VTEASST))) =
= S(oi Ao — v’!/\((oi AVITEA S8 = v

/

~" ~~
T21 T22

~~ consider this two separate constraints 751 and 7
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Interpreting the Constraints (2)

How about an intuitive description of 71 and 757
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Interpreting the Constraints (2)

How about an intuitive description of 71 and 757
B = (0 Aol =V
“When applying o, if o adds v, it is true afterwards.”
m called positive effect clause
m in clause form: =o'V —a/"1 Vv VI
B = (0 AViTEA ST = v
“When applying o, if v is true and o does not delete it,
it remains true.”
m called positive frame clause
m in clause form: —o' vV v/l 6Ly Y

For STRIPS tasks, these are indeed clauses. (But not in general.)
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SAT Formula: Transitions

SAT Formula: Transitions
precondition clauses:

m o' Vpre(o) ! forall1<i<T,o€O
positive and negative effect clauses:

m o V-alvy forall 1 <

B o Vvalv-§lvay foralll<i

<T,oeO,veV
<T,oeO,veV
positive and negative frame clauses:
m o Vv-vlvslvy  forall1<i<T,0€eO0,veV
m o VvalvviTlvay forall1<i<T,0€e0,veV

where o = effcond(v, eff0)), 0 = effcond(—v, eff( 0)).

v

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause —o’ v v/~! for each precondition atom v of o).
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Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:
m V0 forallve V with I(v)=T
m 0 for all v e V with I(v) =F

goal clauses:
my’
operator selection clauses:
[ o{\/--~Vo[, forall 1<i<T
operator exclusion clauses:
I‘!Oj\/—!OL forall 1<i<T,1<j<k<n

’
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Summary: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)
precondition clauses:

m -0V pre(o) ! forall1<i<T,o0€O
positive and negative effect clauses:

B o V-alvy forall 1 <

B o Vvalv-§lvay foralll<i

<T,oeO,veV
<T,oe0,veV
positive and negative frame clauses:
m o vV-vTlveéTlvy forall1<i<T,0€e0,veV
m o VvaTlvviTlvay forall1<i<T,0e0,veV

where a = effcond(v, eff0)), 6 = effcond(—v, eff{ 0)).

<
<

v
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Summary

m SAT planning (planning as satisfiability) expresses a sequence
of bounded-horizon planning tasks as SAT formulas.

m Plans can be extracted from satisfying assignments;
unsolvable tasks are challenging for the algorithm.

m For each time step, there are propositions encoding
which state variables are true and which operators are applied.

m We describe a basic sequential encoding
where one operator is applied at every time step.

m The encoding produces a CNF formula for STRIPS tasks.

m The encoding follows naturally (with some work) from using
regression to link state variables in adjacent time steps.
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Efficiency of SAT Planning

m All other things being equal, the most important aspect
for efficient SAT solving is the number of propositional
variables in the input formula.

m For sufficiently difficult inputs, runtime scales
exponentially in the number of variables.

~» Can we make SAT planning more efficient
by using fewer variables?
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Number of Variables

Reminder:
m given propositional planning task N = (V,/, 0,~)
m given horizon T € Ny

Variables of the SAT Formula

m propositional variables viforallve V,0<i<T
encode state after / steps of the plan

m propositional variables o/ forallo€ 0,1 <i< T
encode operator(s) applied in i-th step of the plan

~ V|- (T +1)+|0]|- T variables

~ SAT solving runtime usually exponential in T
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Parallel Plans and Commutativity

Can we get away with shorter horizons?

Idea:

m allow parallel plans in the SAT encoding:
multiple operators can be applied in the same step
if they do not interfere

Definition (commutative, interfere)

Let O' = {o1,...,0,} be a set of operators applicable in state s.
We say that O’ is commutative in s if
m for all permutations 7 of O', s[x] is defined, and

m for all permutations 7, 7’ of O’, s[n] = s[’].

We say that the set O’ interferes in s if it is not commutative in s. |
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Parallel Plan Extraction

m If we can guarantee commutativity, we can allow multiple
operators at the same time in the SAT encoding.

m A parallel plan (with multiple o' used for the same i)
extracted from the SAT formula can then be converted
into a “regular” plan by ordering the operators
within each time step arbitrarily.



Introduction
00000e

Challenges for Parallel SAT Encodings

Two challenges remain:
m our current SAT encoding does not allow concurrent operators

m how do we ensure that concurrent operators are commutative?
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Reminder: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

w0 forall ve Vwith I(v)=T

m 0 for all v e V with /(v) =F
goal clauses:

my’

operator selection clauses:
[] o{\/---\/o;', forall1<i<T
operator exclusion clauses:
lﬁoj\/ﬁo,’; forall 1<i<T,1<j<k<n

v
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Reminder: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)

initial state clauses:

w0 forall ve Vwith I(v)=T
m 0 for all v e V with /(v) =F
goal clauses:
my’
operator selection clauses:
[] o{\/---\/o;', forall1<i<T
operator exclusion clauses:
l—|ojf'\/—|o,"( forall 1<i<T,1<j<k<n

v

~~ operator exclusion clauses must be adapted



Adapting the SAT Encoding Summar

00@000000

Reminder: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

N
~

m -0V pre(o) ! forall1<i<T,o0€O
positive and negative effect clauses:
B o VvV-alvy forall 1 <

m o' Valv-slvavi foralll<i

T,0€0,veV
T,0€0,veV
positive and negative frame clauses:
m o vV-vTtveé vy forall1<i<T,0e0,veV
m o VvaTlvviTlvay forall1<i<T,0e0,veV
where o = effcond(v, eff0)), § = effcond(—v, eff{ 0)).
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Reminder: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)

precondition clauses:

N
~

m -0V pre(o) ! forall1<i<T,o0€O
positive and negative effect clauses:
B o VvV-alvy forall 1 <

m o' Valv-slvavi foralll<i

T,0€0,veV
T,0€0,veV
positive and negative frame clauses:
m o vV-vTtveé vy forall1<i<T,0e0,veV
m o VvaTlvviTlvay forall1<i<T,0e0,veV
where o = effcond(v, eff0)), § = effcond(—v, eff{ 0)).

~= rewrite clauses as implications



Adapting the SAT Encoding
000@00000

Summar

Sequential SAT Encoding (2) Rewritten as Implications

Sequential SAT Encoding (2) Rewritten

precondition clauses:

m o — pre(o)~! forall1<i<T,o0€O
positive and negative effect clauses:

m (oA =V forall1<i<T,o0e0,

[ (o"/\5"_1/\ﬁoz"_1)%ﬁv" forall1<i<T,o0e0,

positive and negative frame clauses:
m (o AVITIA-V) =61 forall1<i<T,o0€0,
B (o A-VTIAV) a7t forall1<i<T,o0€0,
where o = effcond(v, eff0)), § = effcond(—v, eff{ 0)).

veV
veV

veV
veV
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Sequential SAT Encoding (2) Rewritten as Implications

Sequential SAT Encoding (2) Rewritten

precondition clauses:

m o — pre(o)~! forall1<i<T,o0€O
positive and negative effect clauses:

m (oA =V forall1<i<T,o0e0,

[ (o"/\5"_1/\ﬁoz"_1)%ﬁv" forall1<i<T,o0e0,

positive and negative frame clauses:
m (o AVITIA-V) =61 forall1<i<T,o0€0,
B (0 A-VTIAV) 2ot forall1<i<T,o0€0,
where o = effcond(v, eff0)), § = effcond(—v, eff{ 0)).

veV
veV

veV
veV

Summar

~> frame clauses must be adapted
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Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses ﬁoj’-' V —of
forall 1<i<T,1<j<k<n

m Ideally: replace with clauses that express “for all states s,
the operators selected at time / are commutative in s”

m but: testing if a given set of operators interferes
in any state is itself an NP-complete problem
~ use something less heavy: a sufficient condition

for commutativity can be expressed
at the level of pairs of operators
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Conflicting Operators

m Intuitively, two operators conflict if
m one can disable the precondition of the other,
m one can override an effect of the other, or
m one can enable or disable an effect condition of the other.
m If no two operators in a set O’ conflict,
then O is commutative in all states.

m This is still difficult to test, so we restrict attention
to the STRIPS case in the following.

Definition (Conflicting STRIPS Operator)
Operators o and o’ of a STRIPS task I conflict if

m o deletes a precondition of o’ or vice versa, or

m o deletes an add effect of o’ or vice versa.
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Adapting the Operator Exclusion Clauses: Solution

Reminder: operator exclusion clauses —|oj V —ol
forall 1</i<T,1<j<k<n

Solution:

Parallel SAT Formula: Operator Exclusion Clauses

operator exclusion clauses:
[ —|oj\/—|o,’; forall1<i<T,1<j<k<n
such that o; and o, conflict
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Adapting the Frame Clauses: ldea

Reminder: frame clauses
(" ANVITL A=V = 871 forall1 <
(o' A=viTt AV = a7t forall1 <

T, o0, veV
T,oc0,veV

What is the problem?

m These clauses express that if o is applied at time /
and the value of v changes, then o caused the change.
m This is no longer true if we want to be able
to apply two operators concurrently.

~> Instead, say “If the value of v changes,
then some operator must have caused the change.”
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Adapting the Frame Clauses: Solution

Reminder: frame clauses
(" AVITLA V) = 671 forall1 <
(o' AN=viTt AV = a7t forall1 <

T, oe0,veV
T,oe0,veV

Solution:

Parallel SAT Formula: Frame Clauses

positive and negative frame clauses:
m (viTEA V) = ((0f ASETY) VeV (0] ASE))
forall1<i<T,veV
m (v AV) = ((of At Vv (o) A )
forall1<i<T,veV
where a, = effcond(v, eff(0)), 6, = effcond(—v, eff 0)),
O ={o1,...,0n}.

For STRIPS, these are in clause form.
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Summary

m As a rule of thumb, SAT solvers generally perform better
on formulas with fewer variables.

m Parallel encodings reduce the number of variables
by shortening the horizon needed to solve a planning task.

m Parallel encodings replace the constraint that
operators are not applied concurrently by the constraint that
conflicting operators are not applied concurrently.

m To make parallelism possible, the frame clauses
also need to be adapted.
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Symbolic Search Planning: Basic ldeas

m come up with a good data structure for sets of states

m hope: (at least some) exponentially large state sets
can be represented as polynomial-size data structures

m simulate a standard search algorithm like
breadth-first search using these set representations
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Symbolic Breadth-First Progression Search

Symbolic Breadth-First Progression Search
def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy == {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

~~ If we can implement operations models, {I}, N, # 0, U,
apply and = efficiently, this is a reasonable algorithm.
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Representing State Sets

We need to represent and manipulate state sets (again)!
m How about an explicit representation, like a hash table?

m And how about our good old friend, the formula?
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Time Complexity: Explicit Representations vs. Formulas

Let k be the number of state variables,
|S| the number of states in S and
||S|| the size of the representation of S.

Hash table Formula
seS? O(k) o(lIsl)
S:=SU{s} O(k) O(k)
S:=5\{s} O(k) O(k)
Sus’ O(k|S| + k|S'|) 0(1)
sns’ O(k|S| + k|S')) 0(1)
S\§ O(k|S| + k|S']) 0(1)

S O(k2%) o(1)
{s]|s(v) =T} O(k2%) o(1)
S=07 o(1) co-NP-complete
5$=57 O(k|S)) co-NP-complete
|S| 0(1) #P-complete
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Which Operations are Important?

m Explicit representations such as hash tables
are unsuitable because their size grows linearly
with the number of represented states.

m Formulas are very efficient for some operations,

but not for other important operations
needed by the breadth-first search algorithm.

m Examples: S # (7, =57

St
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Canonical Representations

m One of the problems with formulas is that they allow
many different representations for the same set.

m For example, all unsatisfiable formulas represent ().
This makes equality tests expensive.
m We would like data structures with a canonical representation,
i.e., with only one possible representation for every state set.

m Reduced ordered binary decision diagrams (BDDs)
are an example of such a canonical representation.
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Time Complexity: Formulas vs. BDD

Let k be the number of state variables,
|S| the number of states in S and
IS|| the size of the representation of S.

Formula BDD
seS? o(lIsl) O(k)
S:=5U{s} O(k) O(k)
S:=5\{s} O(k) O(k)
sus’ o(1) oISl
sns’ 0(1) o(lISIIIS I
S\S o(1) o(lIsIIs I
5 o(1) o(Is|)
{sIs()=TH| o) o(1)
S=07 co-NP-complete 0(1)
s$=57 co-NP-complete 0(1)
|S]| #P-complete o(JIsI

Remark: Optimizations allow BDDs with complementation (S)
in constant time, but we will not discuss this here.
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BDD Example

Possible BDD for (u A v)V w
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Binary Decision Diagrams: Definition

Definition (BDD)
Let V be a set of propositional variables.

A binary decision diagram (BDD) over V is a directed acyclic
graph with labeled arcs and labeled vertices such that:

m There is exactly one node without incoming arcs.
m All sinks (nodes without outgoing arcs) are labeled 0 or 1.

m All other nodes are labeled with a variable v € V
and have exactly two outgoing arcs, labeled 0 and 1.

A note on notation:
m In BDDs, 1 stands for T and 0 for F.

m We follow this customary notation in BDDs,
but stick to T and F when speaking of logic.
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Binary Decision Diagrams: Terminology

BDD Terminology

m The node without incoming arcs is called the root.

m The labeling variable of an internal node
is called the decision variable of the node.

m The nodes reached from node n via the arc labeled i € {0,1}
is called the i-successor of n.

m The BDDs which only consist of a single sink
are called the zero BDD and one BDD.
Observation: If B is a BDD and n is a node of B, then the
subgraph induced by all nodes reachable from n is also a BDD.
m This BDD is called the BDD rooted at n.
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BDD Semantics

Testing whether a BDD Includes a Variable Assignment

def bdd-includes(B: BDD, /: variable assignment):
Set n to the root of B.
while n is not a sink:
Set v to the decision variable of n.
Set n to the 1-successor of n if /(v) =T and
to the 0-successor of n if /(v) = F.
return true if n is labeled 1, false if it is labeled O.

Definition (Set Represented by a BDD)

Let B be a BDD over variables V.

The set represented by B, in symbols r(B),
consists of all variable assignments / : V — {T,F}
for which bdd-includes(B, I) returns true.
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BDDs as Canonical Representations
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Ordered BDDs: Motivation

In general, BDDs are not a canonical representation for sets of
interpretations. Here is a simple counter-example (V = {u, v}):

Example (BDDs for u A —v with Different Variable Order)

MA

Both BDDs represent the same state set, namely the singleton set
{{u— T,v— F}}.
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Ordered BDDs: Definition

m As a first step towards a canonical representation,
we now require that the set of variables is totally ordered
by some ordering <.

m In particular, we will only use variables vq, vo, v3, . ..
and assume the ordering v; < v; iff i < j.

Definition (Ordered BDD)

A BDD is ordered (w.r.t. <) iff for each arc from a node
with decision variable u to a node with decision variable v,
we have u < v.
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Ordered BDDs: Example

Example (Ordered and Unordered BDD)

—
o

1 0 1 0

The left BDD is ordered w.r.t. the ordering we use in this chapter,
the right one is not.
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Reduced Ordered BDDs: Are Ordered BDDs Canonical?

Example (Two equivalent BDDs that can be reduced)

3

m Ordered BDDs are still not canonical:
both ordered BDDs represent the same set.

m However, ordered BDDs can easily be made canonical.
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Reduced Ordered BDDs: Reductions (1)
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There are two important operations on BDDs
that do not change the set represented by it:

Definition (Isomorphism Reduction)

If the BDDs rooted at two different nodes n and n’ are isomorphic,
then all incoming arcs of n’ can be redirected to n,
and all BDD nodes unreachable from the root can be removed.
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

1
0,
0
1
0 11 0
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

1
0,
0
1
0 11 0
] J
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

1
0,
0
1
0 11 0
1] [JH J
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)
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Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)
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Reduced Ordered BDDs: Reductions (3)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Shannon Reduction)

If both outgoing arcs of an internal node n of a BDD lead to
the same node m, then n can be removed from the BDD,
with all incoming arcs of n going to m instead.
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Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

£

1
0 1
1
0 1

o
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Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

£

1
0 1
1
0 1

o
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Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)
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Reduced Ordered BDDs: Definition

Definition (Reduced Ordered BDD)

An ordered BDD is reduced iff it does not admit
any isomorphism reduction or Shannon reduction.

Summary

.

Theorem (Bryant 1986)

For every state set S and a fixed variable ordering,
there exists exactly one reduced ordered BDD representing S.

Moreover, given any ordered BDD B, the equivalent reduced
ordered BDD can be computed in linear time in the size of B.

~> Reduced ordered BDDs are the canonical representation
we are looking for.

From now on, we simply say BDD for reduced ordered BDD.



Summan
0

Summary



ures for State Sets 3 cision Diagrams

nical Representations Summary
oe

Summary

m Symbolic search is based on the idea of performing a
state-space search where many states are considered “at once”
by operating on sets of states rather than individual states.

m Binary decision diagrams are a data structure to compactly
represent and manipulate sets of variable assignments.

m Reduced ordered BDDs are a canonical representation
of such sets.
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Devising a Symbolic Search Algorithm

m We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
m use BDDs as a black box data structure:
m care about provided operations and their time complexity
m do not care about their internal implementation
m Efficient implementations are available as libraries, e.g.:

m CUDD, a high-performance BDD library
m libbdd, shipped with Ubuntu Linux
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Basic BDD Operations
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BDD Operations: Preliminaries

m All BDDs work on a fixed and totally ordered
set of propositional variables.
m Complexity of operations given in terms of:

m k, the number of BDD variables
m ||B]|, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical /set atoms

m bdd-fullset(): build BDD representing all assignments
m in logic: T
m time complexity: O(1)

m bdd-emptyset(): build BDD representing ()
m in logic: L
m time complexity: O(1)

m bdd-atom(v): build BDD representing {s | s(v) = T}
m in logic: v
m time complexity: O(1)



Basic BDD Operations Formulas and Singletons Renaming

[e]e]e] le]ele]ele]e)

BDD Operations (2)

BDD operations: logical/set connectives
m bdd-complement(B): build BDD representing r(B)
® in logic: —¢
m time complexity: O(||B]|)
m bdd-union(B, B’): build BDD representing r(B) U r(B’)

m in logic: (p V)
m time complexity: O(||B]| - ||B’]|)

m bdd-intersection(B, B’): build BDD representing r(B)Nr(B’)

m in logic: (p A1)
m time complexity: O(||B]| - ||B']])
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BDD Operations (3)

BDD operations: Boolean tests
m bdd-includes(B, ): return true iff | € r(B)
m in logic: | = ¢?
m time complexity: O(k)
m bdd-equals(B, B'): return true iff r(B) = r(B’)
m in logic: ¢ =7
m time complexity: O(1) (due to canonical representation)
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Basic BDD Operations Formulas and Singletons Renaming
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
B (AN(BV-O)[T/Bl=(AA(TV-C)=A
B (AN(BV-C))[F/B]=(AN(LV-C)=AN-C
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Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v]| restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

8 S={{A—=F,B—=F,C— F},
{A=T,B—T,C+— F},
{A=T,B—»T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=T,C—T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and v S (for sets).
Formally:

m v =o[T/v]Ve[F/v]

m dvS = S[T/v]US[F/v]
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Forgetting: Example

Examples:

s S={{A—-F,B—F,C— F},
{A—=T,B—T,C— F},
{A=T,B—»T,C—T}}

~ ABS ={{A—F,C+— F},

{A—T,C+— F},
{A=>T,C—T}}
~ 3CS={{A— F,B+— F},
{A=T,B—T}}
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BDD Operations (4)

BDD operations: conditioning and forgetting
m bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
m in logic: ¢[t/v]
m time complexity: O(||B]|)
m bdd-forget(B, v):
build BDD representing 3v r(B)

minlogic: v (= ¢[T/v]V ¢[F/v])
m time complexity: O(||B||?)
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Formulas to BDDs

m With the logical/set operations, we can convert propositional
formulas ¢ into BDDs representing the models of (.

m We denote this computation with bdd-formula(y).

m Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)
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Singleton BDDs

m We can convert a single truth assignment /

into a BDD representing {/} by computing

the conjunction of all literals true in /

(using bdd-atom, bdd-complement and bdd-intersection).
m We denote this computation with bdd-singleton(/).

m When done in the correct order, this takes time O(k).
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Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in .

We require that Y is not present in ¢ initially.

Example:
mo=(AAN(BV-(Q))
~ p[A— D] = (DA (BV-C))
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How Hard Can That Be?

m For formulas, renaming is a simple (linear-time) operation.
m For a BDD B, it is equally simple (O(||B]|)) when renaming
between variables that are adjacent in the variable order.

m In general, it requires O(||BJ|?), using the equivalence
e[ X = Y]=3IX(p A (X < Y))
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Symbolic Breadth-first Search
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Plannlng Task State Variables vs. BDD Variables

Consider propositional planning task (V/, I, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.
m use unprimed variables v to describe sets of states:
{s € S | some property}
m use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:
{(s,s’) | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1
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Summary

Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-singleton.
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Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states #
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-emptyset, bdd-equals.
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Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(~y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-union.
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Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

Use bdd-equals.
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Breadth-first Search with Progression and BDDs

def bfs-progression(V, I, O, 7):
goal_states := models(y)
reachedy := {/}
i:=0
loop:

if reached; N goal_states # :
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached; 1 = reached;:
return no solution exists
i=i+1

How to do this?
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The apply Function (1)

We need an operation that

m for a set of states reached (given as a BDD)
m and a set of operators O
m computes the set of states (as a BDD) that result from

applying some operator o € O in some state s € reached.
We have seen something similar already. ..
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.
Define 1v(0) := pre(o) A A\, c\ (regr(v, eff0)) <+ v').

States that o is applicable and describes how
m the new value of v, represented by v/,

m must relate to the old state, described by variables V.
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The apply Function (2)

m The formula 7/(0) describes all transitions s 2 s’
m induced by a single operator o
m in terms of variables V' describing s
m and variables V’ describing s’.
m The formula \/ ., Tv(0) describes state transitions
by any operator in O.
m We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
m The resulting BDD is called the transition relation
of the planning task, written as T(O).
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B )
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Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B )
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V'.
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Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B )
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B )

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V".
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)

as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B )

This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function

def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, v/, v)
return B )
Thus, apply indeed computes the set of successors of reached
using operators O.




Discussion
©00000

Discussion



wulas and Sin s 3 g S 3readth-first Search Discussion

O®@0000

Discussion

m This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

m We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

m In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

m Variables that refer to the same state variable
before and after operator application (v and v/)
should be neighbors in the transition relation BDD.

Summar
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Extensions

Symbolic search can be extended to...
m regression and bidirectional search:
this is very easy and often effective
m uniform-cost search:
requires some work, but not too difficult in principle

m heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search
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Summary

m Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

m State sets and transition relations can be represented
as BDDs.

m Based on this, we can implement a blind breadth-first search
in an efficient way.

m A good variable ordering is crucial for performance.
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Planning as Heuristic Search

Heuristic search is the most common approach to planning.

ingredients: general search algorithm + heuristic

heuristic estimates cost from a given state to a given goal
m progression: from varying states s to fixed goal ~y
m regression: from fixed initial state / to varying subgoals ¢
m Over the next weeks, we study the main ideas
behind heuristics for planning tasks.
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Reminder: Heuristics

Need to Catch Up?

m We assume familiarity with heuristics and their properties:
m heuristic h: S — R{ U {oo}
m perfect heuristic h*: h*(s) cost of optimal solution from s

(oo if unsolvable)

m properties of heuristics h:

safe: (h(s) = oo = h*(s) = oo) for all states s

B goal-aware: h(s) = 0 for all goal states s

m admissible: h(s) < h*(s) for all states s

m consistent: h(s) < cost(o) + h(s’) for all transitions s % s’

m connections between these properties

m If you are not familiar with these, we recommend Ch. B9-B10
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
13548-lecture-foundations-of-artificial-intelligence/ )
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A Simple Heuristic for Propositional Planning Tasks

STRIPS (Fikes & Nilsson, 1971) used the number of state variables
that differ in current state s and a STRIPS goal vi A -+ A vyt

h(s) = {i € {L,....n} | s J£ v},
Intuition: more satisfied goal atoms ~+ closer to the goal

~» STRIPS heuristic (a.k.a. goal-count heuristic)



[e]e] lele]e}

Criticism of the STRIPS Heuristic

Heuristics Coming Up with Heuristics Relaxed Planning Tasks

What is wrong with the STRIPS heuristic?
B quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate
m very sensitive to reformulation:
can easily transform any planning task into an equivalent one
where h(s) =1 for all non-goal states (how?)

m ignores almost all problem structure:
heuristic value does not depend on the set of operators!

~ need a better, principled way of coming up with heuristics
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Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

m Simplify the problem, for example by removing
problem constraints.

m Solve the simplified problem (ideally optimally).

m Use the solution cost for the simplified problem
as a heuristic for the real problem.

As heuristic values are computed for every generated search state,
it is important that they can be computed efficiently.
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Relaxing a Problem: Example

Example (Route Planning in a Road Network)

The road network is formalized as a weighted graph over points
in the Euclidean plane. The weight of an edge is the road distance
between two locations.

.

Example (Relaxation for Route Planning)

Use the Euclidean distance \/|x1 — x2|2 + |y1 — y2l|?
as a heuristic for the road distance between (x1, y1) and (x2, y2)
This is a lower bound on the road distance (~ admissible).

A

~> We drop the constraint of having to travel on roads.
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Summar

Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

delete relaxation
abstraction
critical paths
landmarks
network flows

potential heuristics

We will consider most of them in this course.
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Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

m delete relaxation ~ Part D
m abstraction ~ Part E
m critical paths ~+ not considered in this course
m landmarks ~ Part F
m network flows ~ Part F
m potential heuristics ~» Part F

We will consider most of them in this course.
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Content of the Course

— Prelude

— Foundations

Graphs

- Abstraction

Relaxation
- Constraints Heuristics
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Heuristics ¢ p with Heuristics Relaxed Planning Tasks

Delete Relaxation: ldea

In positive normal form (Chapter B5, remember?),
good and bad effects are easy to distinguish*:

m Effects that make state variables true are good
(add effects).

m Effects that make state variables false are bad
(delete effects).

Idea of delete relaxation heuristics: ignore all delete effects.

(*) with a small caveat regarding conditional effects
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Delete-Relaxed Planning Tasks

Definition (Delete Relaxation of Operators)

The delete relaxation o™ of an operator o in positive normal form
is the operator obtained by replacing all negative effects —a
within eff{o) by the do-nothing effect T.

Definition (Delete Relaxation of Propositional Planning Tasks)

The delete relaxation M of a propositional planning task
M= (V,I,0,~) in positive normal form is the planning task
N+ :=(V,l,{o" | o€ O},y).

Definition (Delete Relaxation of Operator Sequences)

The delete relaxation of an operator sequence m = (o1, ..., 0p)
is the operator sequence 7+ := (o], ..., o] ).

Note: “delete” is often omitted: relaxation, relaxed
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Relaxed Planning Tasks: Terminology

m Planning tasks in positive normal form without delete effects
are called relaxed planning tasks.

m Plans for relaxed planning tasks are called relaxed plans.

m If [T is a planning task in positive normal form and 7+
is a plan for M, then 7T is called a relaxed plan for [1.
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Summary

m A general way to come up with heuristics:
solve a simplified version of the real problem,
for example by removing problem constraints.

m delete relaxation: given a task in positive normal form,
discard all delete effects
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The Domination Lemma ‘m on Lemma Consequences Vlonotonicity Summar

On-Set and Domlnatlng States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional
variables that are true in s, i.e., on(s) = s 1({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s’ dominates an interpretation s if

on(s) C on(s').

~> all state variables true in s are also true in s’
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Domination Lemma (1)

Lemma (Domination)

Let s and s’ be interpretations of a set of propositional variables V,
and let x be a propositional formula over V
which does not contain negation symbols.

If s E x and s’ dominates s, then s’ |= x.

.

Proof by induction over the structure of .
m Base case Y = T: then s’ ET.
m Base case x = L: then s [£ L.

.
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Domination Lemma (2)

Proof (continued).
m Base case y =v € V: if s E v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ |= v.

m Inductive case y = x1 A x2: by induction hypothesis, our
claim holds for the proper subformulas x; and x> of x.

sEx = sEFExuix
= s Exiands E x2
LH. (twi
=) ssExiand s’ Exo
= s xi A xe
== s'Ex.

m Inductive case Y = x1 V x2: analogous
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Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

The add set of e in s, written addset(e, s),

and the delete set of e in s, written delset(e, s),

are defined as the following sets of state variables:

addset(e,s) = {v € V| s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s).
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The Domination Lemma The Relaxation Lemma Consequences Monotonicity

Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s’ be a state that dominates s.

© If o is an operator applicable in s,

then o™ is applicable in s’ and s'[o™] dominates s[o].
@ If 7 is an operator sequence applicable in s,

then 't is applicable in s' and s'[7] dominates s[x].

© If additionally 7 leads to a goal state from state s,
then ™ leads to a goal state from state s'.
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Proof of Relaxation Lemma (1)

Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s = pre(o).

Because pre(o) is negation-free and s’ dominates s,
we get s’ = pre(o) from the domination lemma.

Because pre(o™) = pre(o), this shows that o™ is applicable in s’.
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Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s’[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff{0),s) = {v € V| s |= effcond(v, eff(0))}
={v €V |s [ effcond(v,effo™))} (1)
C{ve V|s | effcond(v,effo™))} (2)
= addset(effo™),s),

where (1) uses effcond(v, eff(0)) = effcond(v, effo™))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).
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Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(s[o]) = (on(s) \ delset(eff(0),s)) U addset(eff(0), s)
C on(s) U addset(eff(0), s)
C on(s") U addset(eff(o™), s)
= on(s'[o™]),

and thus s'[o™] dominates s[o].

This concludes the proof of Part 1.
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Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |7|

Base case: m = ()

The empty plan is trivially applicable in s’, and

s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (o1,...,0nt1)

By the induction hypothesis, (o;“, ...,05) is applicable in s/,
and t' = s'[{of,...,0;)] dominates t = s[{o1,...,0n)].
Also, op+1 is applicable in t.

Using Part 1, o, is applicable in t' and s'[7 "] = [0}, ;]
dominates s[7]] = t[on+1]-

This concludes the proof of Part 2.
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The Domination Lemma The Relaxation Lemma

Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let v be the goal formula.
From Part 2, we obtain that t' = s'[7"] dominates t = s[n].
By prerequisite, t is a goal state and hence t |= 7.

Because the task is in positive normal form, ~ is negation-free,
and hence t' = v because of the domination lemma.

Therefore, t’ is a goal state. O
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Consequences of the Relaxation Lemma

m The relaxation lemma is the main technical result
that we will use to study delete relaxation.

m Next, we show two further properties of delete relaxation
that will be useful for us.

m They are direct consequences of the relaxation lemma.
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The Domination Lemma ation Lemma Consequences Monotonicity

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let m be an operator sequence that is applicable in state s.
Then w is applicable in s and s[w "] dominates s[r].
If w is a plan for 1, then w is a plan for M.

Apply relaxation lemma with s’ = s. 0J \

~> Relaxations of plans are relaxed plans.

~ Delete relaxation is no harder to solve than original task.

~» Optimal relaxed plans are never more expensive
than optimal plans for original tasks.
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Consequences Monotonicity
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Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let T be a relaxed operator sequence applicable in s.

Then 7t is applicable in s’ and s'[nt] dominates s[x].

y

Apply relaxation lemma with 7+ for 7,
noting that (7 7)" =7+,

Ol

N

~> |If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.
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The Domination Lemma

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Summar

.

Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™), s) = on(s[o™]).

~> Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.
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Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

~> next chapter
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Summary

m With positive normal form, having more true variables is good.
m We can formalize this as dominance between states.

m It follows that delete relaxation is a simplification:
it is never harder to solve a relaxed task than the original one.

m In delete-relaxed tasks, applying an operator always takes us
to a dominating state and therefore never hurts.
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The Story So Far

m A general way to come up with heuristics is to solve
a simplified version of the real problem.

m delete relaxation: given a task in positive normal form,
discard all delete effects

m relaxation lemma: solutions for a state s
also work for any dominating state s’
m monotonicity lemma: s[o] dominates s
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Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V, I, O, ~)

s:=1

=)

loop forever:
if s =~

return 7
else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator ot to 7.
s:=s[o"]
else:
return unsolvable
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Correctness of the Greedy Algorithm

The algorithm is sound:

m If it returns a plan, this is indeed a correct solution.
m If it returns “unsolvable”, the task is indeed unsolvable

m Upon termination, there clearly is no relaxed plan from s.
m By iterated application of the monotonicity lemma,
s dominates /.

m By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
m Each iteration of the loop adds at least one atom to on(s).
m This guarantees termination after at most |V/| iterations.

m Thus, the algorithm can clearly be implemented
to run in polynomial time.

m A good implementation runs in O(]|M]]).
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Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:
m When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.
m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.
m Set h(s) to the cost of the generated relaxed plan.

m in general not well-defined:
different choices of o™ in the algorithm lead to different h(s)

Is this admissible /safe/goal-aware/consistent?
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Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

m Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

m However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?
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Optimal Relaxation Heuristic

Definition (h™ heuristic)

Let M= (V,I,O,~) be a planning task in positive normal form
with states S.

The optimal delete relaxation heuristic h* for I

is the function h: S — R} U {oo}

where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for M = (V,s, OT, ).

(can analogously define a heuristic for regression)

admissible /safe /goal-aware/consistent?
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The Set Cover Problem

Can we compute ht efficiently?
This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {Cy,..., Cy}
with C; C U for all i € {1,...,n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,

a subcollection S = {S1,...,5m} C C

with SiU---US,=Uand m< K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.
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Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPLANEX problem restricted to delete-relaxed
planning tasks is NP-complete.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V/|
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem.
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Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance (U, C, K), we generate the following
relaxed planning task Mt = (V 1, O 4):

mV=U

m/={v—>F|veV}

= 0F = {<T:/\veC,- v,1) | G e C}

" 7= Aveu?
If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets

corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K.

Moreover, N can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction. [
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Summary

m Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

m However, the solution quality of this algorithm is poor.

m For an informative heuristic, we would ideally want to find
optimal relaxed plans.

m The solution cost of an optimal relaxed plan
is the estimate of the h" heuristic.

m However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.



Planning and Optimization
D4. Delete Relaxation: AND/OR Graphs

Malte Helmert and Gabriele Roger

Universitat Basel

October 22, 2025



Content of the Course

— Prelude

— Foundations

— Approaches —  Relaxed Tasks
— Abstraction
B Relaxation

- Constraints Heuristics




AND/OR Graphs

AND/OR Graphs



AND/OR Graphs For¢ 5 east Conservative Valuations

0O@00000000

Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

m Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
~+ h* heuristic

m Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
~s hM heyristic, h?99 heuristic, A-M-cUt heuristic

m Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
~~ hFF heuristic
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AND/OR Graphs: Motivation

m Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

m We now introduce AND/OR graphs and study
some of their major properties.

m In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.
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AND/OR Graph Example

Most/Least Conservative Valuations Summar
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AND/OR Graphs

Definition (AND/OR Graph)
An AND/OR graph (N, A, type) is a directed graph (N, A) with
a node label function type: N — {A,V} partitioning nodes into
m AND nodes (type(v) = A) and
m OR nodes (type(v) = V).
We write succ(n) for the successors of node n € N, i.e.,
succ(n) ={n" € N | (n,n’) € A}.

Note: We draw AND nodes as squares and OR nodes as circles.
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AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)

Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is an interpretation
a: N — {T,F}, treating the nodes as propositional variables.

We say that « is consistent if
m for all AND nodes n € N: a = niff o = A\ yegye(n) 1
m forall OR nodes n€ N: a = niff a =V egueem M-

Note that A, cpn' =T and \/,,cpn' = L.
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Example: A Consistent Valuation
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Example: Another Consistent Valuation
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Example: An Inconsistent Valuation
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Example: An Inconsistent Valuation
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How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

m Do consistent valuations exist for every AND/OR graph?
m Are they unique?
m If not, how are different consistent valuations related?

m Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no"”.
In the rest of this chapter, we address the remaining questions.
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Forced Nodes

Definition (Forced True/False Nodes)
Let G be an AND/OR graph.

A node n of G is called forced true
if a(n) =T for all consistent valuations a of G.

A node n of G is called forced false
if a(n) = F for all consistent valuations « of G.

How can we efficiently determine that nodes are forced true/false?

~> We begin by looking at some simple rules.
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Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)
Let n be a node in an AND/OR graph.

Rule T-(A): If nis an AND node and all
of its successors are forced true, then n is forced true.

Rule T-(\V): If n is an OR node and at least one
of its successors is forced true, then n is forced true.
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Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)
Let n be a node in an AND/OR graph.

Rule F-(A): If n is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(\V/): If n is an OR node and all
of its successors are forced false, then n is forced false.
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Example: Applying the Rules for Forced Nodes
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Completeness of Rules for Forced Nodes

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(A) and Rule T-(V).

.

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(\) and Rule F-(V).

.

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.
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Completeness of Rules for Forced Nodes: Proof (1)

m Let « be a valuation where a(n) = T iff there exists
a sequence p, of applications of Rules T-(A)
and Rule T-(V) that derives that n is forced true.

m Because the rules are monotonic, there exists a sequence p
of rule applications that derives that n is forced true
for all n € on(a). (Just concatenate all p, to form p.)

m By the correctness of the rules, we know that all nodes
reached by p are forced true. It remains to show
that none of the nodes not reached by p is forced true.

m We prove this by showing that « is consistent,
and hence no nodes with «(n) = F can be forced true.
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Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).
Case 1: nodes n with a(n) =T

m In this case, p must have reached n in one of
the derivation steps. Consider this derivation step.

m If nis an AND node, p must have reached
all successors of n in previous steps,
and hence a(n’) = T for all successors n'.

m If nis an OR node, p must have reached
at least one successor of n in a previous step,
and hence a(n") = T for at least one successor n'.

m In both cases, o is consistent for node n.
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Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).

Case 2: nodes n with a(n) = F

m In this case, by definition of a no sequence of derivation steps
reaches n. In particular, p does not reach n.

m If nis an AND node, there must exist
some n’ € succ(n) which p does not reach.
Otherwise, p could be extended using Rule T-(A) to reach n.
Hence, a(n’) = F for some n’ € succ(n).

m If nis an OR node, there cannot exist
any n’ € succ(n) which p reaches.
Otherwise, p could be extended using Rule T-(V) to reach n.
Hence, a(n") = F for all n’ € succ(n).

m In both cases, « is consistent for node n.
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Remarks on Forced Nodes

Notes:

m The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

m In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

m In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

m The proof of the theorem also shows that every

AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.
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Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)

Let G be an AND/OR graph with nodes N.

The most conservative valuation amcv :N — {T,F} and
the least conservative valuation af : N — {T,F}

of G are defined as:

c (n) T if nis forced true
n) =
mev F otherwise

G
Aley

T otherwise

F if nis forced false
(n) =

Note: a$,, is the valuation constructed in the previous proof.
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Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)
Let G be an AND/OR graph. Then:

G . .
Q o, is consistent.

Q agv is consistent.

© For all consistent valuations o of G,
on(ahe,) C on(a) C on(ad,).
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Properties of MCV/LCV: Proof

Part 1. was shown in the preceding proof. We showed that
the valuation « considered in this proof is consistent
and satisfies «(n) = T iff n is forced true, which implies o = «

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, a$, and aS,.

G

mcv*
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Properties of MCV /LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

m Consistent valuations always exist
and can be efficiently computed.

m All consistent valuations lie between

the most and least conservative one.

m There is a unique consistent valuation iff oS, = oS,

or equivalently iff each node is forced true or forced false.
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Summary

m AND/OR graphs are directed graphs
with AND nodes and OR nodes.

m We can assign truth values to AND/OR graph nodes.

m Such valuations are called consistent if they match
the intuitive meaning of "AND"” and “OR".

m Consistent valuations always exist.

m Consistent valuations can be computed efficiently.

All consistent valuations fall between two extremes:

m the most conservative valuation, where only nodes
that are forced to be true are true

m the least conservative valuation, where all nodes
that are not forced to be false are true
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Relaxed Task Gra phs

Let M be a relaxed planning task.
The relaxed task graph of M, in symbols RTG(M"),
is an AND/OR graph that encodes

m which state variables can become true
in an applicable operator sequence for M+,

m which operators of M can be included
in an applicable operator sequence for M,

m if the goal of M can be reached,

m and how these things can be achieved.
We present its definition in stages.

Note: Throughout this chapter, we assume flat operators.
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Running Example

As a running example, consider the relaxed planning task
(V,1,{o1,00,03,04},7) with

VZ{a,b,c,d,e,f,g,h}
I={a—T,b—T,c—F,d—T,
e—F,f—Fg—F h—F}
{(cV(anb),cA((cAnd)>e)1)

Ozz(Tf,2)
o3 =(f,g,1)
o4 = (f,h 1)
y=eA(gAh)
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Components of Relaxed Task Graphs

A relaxed task graph has four kinds of components:
m Variable nodes represent the state variables.
m The initial node represent the initial state.

m Operator subgraphs represent the preconditions
and effects of operators.

m The goal subgraph represents the goal.

The idea is to construct the graph in such a way that all nodes
representing reachable aspects of the task are forced true.
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Variable Nodes

Let Mt = (V,I,0%",~) be a relaxed planning task.

m For each v € V, RTG(IM") contains an OR node n,.
These nodes are called variable nodes.
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Variable Nodes: Example

V= {a,b,c,d,e,f,g,h}
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Initial Node

Let Mt = (V,I, 0", ~) be a relaxed planning task.
m RTG(MN™) contains an AND node n.
This node is called the initial node.

m Forall v € V with /(v) = T, RTG(IN™) has an arc
from n, to n;. These arcs are called initial state arcs.

m The initial node has no successor nodes.
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Initial Node and Initial State Arcs: Example

V= {a,b,c,d,e,f,g,h}



Construction
00000®000000

Initial Node and Initial State Arcs: Example

I={a—»T,b—>T,c—»Fd—-Te—F f—>F g—F h—F}
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Operator Subgraphs

Let Mt = (V,I,0%",~) be a relaxed planning task.

For each operator ot € O, RTG(N™) contains
an operator subgraph with the following parts:

m for each formula ¢ that occurs as a subformula
of the precondition or of some effect condition of o™,
a formula node n,, (details follow)

m for each conditional effect (x > v) that occurs
in the effect of o™, an effect node n, (details follow);
unconditional effects are treated as (T > v)
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Formula Nodes

Formula nodes n, are defined as follows:

m If ¢ = v for some state variable v, n, is the variable node n,
(so no new node is introduced).

m If o =T, n, is an AND node without outgoing arcs.

m If o =1, n, is an OR node without outgoing arcs.

m If o = (1 A w2), n, is an AND node
with outgoing arcs to n,, and ng,.

m If o = (¢1V ¥2), n, is an OR node
with outgoing arcs to ny,, and n,.

Note: identically named nodes are identical,
so if the same formula occurs multiple times in the task,
the same node is reused.
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Effect Nodes

Effect nodes n§+ are defined as follows:
= n%, is an AND node

m It has an outgoing arc to the formula nodes npe(o+)
(precondition arcs) and n, (effect condition arcs).

m Exception: if x = T, there is no effect condition arc.
(This makes our pictures cleaner.)

m For every conditional effect (x > v) in the operator,
there is an arc from variable node n, to nX, (effect arcs).
Note: identically named nodes are identical,

so if the same effect condition occurs multiple times
in the same operator, this only induces one node.
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Operator Subgraphs: Example
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Operator Subgraphs: Example

or={(cV(aAnb),cA((cAnd)r>e)1)

|01,T| |01,c/\d|
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Operator Subgraphs: Example

Oy = (T,f,2>
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Operator Subgraphs: Example

o3 =(f,g,1)
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Operator Subgraphs: Example

O4:<f,h,1>
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Goal Subgraph

Let Mt = (V,I,0%",~) be a relaxed planning task.

RTG(M") contains a goal subgraph, consisting of formula nodes
for the goal v and its subformulas, constructed in the same way
as formula nodes for preconditions and effect conditions.




tructi
00000000000e

Goal Subgraph and Final Relaxed Task Graph: Example
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Goal Subgraph and Final Relaxed Task Graph: Example

v=eN(gAh)
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Reachability Analysis
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How Can We Use Relaxed Task Graphs?

m We are now done with the definition of relaxed task graphs.

m Now we want to use them to derive information
about planning tasks.

m In the following chapter, we will use them
to compute heuristics for delete-relaxed planning tasks.

m Here, we start with something simpler: reachability analysis.
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Forced True Nodes and Reachability

Theorem (Forced True Nodes vs. Reachability)

Let Mt =(V,I,0%",v) be a relaxed planning task,
and let Ny be the forced true nodes of RTG(IT).

For all formulas over state variables
that occur in the definition of T :

¢ is true in some reachable state of M* iff n, € Ny.

(We omit the proof.)
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Forced True Nodes and Reachability: Consequences

Let Mt =(V,I,0%",~) be a relaxed planning task,
and let Nt be the forced true nodes of RTG(M™). Then:

m A state variable v € V is true in at least one
reachable state iff n, € Nt.

m An operator ot € OT s part of at least one
applicable operator sequence iff nyeo+) € N.

m The relaxed task is solvable iff n, € Nt.
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Reachability Analysis: Example
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Reachability Analysis: Example
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Reachablllty Analysis: Example
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Reachablllty Analysis: Example
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Reachability Analysis: Example
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Reachability Analysis: Example
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Reachability Analysis: Example with Different Initial State
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Reachability Analysis: Example with Different Initial State
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Reachability Analysis: Example with Different Initial State
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Reachability Analysis: Example with Different Initial State
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Reachability Analysis: Example with Different Initial State
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Reachability Analysis: Example with Different Initial State
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Relaxed Task Graphs in the Literature

Some remarks on the planning literature:
m Usually, only the STRIPS case is studied.

~ definitions simpler: only variable nodes and operator nodes,
no formula nodes or effect nodes

m Usually, so-called relaxed planning graphs (RPGs)
are studied instead of RTGs.

m These are temporally unrolled versions of RTGs,
i.e., they have multiple layers (“time steps”) and are acyclic.

~> Foundations of Artificial Intelligence course FS 2025, Ch. F3-F4
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Summary

m Relaxed task graphs (RTGs) represent (most of) the
information of a relaxed planning task as an AND/OR graph.
m They consist of:

m variable nodes

an initial node

operator subgraphs including formula nodes and effect nodes
a goal subgraph including formula nodes

m RTGs can be used to analyze reachability in relaxed tasks:
forced true nodes mean “reachable”,
other nodes mean “unreachable”.
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Delete Relaxation Heuristics

m In this chapter, we introduce heuristics
based on delete relaxation.

m Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

m Unlike the previous chapter, we do not just propagate
information about whether a given node is reachable,
but estimates how expensive it is to reach the node.
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Reminder: Running Example

We will use the same running example as in the previous chapter:
M= (V,l,{o1,02,03,04},7) with

V ={a,b,c,d, e, f, g, h}

I={a—T,b—T,c—F,d—T,
e—F,f—F,g—F h—F}

op={cV(@aAb),cA((cAnd)>e)l)

02 =(T,f,2)
o3 = (f,g,1)
o4 = (f, h,1)
vy=-eA(gAh)
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Algorithm for Reachability Analysis (Reminder)

m reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

m Here is an algorithm that achieves this:

Reachability Analysis
Associate a reachable attribute with each node.
for all nodes n:
n.reachable := false
while no fixed point is reached:
Choose a node n.
if nis an AND node:
n.reachable := |\, cqycc(n) 1 -reachable
if nis an OR node:
n.reachable :=\/ , cq,cc(n) 1 -reachable
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Reachability Analysis: Example (Reminder)
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Introduction

Summary

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
m To apply an operator, we must pay its cost.

m To make an OR node true, it is sufficient
to make one of its successors true.

~~ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

m To make an AND node true, all its successors
must be made true first.

~~ We can be optimistic and estimate the cost
as the maximum of the successor node costs.
~ Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.
~+ We will prove later that this is indeed optimistic/pessimistic.
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h™* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™®* Values

Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt := MaXycsyce(n) N -COSE
if n is an effect node for operator o:
n.cost := cost(0) + MaXycsucc(n) oSt
if nis an OR node:
N.COSt := MiN ¢ gycc(n) N -COSE

The overall heuristic value is the cost of the goal node, n,.cost.
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h™*: Example
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h?4d Algorithm

(Differences to h™2* algorithm highlighted.)

Computing h*%9 Values

Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt =3 cqyce(m) M -COSE
if nis an effect node for operator o:
n.cost := cost(0) + >~ v coyce(n) - COS
if nis an OR node:
n.cost 1= MiN y cgycc(n) N -coSt

The overall heuristic value is the cost of the goal node, n,.cost.
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h?dd: Example
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h™a* and h24d: Definition

We can now define our first non-trivial efficient planning heuristics:

h™2 and h29d Heuristics
Let M= (V,I,0O,~) be a propositional planning task
in positive normal form.

The h™M@* heuristic value of a state s, written h™®*(s), is obtained
by constructing the RTG for M = (V,s, O",~) and then
computing n,.cost using the h™® value algorithm for RTGs.

The h?99 heuristic value of a state s, written h*44(s), is computed
in the same way using the h?4d value algorithm for RTGs.

Notation: we will use the same notation h™®(n) and h244(n)
for the h™®/h2dd values of RTG nodes
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Understanding h™® and A4

We want to understand hM2* and h?9d better:
Are they well-defined?

How can they be efficiently computed?
Are they safe?
Are they admissible?

How do they compare to the optimal solution cost
for a delete-relaxed task (h™)?
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Well-Definedness of h™® and h*4 (1)

Are h™> and h*d9 well-defined?
m The algorithms for computing ™ and h*4¢ values do not
specify in which order the RTG nodes should be selected.

m It turns out that the order does not affect the final result.
~» The h™@* and h?99 values are well-defined.
m To show this, we must show
m that their computation always terminates, and
m that all executions terminate with the same result.

m For time reasons, we only provide a proof sketch.
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Well-Definedness of h™® and h*d4 (2)

The fixed point algorithms for computing h™® and h?9 values
produce a well-defined result.

Proof Sketch

Let Vg, V4, V5, ... be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that V; > Vi for all J.

It is not hard to prove that each node value can only decrease
a finite number of times: first from oo to some finite value,
and then a finite number of additional times. Y
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Well-Definedness of h™® and h*d4 (3)

Proof Sketch (continued).
Uniqueness of result: Let Vg > Vi > Vo > .- >V, be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.
m View the consistency conditions of all nodes
(e.g., n.cost = minycgycc(ny N -cost for all OR nodes n)
as a system of equations E.
m V), must be a solution to E (otherwise no fixed point
is reached with V).
m Forall i € {0,...,n}, show by induction over i
that V; > S for all solutions S to E.
m It follows that V,, is the unique maximum solution to E
and hence well-defined.
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Efficient Computation of h™2* and h2

m If nodes are poorly chosen, the h™2%/h24d algorithm
can update the same node many times
until it reaches its final value.

m However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

m With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

m Using a suitable priority queue data structure,
this allows computing the h™2*/h?4d values of an RTG
with nodes N and arcs A in time O(|N|log |N|+ |A]).
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h™®: Example of Efficient Computation
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Efficient Computation of "> and h?4: Remarks

m In the following chapters, we will always assume that we are
using this efficient version of the "™® and 49 algorithm.

m In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.
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Heuristic Quality of "™ and A4

This leaves us with the questions about the heuristic quality
of h™2* and h2dd:

m Are they safe?
m Are they admissible?
m How do they compare to the optimal solution cost
for a delete-relaxed task?
It is easy to see that h™®* and h?%9 are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to
underestimation and h?%9 is prone to overestimation.

We will study this further in the next chapter.
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Summary

m h™* and h?99 values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
m They are computed by propagating cost information
in relaxed task graphs:

m At OR nodes, choose the cheapest alternative.
m At AND nodes, maximize or sum the successor costs.
m At effect nodes, also add the operator cost.

m h™2 and h?99 values can serve as heuristics.

m They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.
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Motivation

m In this chapter, we analyze the behaviour
of "M and k294 more deeply.
m Our goal is to understand their shortcomings.
® In the next chapter we then used this understanding
to devise an improved heuristic.
m As a preparation for our analysis, we need some further
definitions that concern choices in AND/OR graphs.

m The key observation is that if we want to establish the value of
a certain node n, we can to some extent choose how we want
to achieve the OR nodes that are relevant to achieving n.
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Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node,
but node values may not change.

+1 +1
o1, T oj,cANd

+1 +1
03, T o4, T

o
=

w|0y
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~
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(precondition of o; modified to ¢ V (aV b))
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Choice Functions

Definition (Choice Function)
Let G be an AND/OR graph with nodes N and OR nodes N, .

A choice function for G is a function f : N' — N defined on
some set N C Ny such that f(n) € succ(n) for all n € N'.

= In words, choice functions select (at most)
one successor for each OR node of G.

m Intuitively, f(n) selects by which disjunct n is achieved.

m If f(n) is undefined for a given n, the intuition is
that n is not achieved.
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Reduced Graphs

Once we have decided how to achieve an OR node,
we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function
for G defined on nodes N\'.

The reduced graph for f is the subgraph of G
where all outgoing arcs of OR nodes are removed
except for the chosen arcs (n, f(n)) with n € N'.
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Choice Functions Induced by h™®> and kA

Which choices do h™2% and h?94 make?

m At every OR node n, we set the cost of n
to the minimum of the costs of the successors of n.

m The motivation for this is to achieve n via the successor that
can be achieved most cheaply according to our cost estimates.

~> This corresponds to defining a choice function f
with f(n) € arg min,cp n'.cost for all reached OR nodes n,
where N’ C succ(n) are all successors of n processed before n.
m The successors chosen by this cost function are called
best achievers (according to h™® or h2dd).

m Note that the best achiever function f is in general
not well-defined because there can be multiple minimizers.
We assume that ties are broken arbitrarily.
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Example: Best Achievers (1)

best achievers for h2dd
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Example: Best Achievers (2)

best achievers for h*44; modified goal e V (g A h)
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Example: Best Achievers (2)

best achievers for h*44; modified goal e V (g A h)
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Best Achiever Graphs

m Observation: The hM2*/h24d costs of nodes remain the same
if we replace the RTG by the reduced graph for the respective
best achiever function.

m The AND/OR graph that is obtained by removing

all nodes with infinite cost from this reduced graph
is called the best achiever graph for hmax /p2dd,

m We write G™ and G2 for the best achiever graphs.

m G™ (G299) is always acyclic: for all arcs (n, n’) it contains,
n is processed by h™® (by h2d) after n'.
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Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.

Let N be the set of effect nodes of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs
of all effect nodes on the path.

The following properties can be shown by induction:
m h™(n) is the maximum cost of all paths originating from n in
G™@*_ A path achieving this maximum is called a critical path.
m h2%4(n) is the sum, over all effect nodes n’, of the cost of n’
multiplied by the number of paths from n to n’ in G299,

In particular, these properties hold for the goal node n,
if it is reachable.
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Example: Undercounting in hM®*

G™#*: undercounting in AM




Best Achievers
00000080

Example: Undercounting in hM®*

G™#*: undercounting in AM

~> 01 and o4 not counted because they are off the critical path
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Example: Overcounting in A%

G294: overcounting in h?9d
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G294: overcounting in h?9d
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~~ 0p counted twice because there are two paths to n
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Example: Overcounting in A%

G294: overcounting in h?9d

T
02

~~ 0p counted twice because there are two paths to n
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Summary

m h™ and h?99 can be used to decide how to achieve
OR nodes in a relaxed task graph
~> best achievers

m Best achiever graphs help identify shortcomings of h™®* and
h?dd compared to the perfect delete relaxation heuristic h.

m h™> underestimates h™ because it only considers
the cost of a critical path for the relaxed planning task.

m h?99 overestimates ht because it double-counts operators
occurring on multiple paths in the best achiever graph.
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Inaccuracies in h™2* and h24d

B h™® is often inaccurate because it undercounts:
the heuristic estimate only reflects the cost of a critical path,
which is often only a small fraction of the overall plan.

m h?9d is often inaccurate because it overcounts:
if the same subproblem is reached in many ways, it will be
counted many times although it only needs to be solved once.
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The FF Heuristic

Summary

With best achiever graphs, there is a simple solution
to the overcounting of h*99: count all effect nodes
that h?99 would count, but only count each of them once.

Definition (FF Heuristic)

Let M= (V,I,O,~) be a propositional planning task
in positive normal form. The FF heuristic for a state s of 1,
written h7(s), is computed as follows:

m Construct the RTG for the task (V,s, O, )
m Construct the best achiever graph G249,

m Compute the set of effect nodes {n}, ..., n3<}
reachable from n., in G2,

m Return hFF(s) = Zf—‘zl cost(o;).

Note: hFF is not well-defined; different tie-breaking policies
for best achievers can lead to different heuristic values
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Example: FF Heuristic (1)

FF heuristic computation
+1 +1

Construct RTG.
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FF heuristic computation

Construct best achiever graph G249,
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Example: FF Heuristic (1)

FF heuristic computation

Compute effect nodes reachable from goal node.



The FF Heuristic
000@0

Example: FF Heuristic (1)

FF heuristic computation

WFF(s)=1+1+2+14+1=6
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)
+1 +1

Construct RTG.
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)

Construct best achiever graph G249,
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)

Compute effect nodes reachable from goal node.
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)




hmax
vs. h2dd
vs. hfF
vs. h™



The FF Heuristic M3 ys, h?99 vs, AT vs. AT

0000« 0@000

Reminder: Optimal Delete Relaxation Heuristic

Definition (h™ Heuristic)

Let I be a propositional planning task in positive normal form,
and let s be a state of .

The optimal delete relaxation heuristic for s, written h'*(s),
is the perfect heuristic value h*(s) of state s
in the delete-relaxed task M.

m Reminder: We proved that h*(s) is hard to compute.
(BCPLANEX is NP-complete for delete-relaxed tasks.)

m The optimal delete relaxation heuristic is often used
as a reference point for comparison.
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Relationships between Delete Relaxation Heuristics (1)

Let T1 be a propositional planning task in positive normal form,
and let s be a state of T1.

Then:
(1) hmax(s) < h+(s) < hFF(S) < hadd(s)
Q@ h™*(s) = oo iff h*(s) = oo iff hfF(s) = oo iff h?94(s) = oo
© h™> and h* are admissible and consistent.

QO hF and k299 are neither admissible nor consistent.

© All four heuristics are safe and goal-aware.
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Relationships between Delete Relaxation Heuristics (2)

Proof Sketch.

for 1:

m To show h™(s) < h'(s), show that critical path costs can
be defined for arbitrary relaxed plans and that the critical path
cost of a plan is never larger than the cost of the plan.

Then show that h™®*(s) computes the minimal critical path
cost over all delete-relaxed plans.

m To show h™(s) < hFF(s), prove that the operators belonging
to the effect nodes counted by hFF form a relaxed plan.

No relaxed plan is cheaper than h™ by definition of h™.

m hFF(s) < h?d(s) is obvious from the description of hFF:
both heuristics count the same operators,
but h?94 may count some of them multiple times.
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Summary

Relationships between Delete Relaxation Heuristics (3)

Proof Sketch (continued).

for 2:
for 3:

for 4:
for 5:

all heuristics are infinite iff the task has no relaxed solution

admissibility follows from hM#(s) < h(s)
because we already know that h™ is admissible;
we omit the argument for consistency

construct a counterexample to admissibility for hFF

goal-awareness is easy to show; safety follows from 2.4-3.

[
y
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Summary

m The FF heuristic repairs the double-counting of h24
and therefore approximates h™ more closely.

m The key idea is to mark all effect nodes “used” for the h2dd
value of the goal and count each of them once.

m In general, h™(s) < h'(s) < AFF(s) < A2dd(s).

m h™ and h™ are admissible: AFF and 299 are not.
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Literature Pointers

(Some) delete-relaxation heuristics in the planning literature:
m additive heuristic h?4d (Bonet, Loerincs & Geffner, 1997)
m maximum heuristic h™** (Bonet & Geffner, 1999)

(original) FF heuristic (Hoffmann & Nebel, 2001)

cost-sharing heuristic h* (Mirkis & Domshlak, 2007)

set-additive heuristics h*® (Keyder & Geffner, 2008)

FF/additive heuristic i (Keyder & Geffner, 2008)

local Steiner tree heuristic h'st (Keyder & Geffner, 2009)

~> also hybrids such as semi-relaxed heuristics
and delete-relaxation landmark heuristics
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How We Continue

m The next class of heuristics we will consider
are abstraction heuristics.

Prelude
Foundations
Approaches

Delete Relaxation

Constraints

m However, this requires some preparations.
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Back to Foundations: Finite-Domain Representation

m Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

m To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

~~ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

~> not specific to abstraction heuristics, but general foundations
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Finite-Domain State Variables

m So far, we used propositional (Boolean) state variables.
~> possible values T and F

m We now consider finite-domain variables.
~> every variable has a finite set of possible values

m A state is still an assignment to the state variables.

Example: O(n?) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.
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Blocks World State with Propositional Variables

s(A-on-B) =
s(A-on-C) =
s(A-on-table) =
s(B-on-A)
s(B-on-C)

~s 29 = 512 states )

Note: it may be useful to add auxiliary state variables like A-clear.



Finite-Domain Representation lence and Normal Forms
000@00000000000

Blocks World State with Finite-Domain Variables

Use three finite-domain state variables:
m below-a: {b,c,table}
m below-b: {a,c,table}
m below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table

~ 33 = 27 states

V.

Note: it may be useful to add auxiliary state variables like above-a.
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Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?
m There are 13 physically possible states with three blocks:

m all blocks on table: 1 state
m all blocks in one stack: 3! = 6 states
m two block stacked, the other separate: (3)2! =6

m With propositional variables, 2° — 13 = 499 states are useless.
m With finite-domain variables, only 27 — 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.
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Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V' is an assignment s : V — J,\ dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).
v

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s |= v = d iff s(v) = d.
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Example: Finite-Domain State Variables

Consider finite-domain variables /' = {/ocation, bike} with
dom(/location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {/ocation — at-home, bike — locked}.

Does s |= (location = at-home A —bike = stolen) hold?
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Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V' is an object
with three properties:

m a precondition pre(o), a formula over V

m an effect effo) over V

m a cost cost(o) € R{

Only necessary adaptation: What is an effect?

(location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)
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Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

m If e and € are effects, then (e A €') is an effect
(conjunctive effect).

m If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects



Summary

Finite-Domain Representation
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Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d, e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

m effcond(v :=d, T) =1
m effcond(v :=d,v:=d)=T
m effcond(v :=d,v :=d')= L
for atomic effects with v/ # v or d' # d
m effcond(v :=d,(e N€')) =
(effcond(v := d, €) V effcond(v := d, €'))
m effcond(v := d,(x > e)) = (x A effcond(v := d, €))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.
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Conflicting Effects and Consistency Condition

m What should an effect of the form v:=a A v:= b mean?

m For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V.

The consistency condition for e, consist(e) is defined as

/\ /\ —(effcond(v := d, e) A effcond(v := d’, €)).
veV d,d’edom(v),d#d’

How did we handle conflicting effects
in propositional planning tasks?
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Summary

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables

and e be an effect over V.

If s |= consist(e), the resulting state of applying e in s,
written s[e], is the state s’ defined as follows for all v € V:

S(v) = {d if s |= effcond(v := d, e) for some d € dom(v)

s(v) otherwise

Let o be an operator over V.

Operator o is applicable in s if s |= pre(o) A consist(eff0)).
If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff{0)].
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Applying Operators: Example

V' = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {/ocation — in-front-of-uni, bike — unlocked}

o = (location = in-front-of-uni, location := at-home, 1)

o' = (location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)

What is s[o]]? What is s[o’]? )
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FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple M1 = (V,/, O,~) where

m V is a finite set of finite-domain state variables,
I is an assignment for V called the initial state,

| |
m O is a finite set of operators over V/, and
| |

v is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.
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Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task M = (V. /1, O,) induces
the transition system 7 (1) = (S, L, c, T, sp, Si), where

m S is the set of all states over V,

m L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€ S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skEn}

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.
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Equivalence and Flat Operators

m The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

m The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.
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Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d, e) A effcond(v := d’, e)
is unsatisfiable for all v € V and d,d’ € dom(v) with d # d'.

An operator o is called conflict-free if eff{0) is conflict-free.

Note: consist(e) = T for conflict-free e.

Algorithm to make given operator o conflict-free:
m replace pre(o) with pre(o) A consist(eff{ o))
m replace all atomic effects v := d by (consist(eff0)) > v := d)

The resulting operator o’ is conflict-free and 0 = 0'.
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SAS™ Operators and Planning Tasks

Definition (SAS™ Operator)
An operator o of an FDR planning task is a SAS™ operator if

m pre(o) is a satisfiable conjunction of atoms, and

m eff{0) is a conflict-free conjunction of atomic effects.

Definition (SAS™ Planning Task)

An FDR planning task (V, O, /,v) is a SAS™ planning task
if all operators o € O are SAS™ operators
and « is a satisfiable conjunction of atoms.

Note: SAS™ operators are conflict-free and flat.
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SAS™ Operators: Remarks

m Every SAS™ operator is of the form
(i=dit A Avy=dp, Vi:=diA---Av,,:=d)

where all v; are distinct and all va are distinct.

m Often, SAS™ operators o are described
via two sets of partial assignments:
m the preconditions {vy — di,...,v, — d,}
m the effects {v{ — dyi,..., v, — d.}
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SAS™ vs. STRIPS

m SAST is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

m Apart from this difference, all comments for STRIPS
apply analogously.

m If all variable domains are binary, SAS™ is essentially
STRIPS with negation.

Derives from SAS = Simplified Action Structures
(Backstrom & Klein, 1991)
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Summary

m Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

m FDR tasks are often more compact (have fewer states).
m This makes many planning algorithms more efficient
when working with a finite-domain representation.

m SAS™ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.

No conditional effects are allowed.
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Invariants

m When we as humans reason about planning tasks,
we implicitly make use of “obvious”’ properties of these tasks.

m Example: we are never in two places at the same time

m We can represent such properties as logical formulas ¢
that are true in all reachable states.

m Example: ¢ = —(at-uni A\ at-home)

m Such formulas are called invariants of the task.
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Invariants: Definition

Definition (Invariant)

An invariant of a planning task 1 with state variables V/
is a logical formula ¢ over V such that s = ¢

for all reachable states s of 1.
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Invariants Computing Invariants Reformulation

Computing Invariants

How does an automated planner come up with invariants?

m Theoretically, testing if a formula ¢ is an invariant
is as hard as planning itself.
~» proof idea: a planning task is unsolvable iff
the negation of its goal is an invariant

m Still, many practical invariant synthesis algorithms exist.

m To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
~+ sound, but not complete

m Empirically, they tend to at least find the “obvious”
invariants of a planning task.
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Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on
the generate-test-repair approach:

m Generate: Suggest some invariant candidates, e.g.,
by enumerating all possible formulas ¢ of a certain size.
m Test: Try to prove that ¢ is indeed an invariant.
Usually done inductively:
@ Test that initial state satisfies (.
@ Test that if ¢ is true in the current state,
it remains true after applying a single operator.
m Repair: If invariant test fails, replace candidate ¢
by a weaker formula, ideally exploiting why the proof failed.
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Invariant Synthesis: References

We will not cover invariant synthesis algorithms in this course.

Literature on invariant synthesis:
m DISCOPLAN (Gerevini & Schubert, 1998)
m TIM (Fox & Long, 1998)
m Edelkamp & Helmert's algorithm (1999)
m Bonet & Geffner's algorithm (2001)
m Rintanen'’s algorithm (2008)
]

Rintanen’s algorithm for schematic invariants (2017)
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Invariants Computing Invariants Reformulation

Exploiting Invariants

Invariants have many uses in planning:

m Regression search (C3-C4):

Prune subgoals that violate (are inconsistent with) invariants.
m Planning as satisfiability (C5-C6):

Add invariants to a SAT encoding of a planning task

to get tighter constraints.

m Proving unsolvability:
If ¢ is an invariant such that ¢ A 7y is unsatisfiable,
the planning task with goal ~ is unsolvable.
m Finite-Domain Reformulation:
Derive a more compact FDR representation (equivalent, but
with fewer states) from a given propositional planning task.

We now discuss the last point because it connects
to our discussion of propositional vs. FDR planning tasks.



Mutexes
©0000000

Mutexes



Invariants ( mputm Invariants Mutexes Reformulation Summary

O®000000

Reminder: Blocks World (Propositional Variables)

s(A-on-B) =
s(A-on-C) =
s(A-on-table) =
s(B-on-A) =
s(B-on-C) =

T
T
F
F
F
F
T

~s 29 = 512 states
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Reminder: Blocks World (Finite-Domain Variables)

Use three finite-domain state variables:
m below-a: {b,c,table}
m below-b: {a,c,table}
m below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table

~ 33 = 27 states
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Task Reformulation

m Common modeling languages (like PDDL)
often give us propositional tasks.

m More compact FDR tasks are often desirable.

m Can we do an automatic reformulation?
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Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments
cannot be simultaneously true (are mutually exclusive).

Example (Blocks World)

The invariant —A-on-BV —A-on-C states that
A-on-B and A-on-C are mutex.

We say that a set of literals is a mutex group
if every subset of two literals is a mutex.

Example (Blocks World)

{A-on-B, A-on-C, A-on-table} is a mutex group.
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Encoding Mutex Groups as Finite-Domain Variables

Let G = {¢1,...,¢,} be a mutex group over n different
propositional state variables Vg = {v1,...,vn}.

Then a single finite- domain state variable vg with
dom(vg) = {l1,...,€n,none} can replace the n variables Vg:

ms(vg) =Y represents situations where (exactly) ¢; is true

m s(vg) = none represents situations where all ¢; are false

Note: We can omit the “none” value if £1V ---V £, is an invariant.
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Mutex Covers

Definition (Mutex Cover)

A mutex cover for a propositional planning task 1
is a set of mutex groups {Gi, ..., G,} where each variable of I
occurs in exactly one group G;.

A mutex cover is positive if all literals in all groups are positive.

Note: always exists (use trivial group {v} if v otherwise uncovered)
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Positive Mutex Covers

In the following, we stick to positive mutex covers for simplicity.

If we have —v in G for some group G in the cover, we can
reformulate the task to use an “opposite” variable V instead,
as in the conversion to positive normal form (Chapter B5).
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Invariants

Mutex-Based Reformulation of Propositional Tasks

Given a conflict-free propositional planning task Il
with positive mutex cover {G, ..., Gp}:

m In all conditions where variable v € G; occurs,
replace v with vg, = v.
m In all effects e where variable v € G; occurs,

m Replace all atomic add effects v with vg, == v
m Replace all atomic delete effects —v with

(v, = v A=V, ey effcond(V', e)) > vg, := none

This results in an FDR planning task 1’ that is equivalent to I
(without proof).

Note: the conditional effects encoding delete effects
can often be simplified away to an unconditional or empty effect.
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m It can also be useful to reformulate an FDR task
into a propositional task.

m For example, we might want positive normal form,
which requires a propositional task.

m Key idea: each variable/value combination v = d
becomes a separate propositional state variable (v, d)
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Converting FDR Tasks into Propositional Tasks

Definition (Induced Propositional Planning Task)

Let M= (V,I,O,~) be a conflict-free FDR planning task.
The induced propositional planning task M’
is the propositional planning task M = (V' I, O',~'), where
V' ={(v.d)|veV,decdom(v)}
m '((v,d))=Tiff I(v)=d
m O’ and 7/ are obtained from O and ~ by

m replacing each atomic formula v = d by the proposition (v, d)
m replacing each atomic effect v := d by the effect

<V, d> A\ /\d’edom(v)\{d} _'<V, d’>

Notes:

m Again, simplifications are often possible
to avoid introducing so many delete effects.

m SAST tasks induce STRIPS tasks.
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Invariants Computing Invariants

Summary (1)

m Invariants are common properties of all reachable states,
expressed as formulas.

m A number of algorithms for computing invariants exist.

m These algorithms will not find all useful invariants
(which is too hard), but try to find some useful subset
with reasonable (polynomial) computational effort.
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Summary (2)

m Mutexes are invariants that express
that certain literals are mutually exclusive.

m Mutex covers provide a way to convert a set of propositional
state variables into a potentially much smaller set
of finite-domain state variables.

m Using mutex covers, we can reformulate propositional tasks
as more compact FDR tasks.

m Conversely, we can reformulate FDR tasks as propositional
tasks by introducing propositions for each variable/value pair.
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Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

m delete relaxation
abstraction
critical paths
landmarks

network flows

potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.
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Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour
as much as possible.

m An abstraction of a transition system 7 is defined by
an abstraction mapping « that defines which states of T
should be distinguished and which ones should not.

m From 7 and o, we compute an abstract transition system 7
which is similar to 7, but smaller.

m The abstract goal distances (goal distances in 7¢)
are used as heuristic estimates for goal distances in 7T .
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Abstracting a Transition System: Example

example from domain-specific heuristic search:

Example (15-Puzzle)

A 15-puzzle state is given by a permutation (b, t1, ..., t15)
of {1,...,16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1-7:

Ot((b, t1,..., t15>) = <b, t1,..., t7>

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.
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Abstraction Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

2o -

real state space:
m 16! = 20922789888000 ~ 2 - 10'3 states

] 176! — 10461394944000 ~ 1013 reachable states
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e Abstractions Outlook

Summary

Abstraction Example: 15-Puzzle

2 6 1 2 3 4
5 7 5 6 7
3 4 1

abstract state space:

m 16-15-...-9=518918400 ~ 5 - 102 states
m16-15-...-9=518918400 ~ 5 - 108 reachable states
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Computing the Abstract Transition System

Given T and «, how do we compute 77

Requirement

We want to obtain an admissible heuristic.
Hence, h*(«(s)) (in the abstract state space 7°) should never
overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in T
are also present in T
m If s is a goal state in T, then «(s) is a goal state in 7.

m If 7 has a transition from s to t, then 7
has a transition from «(s) to a(t) with the same cost.
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Computing the Abstract Transition System: Example

Example (15-Puzzle)

In the running example:
m 7 has the unique goal state (16,1,2,...,15).
~> T has the unique goal state (16,1,2,...,7).

m Let x and y be neighbouring positions in the 4 x 4 grid.
T has a transition from <X, t,...,ti—1,Y, tiv1,-- ., t15>
to (y, t,..., ti—1, X, tiv1, ..., t15> for all i € {1, ce 15}.

~» T has a transition from (x, t1,...,ti_1,¥, tit1,...,t7)
to <y, t,...,ti—1, X, tig1,-- -, t7> for all i € {1, e ,7}.
~> Moreover, T has a transition from (x, ti, ..., t7)
to (y,t1,....t7) if y & {t1,..., t7}.
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Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for «:

m For a given state s, the abstract state af(s)
must be efficiently computable.

m For a given abstract state «a(s), the abstract goal distance
h*(c(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:
m pattern database heuristics (Culberson & Schaeffer, 1996)
m domain abstractions (Hernadvolgyi and Holte, 2000)

m merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
structural patterns (Katz & Domshlak, 2008)
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Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ~ 495 MiB RAM).

During search, computing h*(«(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.
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Multiple Abstractions
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Practical Requirements Multiple Abstractions Outlook

Multiple Abstractions

m One important practical question is how to come up
with a suitable abstraction mapping a.

m Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

m However, it is generally not necessary to commit
to a single abstraction.
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Combining Multiple Abstractions

Maximizing several abstractions:
m Each abstraction mapping gives rise to an admissible heuristic.

m By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

m Thus, we can always compute several abstractions
and maximize over the individual abstract goal distances.

Adding several abstractions:
m In some cases, we can even compute the sum
of individual estimates and still stay admissible.
m Summation often leads to much higher estimates

than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.

ical Requirements Multiple Abstractions Outlook Summary
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Maximizing Several Abstractions: Example

Example (15-Puzzle)

B mapping to tiles 1-7 was arbitrary
~> can use any subset of tiles

m with the same amount of memory required for the tables
for the mapping to tiles 1-7, we could store the tables
for nine different abstractions to six tiles and the blank

m use maximum of individual estimates
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Adding Several Abstractions: Example

9 2 12 6 9 2 12 6
5 7 14 | 13 5 7 14 | 13
3 4 1 11 3 4 1 11

oM o

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

~~ |s the sum of the abstraction heuristics admissible?
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Adding Several Abstractions: Example

2 6 9 12
5 7 14 | 13
3 4 1 11

15 | 10 | 8 .

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

~~ The sum of the abstraction heuristics is not admissible.
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m 1st abstraction: ignore precise location of 8-15 and blank
m 2nd abstraction: ignore precise location of 1-7 and blank

~~ The sum of the abstraction heuristics is admissible.
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Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In the next two chapters, we formally introduce abstractions
and abstraction heuristics and study some of their
most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

m pattern database heuristics,
m merge-and-shrink abstractions and

m Cartesian abstractions.
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Summary

m Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

m The key idea is to map states to a smaller abstract transition
system 7 by means of an abstraction function a.

m Goal distances in 7“ are then used as admissible estimates
for goal distances in the original transition system.

m To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

m Often, multiple abstractions are used.
They can always be maximized admissibly.

m Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.
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Transition Systems

Reminder from Chapter B1:

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Sx) where

m S is a finite set of states,

L is a finite set of (transition) labels,

[
mc:lL— ]Rar is a label cost function,
m 7T CSxLxSis the transition relation,
m sp € S is the initial state, and
m S, C S is the set of goal states.
We say that T has the transition (s,¢,s’) if (s,£,s') € T.

) : i ) .
We also write this as s — s’, or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.
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Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Mapping Planning Tasks to Transition Systems

Reminder from Chapters B3 and E1:

Definition (Transition System Induced by a Planning Task)

The planning task I = (V, I, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, S«), where

S is the set of all states over state variables V/,

L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skE=~}

(same definition for propositional and finite-domain representation)

y
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Tasks in Finite-Domain Representation

Notes:

m We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

m All concepts apply equally to propositional planning tasks.

m However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

m Useless states can hurt the efficiency of abstraction-based
algorithms.
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Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task (V,/, O,~):
m V ={p, ta,tg} with
m dom(p) = {L,R,A,B}
m dom(ta) = dom(tg) = {L,R}
m/={p—Lta— R tg — R}
m 0= {pICkUp,J | S {Aa B}a./ € {L7 R}}
U {dropi,j ‘ S {A7 B}a./ € {L7 R}}
U{move; ;i | i € {A,B},j,j/ € {L,R},j # j'}, where
m pickup; ; = (ti=jAp=j,p:=1i1)
m drop; ;= (ti=jAp=1i, P —J,1>
m move;j i = (ti = j, tj :=j',1)

= v=(p=R)
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m State {p > i, ta — j, tg — k} is depicted as ijk.

m Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .
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Abstractions

Definition (Abstraction)
Let 7 =(S,L,c, T,sp, Si) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function o : S — S® defined on the states of T,
where S¢ is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: o maps the states of 7 to another (usually smaller)
abstract state space.
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Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,so, Si) be a transition system,
and let a: S — 5% be an abstraction of 7.
The abstract transition system induced by «, in symbols 7,
is the transition system 7% = (5%, L,c, T%, s§, SZ) defined by:
m 7%= {{afs), £, a(t)) | (s, 4, t) € T}
m sg = oso)
m SO ={a(s)|se S}




Abstractions
00000

Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
m 7 is called the concrete transition system.
m 7% is called the abstract transition system.

m Similarly: concrete/abstract state space,
concrete/abstract transition, etc.
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Abstraction: Example

concrete transition system
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Abstraction: Example

abstract transition system

()
m @ ARL
@ RRL
@ ARRJ«<—
~ o D
@ BRR}«—
@ RLR
@ BLR

Note: Most arcs represent many parallel transitions.
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Strict Homomorphisms

m The abstraction mapping « that transforms 7 to T¢
is also called a strict homomorphism from 7T to 7.

m Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

m A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by a.
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Abstraction Heuristics
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Abstraction Heuristics

Definition (Abstraction Heuristic)
Let «: S — S be an abstraction of a transition system 7.

The abstraction heuristic induced by «, written h®,
is the heuristic function h® : S — R} U {oc} defined as

h“(s) = hFa(a(s)) forall s e S,

where hZ-, denotes the goal distance function in 7.

Notes:
m h%(s) = oo if no goal state of T is reachable from af(s)

m We also apply abstraction terminology to planning tasks [T,
which stand for their induced transition systems.
For example, an abstraction of 1 is an abstraction of 7 ().
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Abstraction Heuristics: Example

ALR ARL

< BLL BRR}e—;

& (B EP
€)
&

BRL BLR

h“({p— L, ta— R, tg — R}) =3
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h®)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

We prove goal-awareness and consistency;
the other properties follow from these two.
Let T=(S,L,c, T,sp, Si)-

Let 7% = (5% L,c, T%, s, S¢).
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h*)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let T=(S,L,c, T,sp, Si)-

Let 7% = (5% L,c, T%, s, S¢).

Goal-awareness: We need to show that h®(s) =0 for all s € S,,

so let s € S,. Then a(s) € S by the definition of abstract
transition systems, and hence h%(s) = h%-.(a(s)) = 0.
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h*(s) < c(¢) + h*(t).
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, a(t) is a successor of a(s) in T via the label .




Abstraction Heuristics sel nd Refinements Summary

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, a(t) is a successor of a(s) in T via the label .

We get:
h?(s) = hra(a(s))
< c(0) + hira(a(t))
= c(£) + h*(t),

where the inequality holds because perfect goal distances hi.

are consistent in 7.

(The shortest path from a(s) to the goal in T cannot be longer
than the shortest path from «(s) to the goal via a(t).) O

4
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Coarsenings and Refinements
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Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

m Using a first abstraction a: S — S’, map 7 to T*.
m Using a second abstraction 3 : S’ — S”, map T to (T°)".

The result is the same as directly using the abstraction (8 o «):
m Let v: S — S” be defined as y(s) = (B o a)(s) = B(a(s)).
m Then 77 = (T%).



ction Heuristics Coarsenings and Refinements Summar

0O0e00000

transition system T
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Abstractions of Abstractions: Example (2)

Transition system 77 as an abstraction of T
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Abstractions of Abstractions: Example (2)

Transition system 7 as an abstraction of T
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Abstractions of Abstractions: Example (3)

ALR ARL
LLR je— <—>
ALL ARR
eNe )@
BLL BLR
LRL je— <—>
BRL BRR

Transition system 7" as an abstraction of 7’
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Abstractions of Abstractions: Example (3)

ALR ARL
LLR }e— <—>
ALL ARR
G @ @
BLL BRR
LRL je— <—>
BRL BLR

Transition system 7" as an abstraction of T
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Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let a and v be abstractions of the same transition system
such that v = 8 o « for some function .

Then ~y is called a coarsening of «
and « is called a refinement of ~.
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Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let o and «y be abstractions of the same transition system
such that « is a refinement of ~y.

Then h® dominates h”.

In other words, h7(s) < h*(s) < h*(s) for all states s.
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Heuristic Quality of Refinements: Proof

Since « is a refinement of ~,
there exists a function 8 with v = 5o a.

For all states s of 1, we get:

h'(s) = h+(7(s))
= h1-(B(a(s)))
(a(s))
< hra(a(s))
= h%(s),

= h.

where the inequality holds because hg-a is an admissible heuristic
in the transition system 7. O

4
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Summary

m An abstraction is a function a that maps the states S
of a transition system to another (usually smaller) set S¢.

m This induces an abstract transition system 7%, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

m Abstractions « induce abstraction heuristics h*: h*(s)

is the goal distance of a(s) in the abstract transition system.
m Abstraction heuristics are safe, goal-aware, admissible

and consistent.

m Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.
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Orthogonality of Abstractions

Definition (Orthogonal)
Let a1 and ap be abstractions of transition system 7.

We say that a3 and ap are orthogonal if for all transitions s 5t
of T, we have a1(s) = ai(t) or aa(s) = aa(t).
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Affecting Transition Labels

Definition (Affecting Transition Labels)

Let 7 be a transition system, and let £ be one of its labels.
We say that ¢ affects 7 if 7 has a transition s Lt with s £ t.

Theorem (Affecting Labels vs. Orthogonality)

Let a1 and ap be abstractions of transition system T .

If no label of T affects both T and T2,
then o and ap are orthogonal.

(Easy proof omitted.)
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Orthogonal Abstractions: Example

2 6 9 12
5 7 14 | 13
3 4 1 11

Are the abstractions orthogonal?
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Are the abstractions orthogonal?
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Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let h*t, ... h®" be abstraction heuristics of the same transition
system such that o; and o are orthogonal for all i # j.

Then "7 | h% is a safe, goal-aware, admissible and consistent
heuristic for T1.
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Orthogonality and Additivity: Example

@
® 0

@?@ ®?®

G

transition system 7T
state variables: first package, second package, truck
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Summar

Orthogonality and Additivity: Example

abstraction oy
abstraction: only consider value of first package
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Orthogonality and Additivity: Example

abstraction oy
abstraction: only consider value of first package
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abstraction as (orthogonal to aq)
abstraction: only consider value of second package
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Orthogonality and Additivity: Example

abstraction as (orthogonal to aq)
abstraction: only consider value of second package
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Orthogonality and Additivity: Proof (1)

We prove goal-awareness and consistency;
the other properties follow from these two.

Let 7 = (S,L,c, T,sg,S.) be the concrete transition system.
Let h=3) "7, h*.
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Summary

Orthogonality and Additivity: Proof (1)

We prove goal-awareness and consistency;
the other properties follow from these two.

Let 7 =(S,L,c, T,so, Si) be the concrete transition system.
Let h=3) "7, h*.

Goal-awareness: For goal states s € S,

h(s) =371 h*(s) = >_"_, 0 =0 because all individual
abstraction heuristics are goal-aware.




Additivity Summar

000000080

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).
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Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).

Because the abstractions are orthogonal, «;(s) # «;(t)
for at most one i € {1,...,n}.
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Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).

Because the abstractions are orthogonal, «;(s) # «;(t)
for at most one i € {1,...,n}.

Case 1: aj(s) = a(t) for all i € {1,..., n}.
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Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).

Because the abstractions are orthogonal, «;(s) # «;(t)
for at most one i € {1,...,n}.

Case 1: aj(s) = a(t) for all i € {1,..., n}.
Then h(s) =37 h*i(s)

= 21 Mo (ai(s))

= i1 ey (ai(2))

=21 hi(t)

= h(t) < c(o) + h(t).
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Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: «j(s) # «;(t) for exactly one i € {1,...,n}.
Let k € {1,..., n} such that ax(s) # ax(t).
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Orthogonality and Additivity: Proof (3)

Proof (continued).
Case 2: «j(s) # «;(t) for exactly one i € {1,...,n}.
Let k € {1,..., n} such that ax(s) # ax(t).
Then h(s) = > 1, h*i(s)
= 2ieft,.n\(k} Fei(@i(s)) + h%(s)
< it gk e (i(t)) + c(o) + h*(t)
= c(0) + 2 7Ly h*i(t)
= c(0) + h(z),
where the inequality holds because «;(s) = «;(t) for all i # k
and h“ is consistent. Ol

v
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Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:
m we want to obtain an informative heuristic, but

m want to keep its representation small.

Abstractions have small representations if
m there are few abstract states and

m there is a succinct encoding for a.



Outlook
[e]e] le]e]e]

Counterexample: One-State Abstraction

One-state abstraction: «(s) := const.
+ very few abstract states and succinct encoding for «

— completely uninformative heuristic
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Counterexample: ldentity Abstraction

Identity abstraction: «(s) :=s.
+ perfect heuristic and succinct encoding for «

— too many abstract states
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Counterexample: Perfect Abstraction

a0
)
fol
LLR RRL
B
/\U\J
aCaCaliagly
/\\/U
@ RLR
N2

Perfect abstraction: «(s) := h*(s).
+ perfect heuristic and usually few abstract states

— usually no succinct encoding for «
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Automatically Deriving Good Abstraction Heuristics

Abstraction Heuristics for Planning: Main Research Problem

Automatically derive effective abstraction heuristics
for planning tasks.

~ we will study three state-of-the-art approaches
in the following chapters
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Summary

m Abstraction heuristics from orthogonal abstractions
can be added without losing admissibility or consistency.
m One sufficient condition for orthogonality is that all
abstractions are affected by disjoint sets of labels.

m Practically useful abstractions are those which give
informative heuristics, yet have a small representation.

m Coming up with good abstractions automatically
is the main research challenge when applying
abstraction heuristics in planning.



Planning and Optimization

E6. Pattern Databases: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 10, 2025



Content of the Course

Prelude
Foundations
| Abstraction in Syntactic
Approaches General Projection

Delete Relaxation

{ Merge & Shrink ‘ Pattern

Collections

Constraints || Cartesian
Abstractions

il




Projections
©00000000

Projections and Pattern Database
Heuristics
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Pattern Database Heuristics

m The oldest commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

m PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

m The first use for domain-independent planning
is due to Edelkamp (2001).

m Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

m Pattern databases are a research area both in planning and in
(domain-specific) heuristic search.

m For many search problems, pattern databases are
the most effective admissible heuristics currently known.
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Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task
is an abstraction heuristic where

m some aspects of the task are represented in the abstraction
with perfect precision, while

m all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

.

Example (15-Puzzle)

m Choose a subset T of tiles (the pattern).
m Faithfully represent the locations of T in the abstraction.

m Assume that all other tiles and the blank can be anywhere
in the abstraction.

.
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Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)

Let N be an FDR planning task with variables V' and states S.
Let P C V, and let S’ be the set of states over P.

The projection mp : S — S’ is defined as 7p(s) := s|p,

(where s|p(v) := s(v) for all v € P).

We call P the pattern of the projection 7p.

In other words, mp maps two states s; and s to the same
abstract state iff they agree on all variables in P.
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Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by 7p is called
a pattern database heuristic or PDB heuristic.
We write h” as a shorthand for h™.

Why are they called pattern database heuristics?

m Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

m The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).
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Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}
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Example: Projection (1)

Abstraction induced by 7(,ackage}:

O ALR ARL O
LLR e «—{RRE
ALL ARR
@ LLL RRR @
BLL BRR
LRL j«— «~—{RER
BRL BLR

h{package} ( LRR) -9
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Example: Projection (2)

Abstraction induced by 7(package,truck A}

h{package,truck A}(LRR) -9
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Example: Projection (2)

Abstraction induced by 7(package,truck A}

h{package,truck A}(LRR) -9
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Pattern Databases: Chapter Overview

In the following, we will discuss:

m how to implement PDB heuristics
~> this chapter

m how to effectively make use of multiple PDB heuristics
~~ Chapter E7

m how to find good patterns for PDB heuristics
~> Chapter E8
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Implementing PDBs: Precomputation
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Pattern Database Implementation

Assume we are given a pattern P for a planning task [I1.
How do we implement h"?

O In a precomputation step, we compute a graph representation
for the abstraction 7 ()™ and compute the abstract goal
distance for each abstract state.

@ During search, we use the precomputed abstract goal
distances in a lookup step.
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Precomputation Step

Let 1 be a planning task and P a pattern.
Let 7=T7(MN) and 7' =T7".
= We want to compute a graph representation of 7.
m 7' is defined through an abstraction of T .
m For example, each concrete transition induces
an abstract transition.
m However, we cannot compute 7" by iterating
over all transitions of T .
m This would take time Q(||7).
m This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).
m Hence, we need a way of computing 7" in time
which is polynomial only in ||[1|| and || 77|
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Syntactic Projections

Definition (Syntactic Projection)
Let M= (V,I,0,v) be an FDR planning task,
and let P C V be a subset of its variables.
The syntactic projection I|p of I to P is the FDR planning task
(P,1|p,{o|lp | 0 € O},7|p), where
m |p for formula ¢ is defined as the formula obtained from ¢
by replacing all atoms (v = d) with v ¢ P by T, and

m ol|p for operator o is defined by replacing all formulas ¢
occurring in the precondition or effect conditions of o with
©|p and all atomic effects (v := d) with v ¢ P with the
empty effect T.

Put simply, M|p throws away all information not pertaining
to variables in P.
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Idea

n induced TS T(I‘I)

J abstract TS
TNy
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Idea

n induced TS T(I‘I)

J abstract TS
T(My"e
T(Mlp)

syntactic projection

induced TS
njp —nduced 1>
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n induced TS T(n)

J abstract TS
T(mre

induced TS relationship?

T(Nlp)

syntactic projection
Mlp

m [1|p can be computed in linear time in ||[[1]].

m If T(M]p) was “equivalent” to 7 (MM)™ this would give us an
efficient way to compute 7 ()77
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Idea

n induced TS T(n)

J abstract TS
T(mre

induced TS relationship?

T(Nlp)

syntactic projection
Mip

m [1|p can be computed in linear time in ||[[1]].

m If T(M]p) was “equivalent” to 7 (MM)™ this would give us an
efficient way to compute 7 (1)™.

m What do we mean with “equivalent”?

m Is this actually the case?
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Isomorphic Transition Systems

Isomorphic = equivalent up to renaming

Definition (Isomorphic Transition Systems)

Let 7T =(S,L,c,T,s0,S5:) and T' = (S, L', ', T', s}, S.)

be transition systems.

We say that 7 is isomorphic to 7", in symbols 7 ~ T, if there
exist bijective functions ¢ : S — S’ and X : L — L’ such that:

shteTiffo(s) 2 o(t) e T,

c(A(0)) = c(¢) forall £ € L,
¢(s0) = s4, and
s € S, iff p(s) € S..

(~) is a an equivalence relation. Two isomorphic transition
systems are interchangeable for all practical intents and purposes.
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Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let I be a SAS™ task, and let P be a pattern for .
Then T(M)™ ~ T(M|p).

~~ exercises L] I
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PDB Computation

Using the equivalence theorem, we can compute pattern databases
for SAS™ tasks I and patterns P:

Computing Pattern Databases

def compute-PDB(IM, P):
Compute M :=M|p.
Compute 7' := T ().
Perform a backward uniform-cost search from the goal
states of 7’ to compute all abstract goal distances.
PDB := a table containing all goal distances in T’
return PDB )

The algorithm runs in polynomial time and space
in terms of ||| + |PDB|.
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Generalizations of the Equivalence Theorem

m The restriction to SAS™ tasks is necessary.
m We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.
m In that case, the weighted graph of 7()™" is isomorphic
to a subgraph of the weighted graph of 7(M|p).
m This means that we can use 7(I|p) to derive
an admissible estimate of h”.
m With negations in conditions or with conditional effects,
not even this weaker result holds.
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Going Beyond SAS™ Tasks

m Most practical implementations of PDB heuristics
are limited to SAS™ tasks (or modest generalizations).

m One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS™ tasks.

m However, most direct conversions can exponentially increase
the task size in the worst case.

~~ We will only consider SAS™ tasks in the chapters
dealing with pattern databases.
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Implementing PDBs: Lookup
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Lookup Step: Overview

m During search, the PDB is the only piece of information
necessary to represent h”. (It is not necessary to store
the abstract transition system itself at this point.)

m Hence, the space requirements for PDBs during search
are linear in the number of abstract states S’
there is one table entry for each abstract state.

m During search, hF(s) is computed by mapping
7p(s) to a natural number in the range {0,...,|S| — 1}
using a perfect hash function, then looking up
the table entry for this number.
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Lookup Step: Algorithm

Let P = {v1,..., v} be the pattern.

m We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0,1,..., |dom(v)| — 1}.

m Forall i € {1,...,k}, we precompute N; := HJ’;} |dom(v;)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index := Zf'(:l N;s(v;)
return PDB[index]

m This is a very fast operation: it can be performed in O(k).

m For comparison, most relaxation heuristics need time O(]|]])
per state.



Lookup Step: Example (1)

Abstraction induced by T{package,truck A}:
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Lookup Step: Example (2)

m P ={v;, v} with v; = package, v» = truck A.
m dom(vi) ={L,R,A,B} ~ {0,1,2,3}
m dom(w) ={L,R} ~ {0,1}
~ Ny =10, [dom(v))[ =1, Ny = []}_; [dom(v;)| = 4
~ index(s) = 1- s(package) + 4 - s(truck A)
Pattern database:
abstract state | LL RL AL BL LR RR AR BR
index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1
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Summary

m Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.
m For SAS™ tasks, they can easily be implemented
via syntactic projections of the task representation.
m PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.
m PDB values can be looked up very fast,
in time O(k) for a projection to k variables.



Planning and Optimization
E7. Pattern Databases: Multiple Patterns

Malte Helmert and Gabriele Roger

Universitat Basel

November 12, 2025



Content of the Course

Prelude
Foundations
| Abstraction in Syntactic
Approaches General Projection

Delete Relaxation

{ Merge & Shrink ‘

Constraints || Cartesian
Abstractions

il




Additivity & the Canonical Heuristic

®0000000

Additivity & the Canonical Heuristic



Additivity & the Canonical Heuristic D ated Additive Sets

0O@000000

Pattern Collections

The space requirements for a pattern database
grow exponentially with the number of state variables
in the pattern.

This places severe limits on the usefulness
of single PDB heuristics h” for larger planning task.

To overcome this limitation, planners using pattern databases
work with collections of multiple patterns.

When using two patterns P; and P, it is always possible
to use the maximum of At and A2 as an admissible
and consistent heuristic estimate.

However, when possible, it is much preferable
to use the sum of APt and hP2 as a heuristic estimate,
since A1 + A2 > max{h"1, K2}
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Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let Pi,..., Pk be disjoint patterns for an FDR planning task 1.
If there exists no operator that has an effect

on a variable v; € P; and on a variable v; € P; for some i # j,
then fo:l hPi is an admissible and consistent heuristic for IN.
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Criterion for Additive Patterns

Theorem (Additive Pattern Sets)
Let Pi,..., Pk be disjoint patterns for an FDR planning task 1.

If there exists no operator that has an effect
on a variable v; € P; and on a variable v; € P; for some i # j,
then Ef-‘zl hPi is an admissible and consistent heuristic for IN.

.

If there exists no such operator, then no label of 7 () affects both
T (M7 and T(MN)™i for i # j. By the theorem on affecting
transition labels, this means that any two projections 7p, and 7p,
are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions. [

V.

A pattern set {P1,..., P} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.
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Finding Additive Pattern Sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:
@ Build the compatibility graph for C.
m Vertices correspond to patterns P € C.

m There is an edge between two vertices iff
no operator affects both incident patterns.

@ Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.
m Computing large cliques is an NP-hard problem,
and a graph can have exponentially many maximal cliques.
m However, there are output-polynomial algorithms for finding
all maximal cliques (Tomita, Tanaka & Takahashi, 2004)
which have led to good results in practice.
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Finding Additive Pattern Sets: Example

Consider a planning task with state variables V = {vq,...,v5}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, vp, v3},
P2 = {Vl, V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable,

variables vq and vp, variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
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Finding Additive Pattern Sets: Example

Consider a planning task with state variables V = {vq,...,v5}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, vp, v3},
P2 = {Vl, V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable,

variables vq and vp, variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {PQ, P3}, {Pg, P4, P5}
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The Canonical Heuristic Function

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic h° for pattern collection C is defined as

h(s) =  max Z hP (s),

N Decliques(C) pep

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic hC is admissible and consistent.
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Canonical Heuristic Function: Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, v, v3},
P2 = {V;[7 V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v, and an operator that affects vz and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {Pg, P4, P5}

What is the canonical heuristic function h€?
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Canonical Heuristic Function: Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = {Px, ..., Ps} with Py = {vi, v, v3},
P2 = {V;[7 V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v, and an operator that affects vz and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {Pg, P4, P5}
What is the canonical heuristic function h€?

Answer:
h¢ = max {h"1, hP2 1 hP3 P2 4 pPs 1 pP5Y
= max {plvv2vs} pivive} 4 plust plvivel 4 pivt 4 plshy
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How Good is the Canonical Heuristic Function?

m The canonical heuristic function is the best possible admissible
heuristic we can derive from C using our additivity criterion.

m Even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion
based on an idea called cost partitioning.

~> We will return to this topic in Part F.
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Computing h¢ Efficiently: Motivation

Consider
e — max{h{vl’vz’v3}, hlvivat 4 plvs} plvivel 4 plval 4 h{Vs}}_
m We need to evaluate this expression for every search node.
m It is thus worth to spend some effort in precomputations
to make the evaluation more efficient.

A naive implementation requires 5 PDB lookups
(one for each pattern) and maximizes over 3 additive sets.

Can we do better?
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Dominated Sum Theorem

Theorem (Dominated Sum)

Let {Pi,..., Py} be an additive pattern set for an FDR planning
task N, and let P be a pattern with P; C P for all i € {1,..., k}.
Then S K, hPi < hP.
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Dominated Sum Theorem

Theorem (Dominated Sum)

Let {Pi,..., Py} be an additive pattern set for an FDR planning
task N, and let P be a pattern with P; C P for all i € {1,..., k}.

Then S K, hPi < hP.

Because P; C P, all projections 7p, are coarsenings
of the projection mp. Let 77 := T (M)™.
We can view each h” as an abstraction heuristic for solving 7.

By the argumentation of the previous theorem, {Py,..., P} is an
additive pattern set and hence Ef‘zl hPi is an admissible heuristic
for solving 7”. Hence, Zf-;l hPi is bounded by the optimal

goal distances in 7, which implies > | hP < hP.




& the Canonical Heuristic Dominated Additive Sets

[e]e]e] lo}

Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pp} and {Qu,..., Qm} be additive pattern sets
of an FDR planning task such that each pattern P;
is a subset of some pattern Q; (not necessarily proper).

Then Y 7_y hPi < 37, 9.
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Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pp} and {Qu,..., Qm} be additive pattern sets
of an FDR planning task such that each pattern P;
is a subset of some pattern Q; (not necessarily proper).

Then Y 7_y hPi < 37, 9.

n 1 Z 2 &
ZhP,SZZhPi<ZhQJ7
i=1 Jj=1PCQ; Jj=1

where (1) holds because each P; is contained in some Q;
and (2) follows from the dominated sum theorem. O




& the Canonical Heuristic Dominated Additive Sets

[e]e]e]e] }

Dominance Pruning

m We can use the dominated sum corollary
to simplify the representation of h¢:
sums that are dominated by other sums can be pruned.

m The dominance test can be performed in polynomial time.

max{h{V17V27V3}, h{v1,v2} + h{V3,}7 h{vl,v2} + h{v4} + h{VE‘}}
= max {hlvv 2} pivivel o plvel 4 pleh)

~ number of PDB lookups reduced from 5 to 4;
number of additive sets reduced from 3 to 2
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Redundant Patterns

m The previous example shows that sometimes,
not all patterns in a pattern collection are useful.

m Pattern {v3} could be removed because
it does not affect the heuristic value.

m In this section, we will show that certain patterns
are never useful and should thus never be considered.

m Knowing about such redundant patterns is useful for
algorithms that try to find good patterns automatically.

~~ It allows us to focus on the useful ones.
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Non-Goal Patterns

Theorem (Non-Goal Patterns are Trivial)

Let M be a SAS™ planning task, and let P be a pattern for I

such that no variable in P is mentioned in the goal formula of T1.
Then hP(s) = 0 for all states s.

All states in the abstraction are goal states. O \

~> Patterns with no goal variables are redundant.
They should not be included in a pattern collection.
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Causal Graphs: Motivation

m For more interesting notions of redundancy,
we need to introduce causal graphs.

m Causal graphs describe the dependency structure
between the state variables of a planning task.

m Causal graphs are a general tool for analyzing planning tasks.

m They are used in many contexts besides abstraction heuristics.
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Causal Graphs

Definition (Causal Graph)
Let M= (V,I,O,~) be an FDR planning task.

The causal graph of I, written CG(I1), is the directed graph
whose vertices are the state variables V' and which has an arc (u, v)
iff u # v and there exists an operator o € O such that:

m u appears anywhere in o (in precondition, effect conditions
or atomic effects), and

m v is modified by an effect of o.

Idea: an arc (u, v) in the causal graph indicates that variable u
is in some way relevant for modifying the value of v
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Causally Relevant Variables

Definition (Causally Relevant)

Let M= (V,I,0O,~) be an FDR planning task,

and let P C V be a pattern for 1.

We say that v € P is causally relevant for P if CG(IN),
restricted to the variables of P, contains a directed path from v
to a variable v/ € P that is mentioned in the goal formula ~.

Note: The definition implies that variables in P mentioned
in the goal are always causally relevant for P.
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Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless)

Let P C V be a pattern for an FDR planning task I, and let
P’ C P consist of all variables that are causally relevant for P.

Then hP(s) = hP'(s) for all states s.

~> Patterns P where not all variables are causally relevant are
redundant. The smaller subpattern P’ should be used instead.
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Causally Irrelevant Variables are Useless: Proof

Proof Sketch.

(>): holds because 7p is a refinement of mp
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Causally Irrelevant Variables are Useless: Proof

Proof Sketch.
(>): holds because 7p is a refinement of mp

(<): Obvious if h¥'(s) = co; else, consider an optimal abstract
plan (o1, ..., 0p) for mp/(s) in T ()™

W.l.o.g., each o; modifies some variable in P’.

(Other o; are redundant and can be omitted.)

Because P’ includes all variables causally relevant for P,

no variable in P\ P’ is mentioned in any o; or in the goal.

Then the same abstract plan also is a solution for wp(s) in T(I)7.

Hence, the optimal solution cost under abstraction mp
is no larger than under mp:.
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Causally Connected Patterns

Definition (Causally Connected)

Let M= (V,I,O,v) be an FDR planning task,

and let P C V be a pattern for 1.

We say that P is causally connected if the subgraph of CG(IT)

induced by P is weakly connected (i.e., contains a path
from every vertex to every other vertex, ignoring arc directions).
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Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable)

Let P C V be a pattern for a SAS™ planning task I

that is not causally connected, and let Py, P> be a partition of P
into non-empty subsets such that CG(I) contains no arc
between the two sets.

Then hP(s) = hPi(s) + hP2(s) for all states s.

~» Causally disconnected patterns P are redundant.
The smaller subpatterns P; and P, should be used instead.
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Disconnected Patterns are Decomposable: Proof

Proof Sketch.
(>): There is no arc between P; and P, in the causal graph,
and thus there is no operator that affects both patterns.

Therefore, they are additive, and hP > hPr + hP2 follows
from the dominated sum theorem.

(<): Obvious if h*1(s) = oo or h2(s) = co. Else, consider
optimal abstract plans p; for 7 ()™ and py for T(M)™"2.
Because the variables of the two projections do not interact,
concatenating the two plans yields an abstract plan for 7 ().

Hence, the optimal solution cost under abstraction 7p is at most
the sum of costs of p; and py, and thus h” < AP 4 P2,
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Summary (1)

m When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
possible, and maximize where addition is inadmissible.

m A set of patterns is additive if each operator affects (i.e.,
assigns to a variable from) at most one pattern in the set.

m The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given this additivity criterion.



the Canonical Heuristic ated Additive Sets

Summary (2)

Not all patterns need to be considered, as some are redundant:
m Patterns should include a goal variable (else h” = 0).

m Patterns should only include causally relevant variables
(others can be dropped without affecting the heuristic value).

m Patterns should be causally connected (disconnected patterns
can be split into smaller subpatterns at no loss).

Summary
ooe
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Pattern Selection as an Optimization Problem

Only one question remains to be answered now
in order to apply PDBs to planning tasks in practice:

How do we automatically find a good pattern collection?

The Ildea
Pattern selection can be cast as an optimization problem:

m Given: a set of candidates
(= pattern collections which fit into a given memory limit)

m Find: a best possible candidate, or an approximation
(= pattern collection with high heuristic quality)
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Pattern Selection as Local Search

How to solve this optimization problem?

m For problems of interesting size, we cannot hope to find
(and prove optimal) a globally optimal pattern collection.

m Question: How many candidates are there?

m Instead, we try to find good solutions by local search.

Two approaches from the literature:
m Edelkamp (2007): using an evolutionary algorithm
m Haslum et al. (2007): using hill-climbing

~> in the following: main ideas of the second approach
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Pattern Selection as Hill-Climbing

Reminder: Hill Climbing

current := an initial candidate
loop forever:
next := a neighbour of current with maximum quality
if quality(next) < quality(current):
return current
current := next

more on hill climbing:
~~ Foundations of Artificial Intelligence course FS 2025, Ch. C1-C2
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Pattern Selection as Hill-Climbing

Reminder: Hill Climbing

current := an initial candidate
loop forever:
next := a neighbour of current with maximum quality
if quality(next) < quality(current):
return current
current := next )

Three questions to answer to use this for pattern selection:
@ initial candidate: What is the initial pattern collection?

@ neighbourhood: Which pattern collections are considered next
starting from a given collection?

© quality: How do we evaluate the quality of pattern collections?
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Search Neighbourhood
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Search Neighbourhood: Basic Idea

The basic idea is that we
m start from small patterns with only a single variable,
m grow them by adding slightly larger patterns

m and prefer moving to pattern collections that improve
the heuristic value of many states.

Summar
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Initial Pattern Collection

1. Initial Candidate

The initial pattern collection is
{{v} | v is a state variable mentioned in the goal formula}.

Motivation:
m patterns with one variable are the simplest possible ones
and hence a natural starting point
m non-goal patterns are trivial (~~ Chapter E7),
so would be useless
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Which Pattern Collections to Consider Next

From this initial pattern collection, we incrementally grow
larger pattern collections to obtain an improved heuristic.

2. Neighbourhood

The neighbours of C are all pattern collections C U {P’} where

m P'=PU{v} for some P €,

m P¢cC,

m all variables of P’ are causally relevant for P/,

m P’ is causally connected, and

m all pattern databases in C U {P’} can be represented

within some prespecified space limit. )

~> add one pattern with one additional variable at a time
~~ use criteria for redundant patterns (~» Chapter E7)

to avoid neighbours that cannot improve the heuristic
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Checking Causal Relevance and Connectivity

Remark: For causal relevance and connectivity, there is a sufficient
and necessary criterion which is easy to check:

m v is a predecessor of some u € P in the causal graph, or

m v is a successor of some u € P in the causal graph
and is mentioned in the goal formula.
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Evaluating the Quality of Pattern Collections

m The last question we need to answer is how to evaluate
the quality of pattern collections.

m This is perhaps the most critical point: without a good
evaluation criterion, pattern collections are chosen blindly.
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Approaches for Evaluating Heuristic Quality

Three approaches have been suggested:

m estimating the mean heuristic value of the resulting heuristic
(Edelkamp, 2007)

m estimating search effort under the resulting heuristic
using a model for predicting search effort
(Haslum et al., 2007; Franco et al., 2017)

m sampling states in the state space and counting how many
of them have improved heuristic values compared to
the current pattern collection (Haslum et al., 2007)

The last approach is most commonly used
and has been shown to work well experimentally.
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Heuristic Quality by Improved Sample States

m Generate M states sy, ..., sy through random walks
in the state space from the initial state
(according to certain parameters not discussed in detail).

m The degree of improvement of a pattern collection C’
which is generated as a successor of collection C
is the number of sample states s; for which h¢'(s;) > hC(s;).

m Use the degree of improvement as the quality measure for C’. |
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Computing h(s)

= So we need to compute h¢ (s) for some states s
and each candidate successor collection C’.

m We have PDBs for all patterns in C, but not for the new
pattern P’ € C' (of the form P U {v} for some P € C).

m If possible, we want to avoid fully computing
all PDBs for all neighbours.

ldea:

m For SAS™ tasks 1, h'(s) is identical to the
optimal solution cost for the syntactic projection I1|p.

m We can use any optimal planning algorithm for this.

m In particular, we can use A* search using h” as a heuristic.
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Summary

m One way to automatically find a good pattern collection
is by searching in the space of pattern collections.
m One such approach uses hill-climbing search

m starting from single-variable patterns
m adding patterns with one additional variable at a time
m evaluating patterns by the number of improved sample states

m By exploiting what we know about redundant patterns,
the hill-climbing search space can be reduced significantly.
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Beyond Pattern Databases

m Despite their popularity, pattern databases have some
fundamental limitations (~» example on next slides).

m Today and next time, we study a class of abstractions called
merge-and-shrink abstractions.

m Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

m They can do everything that pattern databases can do
(modulo polynomial extra effort).
m They can do some things that pattern databases cannot.
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Back to the Running Exampl

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}
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Example: Projection (1)

T ™ {package} -
()

@ ARL

LLR <—>
@ ARR

G @ —a S

@ BRR

LRL <—>
@ BLR



Tﬂ'{package,truck A

Example: Projection (2)
)
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Limitations of Projections

How accurate is the PDB heuristic?

m consider generalization of the example:
N trucks, 1 package

m consider any pattern that is a proper subset of variable set V

m h(sp) <2 ~ no better than atomic projection to package

These values cannot be improved by maximizing
over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics

with h(sp) > 3 for tasks of this kind of any size.

Time and space requirements are linear in V.

(In fact, with time/space O(N?) we can construct a merge-and-shrink abstraction

that gives the perfect heuristic h* for such tasks, but we do not show this here.)
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Merge-and-Shrink Abstractions: Main ldea

Main Idea of Merge-and-shrink Abstractions

(due to Drager, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

m Represent planning task as factored transition system (FTS):
a set of (small) abstract transition systems (factors)
that jointly represent the full transition system of the task.
m lteratively transform FTS by:
®m merging: combining two factors into one
m shrinking: reducing the size of a single factor by abstraction
m When only a single factor is left, its goal distances
are the merge-and-shrink heuristic values.
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Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

9 3§ 8
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Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product
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Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

P
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Running Example: Explanations

m Atomic projections (projections to a single state variable)
play an important role for merge-and-shrink abstractions.

Unlike previous chapters, transition labels
are critically important for merge-and-shrink.

m Hence we now look at the transition systems for atomic
projections of our example task, including transition labels.
m We abbreviate labels (operator names) as in these examples:

m MALR: move truck A from left to right
m DAR: drop package from truck A at right location
m PBL: pick up package with truck B at left location

m We abbreviate parallel arcs with commas and wildcards (x)
as in these examples:

m PAL, DAL: two parallel arcs labeled PAL and DAL
m MAx*: two parallel arcs labeled MALR and MARL
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Running Example: Atomic Projection for Package

Tﬂ'{package} .

Moxxk
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Running Example: Atomic Projection for Truck A

Tﬂ-{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBx*x,
PBx%,DBx PB*,DBx

MALR
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Running Example: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx*, PBR,DBR,MAxx,
PAx, DA% PAx,DAx

MBLR
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Synchronized Product: Idea

m Given two abstract transition systems with the same labels,
we can compute a product transition system.

m The product transition system captures all information
of both transition systems.

m A sequence of labels is a solution for the product
iff it is a solution for both factors.

Summar
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Synchronized Product of Transition Systems

Definition (Synchronized Product of Transition Systems)

For i € {1,2}, let T, = (S;, L, c, T}, so;, Sx;) be transition systems
with the same labels and cost function.

The synchronized product of 71 and 7, in symbols 71 ® 7>,
is the transition system Ty = (Sg, L, ¢, Ty, Sog, Sxg) With
|| S@ = 51 X 52

] T® = {<51,52> i) (tl, t2> ‘ S1 £> t;1 € T1 and s, £> th € Tg}

" Sog = (S01,502)
n S*® = 5*1 X 5*2
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
Se =S x5

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
o = (01, %02)

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
S*® — 5*1 X 5*2

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
14 J4 V4
T@ = {<51,52> — <t1, t2> ‘ s>t €Tiand s, — th € TQ}

Mickx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

ﬁ! MALR ﬁﬁ
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
14 J4 V4
T@ = {<51,52> — <t1, t2> ‘ s>t €Tiand s, — th € TQ}

Mickx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

ﬁu MALR ﬁﬁ
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
14 J4 V4
T@ = {<51,52> — <t1, t2> ‘ s>t €Tiand s, — th € TQ}

Mickx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

ﬁ! MALR ﬁﬁ
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Example: Synchronized Product

Tﬂ.{package} X Tﬂ{truck A} :
14 J4 V4
T@ = {<51,52> — <t1, t2> ‘ s>t €Tiand s, — th € TQ}

Mckx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

ﬁ! MALR ﬁﬁ
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Associativity and Commutativity

m Up to isomorphism (“names of states”),
products are associative and commutative:

B (ToT)OT" ~Te(T'@T")
nTRT' ~T'®T
m We do not care about names of states and thus
treat products as associative and commutative.

m We can then define the product of a set F = {T1,...,7n}
of transition systems: @ F :=T1 ®...® T,
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Factored Transition System

Definition (Factored Transition System)

A finite set F = {71,...,7n} of transition systems
with the same labels and cost function
is called a factored transition system (FTS).

F represents the transition system ) F.

A planning task gives rise to an FTS via its atomic projections:

Definition (Factored Transition System Induced by Planning Task)

Let 1 be a planning task with state variables V.

The factored transition system induced by 1
is the FTS F(M) = {7T™+} | v € V}.
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Back to the Example Product

Tﬂ'{package} X Tﬂ'{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PBx,DBx

ﬁ! MALR ﬁﬁ

We have Tﬂ{package} ® Tﬂ—{truck A} ~ Tw{packag&truck A}_ COlnCldence?
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Products of Projections

Theorem (Products of Projections)

Let M be a SAS™ planning task with variable set V,
and let V, and V, be disjoint subsets of V.

Then T™ @ T™2 ~ T2,

(Proof omitted.)

~» products allow us to build finer projections from coarser ones
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Recovering T (M) from the Factored Transition System

m By repeated application of the theorem, we can recover
all pattern database heuristics of a SAS™ planning task
as products of atomic factors.

m Moreover, by computing the product of all atomic projections,
we can recover the identity abstraction id = my.

This implies:

Corollary (Recovering T (M) from the Factored Transition System)

Let N be a SAS™ planning task. Then @ F(I) ~ T(I).

This is an important result because it shows
that F () represents all important information about IM.
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Summary
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Summary

m A factored transition system is a set of transition systems
that represents a larger transition system by focusing
on its individual components (factors).

m For planning tasks, these factors are the atomic projections
(projections to single state variables).

m The synchronized product 7 ® T’ of two transition systems
with the same labels captures their “joint behaviour”.

m For SAS™ tasks, all projections can be obtained
as products of atomic projections.

m In particular, the product of all factors of a SAS™ task
results in the full transition system of the task.



Planning and Optimization
E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

November 17, 2025



Content of the Course

— Prelude
- Foundations

Abstraction in
— Approaches General
— Delete Relaxation | H Pattern Databases
— Constraints || Cartesian

Abstractions




Generic Algorithm



Generic Algorithm Exar o v Abstraction

[e] le]e]e}

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

m Initialization: Compute the FTS
consisting of all atomic projections.
m Loop: Repeatedly apply a transformation to the FTS.

m Merging: Combine two factors by replacing them
with their synchronized product.

m Shrinking: If the factors are too large,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

m Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.
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Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\ {71, T2}) U{Th ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{THu{T"}

return the remaining factor 7% in F




Generic Algorithm
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Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:
m When to merge, when to shrink?
~> general strategy
m Which abstractions to merge?
~> merge strategy

m Which abstraction to shrink, and how to shrink it (which 3)?
~» shrink strategy



Generic Algorithm
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Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

m When to merge, when to shrink?
~> general strategy

m Which abstractions to merge?
~> merge strategy

m Which abstraction to shrink, and how to shrink it (which 3)?
~» shrink strategy

merge and shrink strategies ~ Ch. E11/E12
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General Strategy

A typical general strategy:
m define a limit V on the number of states allowed in each factor
m in each iteration, select two factors we would like to merge
m merge them if this does not exhaust the state number limit

m otherwise shrink one or both factors just enough
to make a subsequent merge possible
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Example
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Back to the Running Example

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}
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Initialization Step: Atomic Projection for Package

Tﬂ'{package} .

Moxxk
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Initialization Step: Atomic Projection for Truck A

Tﬂ-{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBx*x,
PBx%,DBx PB*,DBx

MALR
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Initialization Step: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx, DA% PAx,DAx

MBLR

current FTS {Tﬂ'{package} , Tﬂ'{truck A} , Tﬂ'{truck B}}
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First Merge Step
71 = ’Tﬂ—{package} X Tﬂ-{truck A} -

MBx*x MBx*x

current FTS: {77, T ™{tuck B} }
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Need to Shrink?

m With sufficient memory, we could now compute 77 ® T ™{truck B}
and recover the full transition system of the task.

m However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

m To make the product fit the bound, we shrink 77 to 4 states.
We can decide freely how exactly to abstract 73.

m In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrink strategy.
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First Shrink Step

7> := some abstraction of 71
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7> := some abstraction of 71
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7> := some abstraction of 71
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First Shrink Step

7> := some abstraction of 71
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First Shrink Step

7> := some abstraction of 71
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First Shrink Step

7> := some abstraction of 71
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First Shrink Step

7> := some abstraction of 71




Algorithm Example Abstraction
0000000800

First Shrink Step

7> := some abstraction of 71
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0000000800

First Shrink Step

7> := some abstraction of 71
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0000000800

First Shrink Step

7> := some abstraction of 71

current FTS: {7, T ™{truck B} }
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Second Merge Step

73 = 7'2 X Tﬂ-{truck B} -

MALR

current FTS: {73}
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Another Shrink Step?

m At this point, merge-and-shrink construction stops.
The distances in the final factor define the heuristic function.

m If there were further state variables to integrate,
we would shrink again, e.g., leading to the following
abstraction (again with four states):

m We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

m The example generalizes to arbitrarily many trucks,
even if we stick to the fixed size limit of 8.
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Maintaining the Abstraction



Maintaining the Abstraction Summary

O®@000000000

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F=(F\{T1, 2}) U{T1 ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F = (F\ {T}H U{T?}

return the remaining factor 7¢ in F

m The algorithm computes an abstract transition system.
m For the heuristic evaluation, we need an abstraction.
m How to maintain and represent the corresponding abstraction?
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The Need for Succinct Abstractions

m One major difficulty for non-PDB abstraction heuristics is to
succinctly represent the abstraction.

m For pattern databases, this is easy because the abstractions —
projections — are very structured.

m For less rigidly structured abstractions, we need another idea.
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How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations
m For the atomic abstractions 7y, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in 7 ™{v}.
m During the merge (product) step A := A; ® Ay, we generate
a two-dimensional table that denotes which pair of states of
Aj and Aj corresponds to which state of A.

m During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.
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How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

m Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

m At this point, we can throw away all the abstract transition
systems — we just need to keep the tables.

m During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
~ 2|V/| lookups, O(|V|) time

Again, we illustrate the process with our running example.



Algorithm Exa o Maintaining the Abstraction

00000800000

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mk
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Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mixxk
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Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:
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Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:
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Algorithm Exar o Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

52:0 52:1
s1=0 0 1
51:1 2 3
51 =2 4 5
s1=3 6 7
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Maintaining the Abstraction when Shrinking

m The hard part in representing the abstraction is to keep it
consistent when shrinking.
m In theory, this is easy to do:
m When combining states i and j, arbitrarily use one of them
(say i) as the number of the new state.
m Find all table entries in the table for this abstraction which
map to the other state j and change them to /.
m However, doing a table scan each time two states are
combined is very inefficient.

m Fortunately, there also is an efficient implementation which
takes constant time per combination.
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Maintaining the Abstraction Efficiently

m Associate each abstract state with a linked list, representing
all table entries that map to this state.

m Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

m While shrinking, when combining i and j, splice the list
elements of j into the list elements of /.

m For linked lists, this is a constant-time operation.
m Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

m Finally, regenerate the mapping table from the linked list
information.
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Abstraction Example: Shrink Step

Representation before shrinking:

‘52:0 52:1
s1=0 0 1
si=1 2 3
5122 4 5
s1=3 6 7
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Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0)}

lists = {(1,1)}

list, = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

‘ Sy = 0 Sy = 1

s51=0 0 1
S1 = 2 3
S1 = 2 4 5
s51=3 6 7
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = (0, 0)}
list, = {(0,1)}
listy = {(10)}
lists = {(1,1)}
lists = {(2,0)}
lists = {(2,1)}
lists = {(3, 0)}
list; = {(3,1)}
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = {(0, 0)}

list, = {(0, 1)}

list; = {(1,0),(1,1)}
listy =

listy = s
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = {(0, 0)}

list, = {(0, 1)}

lists = {(1,0), (1,1)}
listy = 0

listy =
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Abstraction Example: Shrink Step

Maintaining the Abstraction
00000000080

2. When combining i and j, splice /ist; into list;.

listy = (0, 0
list, = {(0, 1
list, = {(1,0
listy = 0
lists = {(2,0
lists = 0
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = (0, 0)}

list, = {(0, 1)}

lists = {(1,0), (1,1)}
listy = 0

lists = {(27 0), (27 1)}
lists = 0

lists = {(3,0)}
listr = {(3,1)}
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}
G listy = {(0,1)}
/ list, = {(1,0), (1,1)}
f lists —
0 ° o lists = {(2,0), (2, 1)}
\ lists = 1]
%/ lists = {(3,0), (3,1)}

list; = @
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}
Q list, = {(0,1)}

/ list, = {(1,0),(1,1)}
f lists —

0 ° o lists = {(2,0), (2,1)}
\ lists = 1]

\ / list, = {(3,0), (3, 1)}
e /iSt7 = @
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1, 0), (1, 1)}

list; = 1]

lists = {(2,0), (2,1),
(3.0, (3. 1)}

lists = 0

lists = 0

list; = 0
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Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

list; = 1]

lists = {(2,0),(2,1),
(3,0),(3,1)}

lists = 0

lists =0
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Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

lists = 0

IiSt4 = {(2- 0)5 (27 1)7
(3,0),(3,1)}

lists = 0

lists =0

list; = 0
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Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.
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Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0), (1,1)}

lists = {(2,0), (2,1),
(3,0),(3, 1)}

listy = 0

lists = 0

lists =0
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Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}
listy = {(0,1)}
list, = {(1,0), (1,1)}
lists = {(2,0), (2,1),
(3,0),(3, 1)}
listy = 0
lists = 0
lists =0
list; = 0
‘ So = 0 So = 1
s1=0 0 1
S1 = 2 2
51 =2 3 3
s1=3 3 3
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The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

m three one-dimensional tables for the atomic abstractions:
Tpackage ‘ L R A B TtruckA ‘ L R TtruckB ‘ L R

o 1 2 3 [0 1 [0 1
m two tables for the two merge and subsequent shrink steps:
T,.ﬁ&s ‘ 5=0 =1 Tna&s ‘ 5=0 s=1
s1=0 0 1 s51=0 1 1
s1=1 2 2 si=1 1 0
5 =2 3 3 51 =2 2 2
51=3 3 3 s51=3 3 3

m one table with goal distances for the final transition system:

Th |s=0 s=1 s=2 s=3
h(s) | 3 2 0 1

Given a state s = {package — L,truck A — L, truck B — R},
its heuristic value is then looked up as:

u h( ) Th[ &s[ &S[Tpackage[L] Ttruck A[L]] Ttruck B[R]]]
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Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.
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Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

m Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

m The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.
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Summary

Summary (2)

m Projections of SAS™ tasks correspond to
merges of atomic factors.

m By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

ooe
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Summary

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\ {71, T2}) U{Th ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{THu{T"}

return the remaining factor 7% in F
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Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better,
we are interested in the properties of the resulting heuristic:

m Is it admissible (h*(s) < h*(s) for all states s)?
m s it consistent (h%(s) < c(0) 4+ h®(t) for all trans. s 2 t)?
m Is it perfect (h*(s) = h*(s) for all states s)?
Because merge-and-shrink is a generic procedure,
the answers may depend on how exactly we instantiate it:
m size limits
m merge strategy
m shrink strategy
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Merge-and-Shrink as Sequence of Transformations

Consider a run of the merge-and-shrink construction algorithm
with n iterations of the main loop.

Let F; (0 < i < n) be the FTS F after i loop iterations.

Let 7; (0 < i < n) be the transition system represented by F;,
e, Ti=Q Fi.

m In particular, Fp = F(M) and F, = {T,}.

m For SAS™ tasks I, we also know 7o = T ().

For a formal study, it is useful to view merge-and-shrink
construction as a sequence of transformations from 7; to Tiy1.

(We do it in a bit more general fashion than necessary for merge and
shrink steps only, to also cover some improvements we will see later.)
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Summary

Transformations

Definition (Transformation)

Let 7 =(S,L,c, T,5,S:) and T = (S, L', ', T', s}, S.)
be transition systems.

Let 0 : S — S’ map the states of 7 to the states of 7" and
X : L — L' map the labels of T to the labels of 7.

The tuple 7 = (7,0, A, T") is called a transformation from T to
o A
7. We also write it as 7 —2 7.

The transformation 7 induces the heuristic h” for T
defined as h"(s) = h7(o(s)).

Example: If « is an abstraction mapping for transition system 7,

7.d . .
then 7 2% T is a transformation.
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Conservative Transformations

Definition (Conservative Transformation)
Let 7 and 7 be transition systems with label sets L and L’ and
cost functions ¢ and ¢/, respectively.
A transformation (7,0, A, T') is conservative if

m /(A\(0)) < c(¥) forall £ € L,

m for all transitions (s, ¢, t) of T there is a transition

((s), \(¢),o(t)) of T’, and
m for all goal states s of T, state o(s) is a goal state of 7.

Example: If «v is an abstraction mapping for transition system T,
a,id o . .
then 7 —— T is a conservative transformation.
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Conservative Transformations: Heuristic Properties (1)

If T is a conservative transformation from transition system T to
transition system T’ then h™ is a safe, consistent, goal-aware and
admissible heuristic for T .

.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s, of T, state o(s,) is a goal
state of 7' and therefore h7(s,) = h3(o(s.)) = 0.

.
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Conservative Transformations: Heuristic Properties (2)

Proof (continued).

Consistency: Let ¢ and ¢’ be the label cost functions of 7 and 77,
respectively. Consider state s of 7 and transition (s, ¢, t).
As T’ has a transition (o (s), A(£),o(t)), it holds that

h*(s) = h7:(a(s))
< (M0) + h7 (o (1))
= /(M) + h"(t)
< c(f) + h7(t)

The second inequality holds due to the requirement on the label
costs. my
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Exact Transformations

Definition (Exact Transformation)
Let 7 and 7" be transition systems with label sets L and L’ and
cost functions ¢ and ¢/, respectively.
A transformation (7,0, A\, T') is exact if it is conservative and
Q if (s, ¢, t') is a transition of 77 then for all s € 071(s’) there
is a transition (s, £, t) of T with t € o71(¢') and £ € A~1(¢),
Q if s’ is a goal state of 7 then all states s € 0—1(s’) are goal
states of 7, and
Q c(f) = (\¥)) forall £ e L.

~> no “new” transitions and goal states, no cheaper labels
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Heuristic Properties with Exact Transformations (1)

If T is an exact transformation from transition system T to
transition system T then h™ is the perfect heuristic h* for T.

As the transformation is conservative, h” is admissible for 7 and

therefore h7-(s) > h7(s).

For the other direction, we show that for every state s’ of 7’ and
goal path 7/ for s’, there is for each s € 0=1(s’) a goal path in T
that has the same cost.

.
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Summary

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of 7’.

17/| = 0: If s’ is a goal state of 7" then each s € 0~1(s) is a goal
state of 7 and the empty path is a goal path for s in 7.

7| =i+ 1: Let o’ = (¢, ¢, t')7},, where 7}, is a goal path of
length i from t’. Then there is for each t € o~ 1(t) a goal path 7,
of the same cost in T (by ind. hypothesis). Furthermore, for all

s € 07 1(s') there is a state t € 0~ 1(t') and a label £ € \71(¢)
such that 7 has a transition (s, ¢, t). The path m = (s, ¢, t)m; is a
solution for s in 7. As £ and ¢/ must have the same cost and ¢
and 7}, have the same cost, 7 has the same cost as 7. O

V.
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Composing Transformations

Merge-and-shrink performs many transformations in sequence.
We can formalize this with a notion of composition:
. o, A\ o', N
mGivent=T -5 T and 7' =T —= T,
their composition 77 = 7/ o 7 is defined as
o'oo, Mo\
7_// — 7' TI/.
m If 7 and 7/ are conservative, then 7/ o 7 is conservative.

m If 7 and 7’ are exact, then 7/ o 7 is exact.
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Merge-and-Shrink Transformations

F: factored transition system

Replacement with Synchronized Product is Conservative and Exact

Let 71,72 € F with 71 # Ta.
Let F/:= (X \{T1, T2}) U{T1L @ T2}.
Then there is an exact transformation (®F, o,id, ®F’).

Up to the isomorphism we know from the synchronized product,
we can use o = id.

Abstraction is Conservative

Let « be an abstraction of 7; € F and let F' := (F\ {7;}) U{7*}.
The transformation (®F, o, id, ®F’) with
o({sty...,5n)) = (S1,---,Si—1,(Si), Si+1,---,Sn) is conservative.

(Proofs omitted.)
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Properties of Merge-and-Shrink Heuristics

We can conclude the following properties
of merge-and-shrink heuristics for SAS™ tasks:

m The heuristic is always admissible and consistent
(because it is induced by a a composition of conservative
transformations).

m If all shrink transformation used are exact,
the heuristic is perfect (because it is induced by
a composition of exact transformations).
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Shrink Strategies
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Reminder: Generic Algorithm Template

F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1,T2}) U{T1 ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
Fi=(F\{THUu{T"}

return the remaining factor 7% in F

Remaining Questions:
m Which abstractions to select for merging? ~~ merge strategy
m How to shrink an abstraction? ~- shrink strategy
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Shrink Strategies

How to shrink an abstraction?

We cover two common approaches:
m f-preserving shrinking

m bisimulation-based shrinking
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f-preserving Shrink Strategy

f-preserving Shrink Strategy

Repeatedly combine abstract states with
identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A*, so inaccuracies there matter less
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Bisimulation

Definition (Bisimulation)

Let 7 =(S,L,c, T,so, Si) be a transition system. An equivalence
relation ~ on S is a bisimulation for T if for every (s, ¢,s') € T
and every t ~ s there is a transition (t,¢,t') € T with t' ~ &’

A bisimulation ~ is goal-respecting if s ~ t implies that either
s,te S, ors, tegS,.
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Shrink Strategies Summar

~ with equivalence classes
{{1,2,5},{3,4}} is a
goal-respecting
bisimulation.
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Bisimulation Abstractions

Definition (Abstractions as Bisimulation)

Let T =(S,L,c, T,so,S«) be a transition system and « : S — S’
be an abstraction of 7. The abstraction induces the equivalence
relation ~, as s ~ t iff a(s) = a(t).

We say that « is a (goal-respecting) bisimulation for 7 if ~ is a
(goal-respecting) bisimulation for 7.
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Abstraction as Bisimulations: Example

Abstraction « with
a(l)=a(2) =a(b) =Aand o(3) = a(4) =B
is a goal-respecting bisimulation for 7.
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Goal-respecting Bisimulations are Exact

Let F be a factored transition system and « be an abstraction of
T, € F.

If o« is a goal-respecting bisimulation then the transformation
(®F, 0, id, ®F") with

mo((s1,.-..,5n) = (s1,...,Si—1,(Si), Si+1,---,Sn) and
m Fi= (F\{T:}) u{T"}
is exact.

(Proofs omitted.)

Shrinking with bisimulation preserves the heuristic estimates.
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Bisimulations: Discussion

m As all bisimulations preserve all relevant information, we are
interested in the coarsest such abstraction (to shrink as much
as possible).

m There is always a unique coarsest bisimulation for 7 and it
can be computed efficiently (from the explicit representation).

m In some cases, computing the bisimulation is still too
expensive or it cannot sufficiently shrink a transition system.
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Summary

m Merge-and-shrink abstractions can be analyzed
by viewing them as a sequence of transformations.

m We only use conservative transformations,
and hence merge-and-shrink heuristics for SAS™ tasks
are admissible and consistent.

m Merge-and-shrink heuristics for SAS™ tasks
that only use exact transformations are perfect.

m Bisimulation is an exact shrinking method.
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Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1, 2}) U{TL ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{T}Hu{T"}

return the remaining factor 7% in F

Remaining Question:
m Which abstractions to select for merging? ~~ merge strategy
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Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as 7;.

Rationale: only maintains one “complex” abstraction at a time

m Fully defined by an ordering of atomic projections/variables.

m Each merge-and-shrink heuristic computed with a non-linear
merge strategy can also be computed with a linear merge
strategy.

m However, linear merging can require a super-polynomial
blow-up of the final representation size.

m Recent research turned from linear to non-linear strategies,
also because better label reduction techniques (later in this
chapter) enabled a more efficient computation.
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Classes of Merge Strategies

We can distinguish two major types of merge strategies:

m precomputed merge strategies fix a unique merge order
up-front.
One-time effort but cannot react to other transformations
applied to the factors.

m stateless merge strategies only consider the current FTS and
decide what factors to merge.
Typically computing a score for each pair of factors and
naturally non-linear; easy to implement but cannot capture
dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless
strategies.
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ok: Label Reduction and Pruning Summary

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hynny: Ordering of atomic projections

m Start with a goal variable.

m Add variables that appear in preconditions of operators
affecting previous variables.

m If that is not possible, add a goal variable.

Rationale: increases h quickly
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Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first
merge variables within each cluster.

Example: MIASM (“maximum intermediate abstraction size
minimizing merging strategy")

MIASM strategy

m Measure interaction by ratio of unnecessary states in the
merged system (= states not traversed by any abstract plan).

m Best-first search to identify interesting variable sets.

m Disjoint variable sets chosen by a greedy algorithm for
maximum weighted set packing.

Rationale: increase power of pruning (later in this chapter)



Merge Strategies Outlook: Label Reduction and Pruning Summary

[e]e]e]ele]e] Jo)

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize
on labels that occur close to a goal state.

Example: DFP (named after Drager, Finkbeiner and Podelski)

DFP strategy

m labelrank(¢,T) = min{h*(t) | (s, ¢, t) transition in 7T}
m score(T,T') = min{max{labelrank(¢, T), labelrank(¢, T")} |
¢ label in T and 7'}

m Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region,
which is likely to be searched by A*.
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Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected
component of the causal graph.

Example: SCC framework

SCC strategy

m Compute strongly connected components of causal graph
m Secondary strategies for order in which

m the SCCs are considered (e.g. topologic order),
m the factors within an SCC are merged, and
m the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art;: SCC+DFP or a stateless MIASM variant
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Outlook: Label Reduction and
Pruning
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Further Transformations

State-of-the-art Merge & Shrink uses two further transformations:
m Label reduction

m Pruning
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Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.
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Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).
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Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.
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Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.

m There are also clear criteria when label reduction is exact.
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Label Reduction

m Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

m A label reduction (X, c) for a FTS F with label set L is given
by a function A : L — L', where L is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all £ € L,
(M) < c(0).

The label-reduced TSs have L' and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

m Label reduction is a conservative transformation.
m There are also clear criteria when label reduction is exact.

m Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.
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Alive States

reachable

-OF—0O0—0O—@

backward-reachable

m state s is reachable if we can reach it from the initial state
m state s is backward-reachable if we can reach the goal from s

m state s is alive if it is reachable and backward-reachable
— only alive states can be traversed by a solution

m a state s is dead if it is not alive.
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Pruning States (1)

m If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

m Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

m This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.

— use heuristic estimate oo
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Pruning States (2)

m Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

m Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

m However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A*(but
not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.
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Summary

m There is a wide range of merge strategies. We only covered
some important ones.

m Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.

m Pruning is used to keep the size of the factors small. It
depends on the intended application how aggressive the
pruning can be.
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Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

m Start with a very coarse abstraction.

m lteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.
m If yes, the task is solved.
m If not, refine the abstraction so that the same flaw will not be
encountered in future iterations.

CEGAR is another technique originally introduced for model checking.
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Our Plan for Today

m For a certain class of abstractions (the Cartesian
abstractions), CEGAR can be efficiently implemented.

m In this chapter, we get to know this class of abstractions and
the necessary foundations.

m In the next chapter, we see how they can be used within
CEGAR.
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Remarks

m In Ch. E13 and E14 we continue to only consider SAS™ tasks.

m To facilitate notation, we will use an arbitrary (but fixed)
order on the variables.
— Tuple of variables instead of set of variables.

m These chapters are based on:
Jendrik Seipp and Malte Helmert.
Counterexample-Guided Cartesian Abstraction Refinement for
Classical Planning. Journal of Artificial Intelligence Research
62, pp. 535-577. 2018.
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Example Task: Two Packages One Truck

In E13 and E14 we use the following running example.

Example (Two Packages, One Truck)

Consider the following FDR planning task (V,/, O,~):

B V= {pA, PB, t} with
m dom(p)a = dom(pg) = {L,,R}
m dom(t) = {L,R}
[ /:{pAI—>L,pBb—)L,tI—>L}
m O = {pickup;; | i € {A,B},j € {L,R}}
U {dropiJ | S {A7 B}a./ € {La R}}
U {move;; | i,j € {L,R},i # j}, where
m pickup; ; = (pi =j At =j,pi:=11)
m drop;; = (pi =IAt=j,p -—J:l>
m move;j = (t=1i,t:=j1)

my=(pa=RApg=R)
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Cartesian Sets

Definition

A set of states for a planning task with variables (vi,..., vp) is
called Cartesian if it is of the form A; x --- x A,,, where

A; Cdom(v;) forall 1 <j < n.

{L,1} x{R} x{L,R} = {(L,R,L),(L,R,R),(I,R,L),(I,R,R)}
for variables (pa, ps, t)
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Conjunctions of Atoms as Cartesian Sets

For a conjunction ¢ of atoms, the set of all states s with s |= ¢ is
Cartesian and can be defined as follows:

Definition
Let ¢ be a conjunction of atoms over finite domain variables

V = (vi,...,v,). The Cartesian set induced by ¢ is
Cartesian(p) = A1 X -+ X Ap, where

dom(v;) if ¢ contains no atom v; =d,
A — {d} if ¢ contains an atom v; = d and
L no atom v; = d’ with d # d’
0 otherwise (conflicting atoms for v;).
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Conjunctions of Atoms as Cartesian Sets: Examples

In the running example with variables (pa, pg, t)
m Cartesian(pa=RAt=L)={R} x{L,I,R} x {L}
m Cartesian(pa=RAt=LAt=R)={R} x{L,I,R} x 0
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Properties of Cartesian Sets

Let M= (V,0,1,7) be a SAS™ planning task.
@ The set of goal states of 1 is Cartesian.

@ For all o € O, the set of states in which
o is applicable is Cartesian.

© The intersection of Cartesian sets
over the same variables is Cartesian.

@ For all operators o, the regression of a Cartesian set
wrt. o is Cartesian. )

From the proofs we will see that the corresponding Cartesian sets
are easy to determine.
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Properties of Cartesian Sets

Proof Sketch.
© The set of goal states is Cartesian(7y).
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Summar

Properties of Cartesian Sets

Proof Sketch.
@ The set of goal states is Cartesian(7).

@ For o € O, the set of states in which o is applicable is
Cartesian(pre(0)).
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Properties of Cartesian Sets

Proof Sketch.
@ The set of goal states is Cartesian(7).

@ For o € O, the set of states in which o is applicable is
Cartesian(pre(0)).

© The intersection of Cartesian sets A; x --- X A, and
By x -+ x Byis (A1NB1) x -+ x (A, N Bp).
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Properties of Cartesian Sets

Proof Sketch (continued).

@ With variables (v1,...,v,), the regression of Cartesian set
b= B X - x B, wrt. ois regr(b,0) = Ay X -+ X A,
where

B; if v; does not occur in pre(o) and eff o)
1] if 0 has an effect setting v; to d’ ¢ B;

or if o has no effect on v;
but a precondition v; = d with d ¢ B;.
dom(v;) if o has no precondition on v; and
an effect setting v; to d’ € B;
{d} if o has a precondition v; = d and
an effect setting v; to d’ € B;
or if o has precondition v; = d with d € B;

and no effect on v;




Cartesian Sets Cartesian Abstractions
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Splitting Cartesian Sets

d%e

Theorem (Splits)

Q@ I/fbC aandc C a are disjoint Cartesian subsets of the
Cartesian set a, then a can be partitioned into
Cartesian sets d and e with b C d and c C e.
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Splitting Cartesian Sets

d%e d%e

s .

Theorem (Splits)

Q@ I/fbC aandc C a are disjoint Cartesian subsets of the
Cartesian set a, then a can be partitioned into
Cartesian sets d and e with b C d and c C e.

@ /fc C ais a Cartesian subset of the Cartesian set a and
s € a\ ¢, then a can be partitioned into
Cartesian sets d and e with s € d and ¢ C e.
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Splitting Cartesian Sets

a de
i c

For 1), leta=A; x---xAp, b=B; x---x B, and
c=0C x---x C,.

Let j be such that B; and C; are disjoint. It must exist because
otherwise b and c are not disjoint (we could select for each
variable v; a value in B; N ;).

Partition A; into D; and E; with B; C D; and C; C E;,

eg. Ej=Cjand D; = A\ G-

Then d:Al ><‘~-><AJ'_1 X DJ'XAJ'_H X eoo ><An and

e=A; X - XA_1 XxE XA x---xA,
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Splitting Cartesian Sets

a de
i c

For 1), leta=A; x---xAp, b=B; x---x B, and
c=0C x---x C,.

Let j be such that B; and C; are disjoint. It must exist because
otherwise b and c are not disjoint (we could select for each
variable v; a value in B; N ;).

Partition A; into D; and E; with B; C D; and C; C E;,

eg. Ej=Cjand D; = A\ G-

Then d:Al ><‘~-><AJ'_1 X DJ'XAJ'_H X oo ><An and

e=A; X - XA_1 XxE XA x---xA,

2) follows from 1) by setting b = {s} (a Cartesian set). O




Splitting Cartesian Sets: Example

a:{l,R, L} x {L, 1} x {L,R}

:

®E

b:{l} x{L} x {R}

¢ {L} x {I} x {L,R}

{Q@G
DEO®®
&6

On which variable(s) can we split?
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Splitting Cartesian Sets: Example

a:{l,R, L} x {L, 1} x {L,R}

:

®E

b:{l} x{L} x {R}

¢ {L} x {I} x {L,R}

{Q@G
DEO®®
&6

On which variable(s) can we split? ~ first or second.
What are the two Cartesian sets d and e in each case?
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Splitting Cartesian Sets: Example

a:{l,R, L} x {L, 1} x {L,R}

:

B®E

b:{l} x{L} x {R}

¢ {L} x {I} x {L,R}

®®
PDEOE

Split on first variable:
d={l,R} x{L, 1} x{L,R} and e={L} x {L,I} x {L,R}
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Splitting Cartesian Sets: Example

a:{l,R, L} x {L, 1} x {L,R}

b:{l} x {L} x {R}

¢ {L} x {I} x {L,R}

Split on second variable:
d={l,R,L} x{L} x{L,R} and e = {I,R, L} x {I} x {L,R}



Cartesian Abstractions
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Cartesian Abstractions



Cartesian Abstractions Summar
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Reminder: Abstractions as Equivalence Relations

m An abstraction « induces the equivalence relation ~, over the
set of (concrete) states as s ~, t iff a(s) = a(t).
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Reminder: Abstractions as Equivalence Relations

m An abstraction « induces the equivalence relation ~, over the
set of (concrete) states as s ~, t iff a(s) = a(t).

m The equivalence class [s], of state s is the set of all concrete
states that are mapped to the same abstract state as s.



Cartesian Abstractions

0@000

Reminder: Abstractions as Equivalence Relations

m An abstraction « induces the equivalence relation ~, over the
set of (concrete) states as s ~, t iff a(s) = a(t).

m The equivalence class [s], of state s is the set of all concrete
states that are mapped to the same abstract state as s.

m We write ~ and [s], if « is clear from context.



Cartesian Abstractions
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Cartesian Abstraction

Definition

An abstraction « is called Cartesian if all equivalence classes of ~
are Cartesian sets.




Cartesian Abstractions
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Example

{1} x {L,1,R}
x{R}

{L} x {L,I,R}

X{R} {L7I}><{L71»R}

x{L}

Labels omitted for clarity.



Cartesian Abstractions
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Relationship to other Classes of Abstractions

m Cartesian abstractions generalize projections (PDBs): the
equivalence classes of projections are Cartesian.

m Merge & Shrink abstractions are more general than Cartesian
abstractions (every abstraction can be represented as Merge
& Shrink abstraction).

m Merge & Shrink and Cartesian abstractions are incomparable
in representation size: there are compact Cartesian
abstractions that do not have a compact Merge & Shrink
representation and vice versa.
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Summary



sian Abstractions Summary
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Summary

m Cartesian sets are sets of states that can be represented as a
Cartesian product of possible values for each variable.

m In Cartesian abstractions the sets of states that do not get
distinguished must be Cartesian.
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Refinement Example Heuristic Representation

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

m Start with a very coarse abstraction.
m Iteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.
m If yes, the task is solved.
m If not, refine the abstraction so that the same flaw will not be
encountered in future iterations.



CEGAR
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CEGAR Algorithm

Generic CEGAR algorithm for planning task [1

T := TrivialAbstract TransitionSystem(I1)
while not TerminationCondition():
7 := FindOptimalTrace(T)
if 7 is “no trace” then return [N unsolvable
F := FindFlaw(7, M, T)
if Fis "no flaw” then
return label sequence of 7 as plan for Il
T := Refine(T, F)
return 7

Refinement Example Heuristic Representation Summary




CEGAR Flaw Refinement Example Heuristic Representation Summary
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CEGAR Algorithm

Generic CEGAR algorithm for planning task [1

T := TrivialAbstractTransitionSystem(I1) < one abstract state
while not TerminationCondition(): < e.g. time/memory limit

7 := FindOptimalTrace(7) < abstract solution (path in T)

if 7 is “no trace” then return [1 unsolvable

F := FindFlaw(7, M, T)

if Fis “no flaw" then

return label sequence of 7 as plan for Il

T := Refine(T, F)

return 7
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CEGAR Algorithm

Generic CEGAR algorithm for planning task [1

T := TrivialAbstract TransitionSystem(I1)
while not TerminationCondition():
7 := FindOptimalTrace(T)
if 7 is “no trace” then return [N unsolvable
F := FindFlaw(7, M, T)
if Fis "no flaw” then
return label sequence of 7 as plan for Il
T := Refine(T, F)
return 7

Refinement Example Heuristic Representation

Open questions:
m What are flaws (and how to find them)? ~~ next

m How do we refine the system?
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Flaws



CEGAR Refinement Example Heuristic Representation Summar

Flaws

A flaw is a reason why (the label sequence of) 7 does not solve Il
the way it solves the abstract system 7 (with abstraction «).
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Flaws

A flaw is a reason why (the label sequence of) 7 does not solve Il
the way it solves the abstract system 7 (with abstraction «).

Start from the initial state of N1 and iteratively apply the next
operator (label) o from 7.
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Flaws

A flaw is a reason why (the label sequence of) 7 does not solve Il
the way it solves the abstract system 7 (with abstraction «).

Start from the initial state of N1 and iteratively apply the next
operator (label) o from 7.

m Precondition flaw: o is not applicable in the current state s.



CEGAR Re e Example Heuristic Representation

Flaws

A flaw is a reason why (the label sequence of) 7 does not solve Il
the way it solves the abstract system 7 (with abstraction «).

Start from the initial state of N1 and iteratively apply the next
operator (label) o from 7.

m Precondition flaw: o is not applicable in the current state s.

m Goal flaw: the final state is not a goal state.



CEGAR Refinement Example Heuristic Representation

Flaws

A flaw is a reason why (the label sequence of) 7 does not solve Il
the way it solves the abstract system 7 (with abstraction «).

Start from the initial state of N1 and iteratively apply the next
operator (label) o from 7.

m Precondition flaw: o is not applicable in the current state s.
m Goal flaw: the final state is not a goal state.

m Deviation flaw: the next abstract transition is a = &', the
current concrete state is s with a(s) = a but for successor
state s’ = s[o] we have a(s’) # &’ (deviating from the
abstract path).



CEGAR Refinement Example Heuristic Representation

Extracting Flaws

(¢}

For the refinement, we represent flaws in the form (s, c), where
®m 5 is a concrete state,
m ¢ C [s] is a non-empty Cartesian set,

m the abstract plan relied on “being in ¢" but s ¢ c.

(s, c) will define the split for the refinement step.



Flaws
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Extracting Different Kinds of Flaws

m Precondition flaw: if o is not applicabe in state s, use (s, ¢),
where ¢ is the set of concrete states in [s] in which o is
applicable.



Summar

CEGAR Refinement Example Heuristic Representation

Extracting Different Kinds of Flaws

m Precondition flaw: if o is not applicabe in state s, use (s, ¢),
where ¢ is the set of concrete states in [s] in which o is
applicable.

m Goal flaw: if the final state s is not a goal state, use (s, c),
where c is the set of concrete goal states in [s].



CEGAR Flaws Refinement Example Heuristic Representation
000 000e 000 000

Extracting Different Kinds of Flaws

m Precondition flaw: if o is not applicabe in state s, use (s, ¢),
where c is the set of concrete states in [s] in which o is
applicable.

m Goal flaw: if the final state s is not a goal state, use (s, c),
where c is the set of concrete goal states in [s].

= Deviation flaw: the next abstract transition is a > &', the
current concrete state is s with a(s) = a but for successor
state s’ = s[o] we have a(s’) # a’ (deviating from the
abstract path). Use (s, c¢), where c is the intersection of [s]
and regr(d’, o).



CEGAR Refinement Example Heuristic Representation

Extracting Different Kinds of Flaws

m Precondition flaw: if o is not applicabe in state s, use (s, ¢),
where c is the set of concrete states in [s] in which o is
applicable.

m Goal flaw: if the final state s is not a goal state, use (s, c),
where c is the set of concrete goal states in [s].

= Deviation flaw: the next abstract transition is a > &', the
current concrete state is s with a(s) = a but for successor
state s’ = s[o] we have a(s’) # a’ (deviating from the
abstract path). Use (s, c¢), where c is the intersection of [s]
and regr(d’, 0).

Easy for Cartesian abstractions, using the results from Ch. E13.



Refinement




CEGAR

CEGAR Algorithm

Generic CEGAR algorithm for planning task [1

T := TrivialAbstract TransitionSystem(I1)
while not TerminationCondition():
7 := FindOptimalTrace(T)
if 7 is “no trace” then return [N unsolvable
F := FindFlaw(7, M, T)
if Fis "no flaw” then
return label sequence of 7 as plan for Il
T := Refine(T, F)
return 7

Refinement Example Heuristic Representation Summary
000 00 000 00

Open questions:
m How do we refine the system?
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Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine((S, L', c’, T', s}, S.), (s, c))

(d,e) := Split([s], s, c)

§" = S"\{[s]} u{d, e}

T" := RewireTransitions( T, [s], d, e)

if [s] = s} then sj := d else s := s

if [s] € S, then S := (S/\ {[s]}) U {e} else S} := S,
return (8", L', c', T",s{,S!)




Refinement Example Heuristic Representation Summary

ooe

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine((S, L', c’, T', s}, S.), (s, c))

(d,e) := Split([s], s, ¢)

"= S"\{[sl} U{d,e}

T" := RewireTransitions( T, [s], d, e)

if [s] = s} then sj := d else s := s

if [s] € S, then S := (S/\ {[s]}) U {e} else S} := S,
return (8", L', c', T",s{,S!)

CHEE

Split [s] into d and e. c




CEGAR aw Refinement Example Heuristic Representation

ooe

Summary

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine((S, L', c’, T', s}, S.), (s, c))

(d,e) := Split([s], s, c)

§":= 5" \{[s]} u{d, e}

T" := RewireTransitions( T, [s], d, e)

if [s] = s} then sj := d else s := s

if [s] € S, then S := (S/\ {[s]}) U {e} else S} := S,
return (8", L', c', T",s{,S!)

Update incident transitions of [s].

m Check for each incoming and outgoing transition of [s]
(including self-loops) whether it needs to be rewired
from/to d, from/to e, or both.

m Easy for SAS™ operators and Cartesian abstract states.



CEGAR Flaws Refinement Example Heuristic Representation

ooe

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.

Refine((S, L', c’, T', s}, S.), (s, c))

(d,e) := Split([s], s, c)

§" =S \{[s]}u{d, e}

T" := RewireTransitions( T, [s], d, e)

if [s] = s} then sj := d else s := s

if [s] € S, then S := (S \ {[s]}) U {e} else S :=S.
return (8", L', c', T",s{,S!)

Update abstract initial state and goal states.

The way we defined the flaws, e can never be the abstract initial
state and d never be an abstract goal state.
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Example: Two Packages, One Truck

{L, 1, R} x {L,1, R}
x{L,R}



Example
o]

Example: Two Packages, One Truck

{L, 1, R} x {L,1, R}
x{L,R}

Abstract plan () ends in state LLL, which is not a goal.
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Example: Two Packages, One Truck

{L, 1, R} x {L,1, R}
x{L,R}

Abstract plan () ends in state LLL, which is not a goal.

Refine {L, I, R} x {L, I, R} x {L, R} with split (LLL, {R} x {R} x {L, R}).
~~ split on first or second variable;

~ {L, 1} x{L,I,R} x{L,R} and {R} x {L,I,R} x {L,R}
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Example: Two Packages, One Truck

Abstract plan () ends in state LLL, which is not a goal.

Refine {L, 1, R} x {L, 1, R} x {L, R} with split (LLL, {R} x {R} x {L, R}).
~ split on first or second variable;

s {L, 1} x {L,1,R} x {L,R} and {R} x {L,1,R} x {L,R}
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Example: Two Packages, One Truck

Abstract plan (dropy g); first action inapplicable in LLL.

Refine {L, I} x {L, 1, R} x {L, R} with split (LLL, {I} x {L, I, R} x {R}).
~ split on first or third variable;

s {L, 1} x {L,1,R} x {L} and {L, 1} x {L,1,R} x {R}
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Example: Two Packages, One Truck

{L, 1} x {L,I,R}
x{R}

Abstract plan (dropy g); first action inapplicable in LLL.

Refine {L, I} x {L, 1, R} x {L, R} with split (LLL, {I} x {L, I, R} x {R}).
~ split on first or third variable;

s {L, 1} x {L,1,R} x {L} and {L, 1} x {L,1,R} x {R}
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Example: Two Packages, One Truck

{L, 1} x {L,I,R}
x{R}

Abstract plan (move, g, drop, g); second action inapplicable in LLR.
Refine {L, 1} x {L,1, R} x {R} with split (LLR,{/} x {L,I, R} x {R}).
~» split on first variable;

~{L} x {L,I,R} x {R} and {I} x {L,I, R} x {R}
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Example: Two Packages, One Truck

{1} x {L,1,R}
x{R}

{L} x {L,1,R}
x{R}

Abstract plan (move, g,dropy g); second action inapplicable in LLR.
Refine {L, 1} x {L,1, R} x {R} with split (LLR,{/} x {L,I, R} x {R}).
~» split on first variable;

~{L} x {L,I,R} x {R} and {I} x {L,I, R} x {R}
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Example: Two Packages, One Truck

{1} x {L,1,R}
x{R}

{L} x {L,1,R}
x{R}

Abstract plan (move; g,dropy g); deviation flaw at first transition.
Refine {L, I} x {L, 1, R} x {L} with split (LLL,{/} x {L,/,R} x {L}).
~ split on first variable;

~ {L} x {L, I, R} x {L} and {/} x {L, I, R} x {L}
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Example: Two Packages, One Truck

{1} x {L,1,R}
*{R}

{L} x {L,1,R}

{L} x {L,1,R}
x{R}

Abstract plan (move, g,dropy g); deviation flaw at first transition.
Refine {L, 1} x {L, 1, R} x {L} with split (LLL,{/} x {L,1, R} x {L}).
~ split on first variable;

~ {L} x {L, I, R} x {L} and {/} x {L, I, R} x {L}
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Heuristic Representation



Example Heuristic Representation
0o °0

Representation

m In every iteration, we split one abstract state based on one
variable.
m Represent abstraction as binary tree of abstract states.
m Root: Single state of trivial abstraction
m Leaves: Abstract states of final abstraction
m With each inner node, we store the variable on which the
state was split.
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000 0o oe 00

Representation: Running Example

{L,I,R} x {L,I,R} x {L,R}
PA
{L1} x {L,1,R} x {LLR}  {R} x {L,I,R} x {L,R}
t

heur. estimate: 0
/ \

{L, 1} x{L,1,R} x {L} {L, 1} x{L,1,R} x {R}
PA PA

SN SN

{L} x{L,1,R} x {L} {1} x{L,,R} x{L} {L}x{L, IR} x{R} {I} x{L,I,R} x{R}

heur. estimate: 3 heur. estimate: 2 heur. estimate: 4 heur. estimate: 1
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Refinement Example Heuristic Representation

Summary
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Summary

Counterexample-guided abstraction refinement (CEGAR):
m lteratively improve a coarse abstraction:

m Find an optimal abstract solution.
m Try it in the concrete transition system.
m If it fails, extract a flaw and refine the abstraction.

Refinement: split abstract state based on flaw to avoid
repeating it.

Can be efficiently implemented for Cartesian abstractions.

Can stop at any time. The resulting heuristic is safe,
goal-aware, admissible and consistent.

Flaws: unsatisfied precondition, unsatisfied goal, deviation.
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Constraint-based Heuristics
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Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

m delete relaxation
abstraction
critical paths
landmarks

network flows

potential heuristic

Landmarks, network flows and potential heuristics are based on
constraints that can be specified for a planning task.



Constraint-based Heuristics Multiple Heuristics Summary
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Constraints: Example

.

B

FDR planning task (V, 1, 0,~) with < fﬁf
m V = {robot-at, dishes-at} with
m dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
m dom(dishes-at) = {Table, Robot, Dishwasher}
m | = {robot-at — C1, dishes-at — Table}
B operators

m move-x-y to move from cell x to adjacent cell y
m pickup dishes, and
m load dishes into the dishwasher.

m v = (robot-at = B6) A (dishes-at = Dishwasher)

Images from wikimedia
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Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes a certain value in at least one visited state.
(a fact landmark constraint)
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Constraint-based Heuristics
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Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

[ o

iy

gl ¢
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Constraint-based Heuristics
0000®000000

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

[ o
[ce o]

iy

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)
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Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

g

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)
m robot-at = B6, dishes-at = Dishwasher (goal state)
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Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

X

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)

m robot-at = B6, dishes-at = Dishwasher (goal state)

m robot-at = Al, robot-at = B3, robot-at = B4,
robot—-at = Bb, robot-at = A6, dishes-at = Robot
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Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

® an action must be applied.
(an action landmark constraint)
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Action Landmarks: Example

Which actions must be applied in every solution?

2 3 4 5 6

e
&

X)) B
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Action Landmarks: Example

Which actions must be applied in every solution?

2 3 4 5 6

e
&

m pickup

Gy &l

m load
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Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

e
&

pickup

i
;
Gy &l

load
move-B3-B4
move-B4-B5
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Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

® an action must be applied.
(an action landmark constraint)
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Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

m at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)
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Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
Sy
B —> —t>
|

m {pickup}

m {load}
m {move-B3-B4}
= {move-B4-B5}
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Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
[ ,
e
B e —
gl ¢
= {pickup} m {move-A6-B6, move-B5-B6}

m {load}
m {move-B3-B4}
= {move-B4-B5}
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Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
A ”
\ EEE
| v
B st 1 —>
A
@
= {pickup} m {move-A6-B6, move-B5-B6}
m {load} = {move-A3-B3, move-B2-B3, move-C3-B3}
= {move-B3-B4} = {move-B1-Al, move-A2-Al}

= {move-B4-B5} ...
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Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

m at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

m fact consumption and production is “balanced”.
(a network flow constraint)
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Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6
00 o

A m '

B /@‘
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Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6
00 o

Am ,

B@

Answer: as often as actions that leave this cell

If Count, denotes how often operator o is applied, we have:

Countmove-a1-81 + Countmove-2-B1 + Countmoye-c1-81 =

Countmove-B1-A1 + Countmove-B1-B2 + Countmoye-B1-C1
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Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:
E maximize
m canoncial heuristic (for abstractions)
m minimum hitting set (for landmarks)
m cost partitioning

m operator counting

Often computed as solution to a (integer) linear program.
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Comblnlng Heuristics Admissibly: Example

Consider an FDR planning task (VI {01, 02,03,04},7) with
V = {wv1, v, v3} with dom(v;) = {A, B} and
dom(vz) =dom(vz) = {A,B,C}, I ={vi = A vo = A vz — A},

=(v1 =A,v; :==B,1)
(w=AANw=Awn:=BAwv:=B1)
(o =B, v :=C,1)
04—< =B,v3:=C1)

02

and vy =(v1 =B)A(v» =C) A(vz =C).
Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function h¢?
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Comblnlng Heuristics Admissibly: Example

Consider an FDR planning task (VI {01, 02,03,04},7) with
V = {wv1, v, v3} with dom(v;) = {A, B} and
dom(vz) =dom(vz) = {A,B,C}, I ={vi = A vo = A vz — A},

=(v1 =A,v; :==B,1)
(w=AANw=Awn:=BAwv:=B1)
(o =B, v :=C,1)
04—< =B,v3:=C1)

02

and vy =(v1 =B)A(v» =C) A(vz =C).
Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function h¢?

Answer: Let h; :== hYi. Then h® = max {hy + hp, hy + hs}.
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Reminder: Orthogonality and Additivity

Why can we add h; and hy (h; and h3) admissibly?

Theorem (Additivity for Orthogonal Abstractions)

Let h*t, ... h®" be abstraction heuristics of the same transition
system such that o; and o; are orthogonal for all i # j.

Then "7 | h% is a safe, goal-aware, admissible and consistent
heuristic for T1.

The proof exploits that every concrete transition
induces state-changing transition in at most one abstraction.
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Combining Heuristics (In)admissibly: Example

Let h = hy + ho + h3.

02,03,04 02, 03, 04
1 01 0
m(A)
01, 04 01, 04 01, 04

2 02 ]f& 03
n @ &

2 o ]KQ o,
hs @ : \B ) :

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.

o
[y
8
o
[y
Q
w
(@] (o) (@}
=
@ vo@
w
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Combining Heuristics (In)admissibly: Example

Let h= hy + hy + hs.
02,03, 04 02,03, 04

hy 1 o1
01,04

h 2@ i
01, 03

hy A %

6

o
R
L
S
RS
N

O
o

o
S
o
w
o
S
8

(o
o

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.
Heuristics hy and hs both account for the single application of o0s.
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Prevent Inadmissibility

The reason that hy and h3 are not additive is because
the cost of 0, is considered in both.

Is there anything we can do about this?
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Prevent Inadmissibility

The reason that hy and h3 are not additive is because
the cost of 0, is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of oy in one heuristic by setting
its cost to 0 (e.g., cost3(02) = 0).
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Combining Heuristics Admissibly: Example

Let h" = hy + hy + hj, where h} = h*3 assuming cost3(02) = 0.

02,03, 04 02,03, 04
1 o O
m(A)
01, 04 01, 04 01, 04

03

2 o
1 o
@ 0-cost

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) = 3 an admissible estimate.

O

@
h 4

[®)
v
8
- o
g
pr <
Q
w
(@] o (@]
=
@ < @
8

w~
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Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.
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Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are
distributed in a way that the sum of the individual costs is no
larger than the cost of the operator.

This can also be expressed as a constraint,
the cost partitioning constraint:

Z costi(0) < cost(o) for all 0 € O
i=1

(more details later)
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Summary

m Landmarks and network flows are constraints that describe
something that holds in every solution of the task.

m Heuristics can be combined admissibly if the cost partitioning
constraint is satisfied.
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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.
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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.
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Reminder: Terminology

. . ¢ 1 ¢
Consider sequence of transitions s® = sl ... s"~1 =2 s"
such that s° = s and s" = ¢’

m s ..., s"is called (state) path from s to s’

m /1,...,0,is called (label) path from s to s’



Landmarks Se resentation

000@000000000

Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task
N=(V,I,0,v).

A disjunctive action landmark for s is a set of operators L C O
such that every label path from s to a goal state contains an

operator from L.
The cost of landmark L is cost(L) = miny¢; cost(o).

If we talk about landmarks for the initial state, we omit “for I".
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Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task
N=(V,I,0,v).

A formula landmark for s is a formula X over V such that
every state path from s to a goal state contains a state s’
with s’ = .

If A is an atomic proposition then A is a fact landmark.

If we talk about landmarks for the initial state, we omit “for I".
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Landmarks: Example

Consider a FDR planning task (V, /, O,~) with
m V = {robot-at, dishes-at} with
m dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
m dom(dishes-at) = {Table, Robot, Dishwasher}
m | = {robot-at — C1, dishes-at — Table}
B operators

m move-x-y to move from cell x to adjacent cell y
m pickup dishes, and
m load dishes into the dishwasher.

m v = (robot-at = B6) A (dishes-at = Dishwasher)




Landmarks S epresentation

0000008000000

1 2 3 4 5 6

00 [}

1™

C %
Images from wikimedia

Each fact in gray is a fact landmark:
m robot-at = x for x € {Al, A6, B3, B4, B5,B6, C1}
m dishes-at = x for x € {Dishwasher, Robot, Table}
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1 2 3 4 5 6

00 [}

1™

C %
Images from wikimedia

Each fact in gray is a fact landmark:
m robot-at = x for x € {Al, A6, B3, B4, B5,B6, C1}
m dishes-at = x for x € {Dishwasher, Robot, Table}

Formula landmarks:
m dishes—-at = Robot A robot-at = B4
m robot-at = Bl V robot-at = A2
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Summar

e

Actions of same color form disjunctive action landmark:

m {pickup} = {move-A6-B6, move-B5-B6}
m {load} = {move-A3-B3, move-B2-B3, move-C3-B3}
= {move-B3-B4} = {move-B1-Al, move-A2-Al}

= {move-B4-B5} ..
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Remarks

m Not every landmark is informative. Some examples:
m The set of all operators is a disjunctive action landmark
unless the initial state is already a goal state.
m Every variable that is initially true is a fact landmark.
m The goal formula is a formula landmark.
m Every fact landmark v that is initially false induces a

disjunctive action landmark consisting of all operators that
possibly make v true.
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Complexity: Disjunctive Action Landmarks

Deciding whether a given operator set is a disjunctive action
landmark is as hard as the plan existence problem.

\.

Given a propositional planning task N = (V. /, O,~),
create a new planning task I’ with goal g ¢ V as
n"=(vVu{g},lu{g— F},0U{o,,or},g) where

O’Y = <’Y7ga0>' and
oT = <T7g70>

If v =T then I is trivially solvable. Otherwise I1 is solvable
iff {oT} is not a disjunctive action landmark of 1. O

N
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Complexity: Fact Landmarks

Deciding whether a given atomic proposition is a fact landmark
is as hard as the plan existence problem.

Given a propositional planning task N = (V. I, O,~),
let p, g ¢ V be new atomic propositions and create a new planning
task " =(VU{p,g},/U{p— F,g— F},0U{o,0'}, g), where

.

o=(v,g,0), and
o' =(T,gAp,0).

Then p is a fact landmark of I’ iff 1 is not solvable. O

.
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Complexity: Discussion

m Does this mean that the idea of exploiting landmarks is
fruitless?
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Complexity: Discussion

m Does this mean that the idea of exploiting landmarks is
fruitless?— No!
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Complexity: Discussion

m Does this mean that the idea of exploiting landmarks is
fruitless?— No!
m We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.
m The way we generate the landmarks guarantees that they are
indeed landmarks.
m Efficient landmark generation methods do not guarantee to
generate all possible landmarks.
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Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:
m RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)
m LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What's the Difference Anyway? (ICAPS 2009)
m h™ landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)
Today we will discuss the special case of A" landmarks for m = 1,
restricted to STRIPS planning tasks.
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In this (and the following) sections, we only consider STRIPS. For
a more convenient notation, we will use a set representation of
STRIPS planning task. ..

Three differences:
m Represent conjunctions of variables as sets of variables.

m Use two sets to represent add and delete effects of operators
separately.

m Represent states as sets of the true variables.
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STRIPS Operators in Set Representation

m Every STRIPS operator is of the form
(ViA-AVp, arA---ANagA=diA---A=dy,c)

where v;, aj, di are state variables and c is the cost.
m The same operator o in set representation is
(pre(0), add(0), del(0), cost(0)), where
pre(o) = {vi,..., vy} are the preconditions,
add(o) = {a1,...,aq} are the add effects,
del(o) = {d1,...,d,} are the delete effects, and
cost(0) = c is the operator cost.

m Since STRIPS operators must be conflict-free,
add(o) N del(o) = 0



STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple

Set Representation
ocooe

(V,1,0,G), where

V is a finite set of state variables,

| C V is the initial state,

O is a finite set of STRIPS operators in set representation,
G C V is the goal.

Summar
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STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
(V,1,0,G), where
m V is a finite set of state variables,
m [/ C V is the initial state,
m O is a finite set of STRIPS operators in set representation,
m G C Vs the goal.

The corresponding planning task in the previous notation is
(V,I',0',v), where

m/'(v)=Tiffvel,

s O={( AN v, AN vA A -v,cost(o))|oe€ O},

vepre(o)  veEadd(o) vedel(o)

Ey= A v
veG
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Content of the Course

Prelude { Cost Partitioning ‘ { Orderings ‘

Foundations B Post-Hoc LM-Count
Optimization Heuristic

Approaches

Network Flows

{ MHS Heuristic ‘

B Operator { Cut Landmarks
Abstraction Counting
LM-Cut Heuristic

Delete Relaxation

T

Potential
Heuristics
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Incidental Landmarks: Example

Example (Incidental Landmarks)
Consider a STRIPS planning task (V. I, {01, 02}, G) with

V ={ab,c,d e},

I ={a,b,e},
01 = <{a}a {Ca d, e}7 {b}>7
o = ({d,e}, {f},{a}), and
G ={e, f}.

Single solution: (o1, 02)
m All variables are fact landmarks.
m Variable b is initially true but irrelevant for the plan.

m Variable ¢ gets true as “side effect” of o; but it is not
necessary for the goal or to make an operator applicable.
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Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let M= (V,I,0,~) be a propositional or FDR planning task.

A formula A over V is a causal formula landmark for / if v = A or
if for all plans 7 = (o1, ..., 0n) there is an o; with pre(o;) = A.
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Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let M= (V,I, 0, G) be a STRIPS planning task
(in set representation).

A variable v € V is a causal fact landmark for /
mifve Gor

m if for all plans m = (o1, ..., 0,) there is an o; with v € pre(o;).
v




Set Representation Landmarks from RTGs Summary

0O0000@000000000000

Causal Landmarks: Example

Example (Causal Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={ab,c,d e, r},

I ={a,b,e},
01 = <{a}’ {Cv d, 6}7 {b}>7
o, = ({d,e}, {f},{a}), and
G ={e, f}.

Single solution: (o1, 02)
m All variables are fact landmarks for the initial state.

m Only a,d, e and f are causal landmarks.
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What We Are Doing Next

Causal landmarks are the desirable landmarks.

m We can use a simplified version of RTGs for STRIPS to
compute causal landmarks for STRIPS planning tasks.

We will define landmarks of AND/OR graphs, ...

and show how they can be computed.

Afterwards we establish that these are landmarks
of the planning task.
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Slmpllfled Relaxed Task Graph

Definition
For a STRIPS planning task M = (V, I, 0, G) (in set
representation), the simplified relaxed task graph sRTG(IM") is the
AND/OR graph (Nang U Nor, A, type) with
m Nyg = {no | o€ O} U {V/, Vc;}
with type(n) = A for all n € Nypg,
m Noe={n,|veV}
with type(n) =V for all n € No, and
m A= {(nsn) | 0€ O,ac add(o)} U
{(no,np) | 0 € O, p € pre(o)} U
{{ny,n) |veltu
{{

ng,ny) | veG}

Like RTG but without extra nodes to support arbitrary conditions.
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Slmpllfled RTG: Example

The simplified RTG for our example task is:
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Justification

Definition (Justification)
Let G = (N, A, type) be an AND/OR graph.
A subgraph J = (N7, A, type’) with N/ C N and A’ C A and
type’ = type|ps justifies n, € N iff
mn, €N,
m Vn € N7 with type(n) = A:
Y{n,n'y € A:n' € N/ and (n,n') € A/
m Vn € N7 with type(n) = V:
In,n’y € A:n’ € N? and (n,n') € A/, and

m J is acyclic.

“Proves” that n, is forced true.
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Definition (Landmarks in AND/OR Graphs)
Let G = (N, A, type) be an AND/OR graph.

A node n € N is a landmark for reaching n, € N
if n € V7 for all justifications J for n,.

But: exponential number of possible justifications
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Characterizing Equation System

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU () LM(n") type(n)=V
(n,n")EA

LM(n) ={n}u [ LM(n") type(n)=n
(n,n")EA

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n" € LM(n) iff n" is a landmark for reaching n in G.
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Computation of Maximal Solution

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU () LM(n") type(n)=V
(n,n"YeA
LM(n)={n}u [ LM(n") type(n)=n

(n,n")eA

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

V.

Computation: Initialize landmark sets as LM(n) = N and
apply equations as update rules until fixpoint.
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Computation: Example
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Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

a-f,1,G,o1,

Initialize with all nodes
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

a-f,1,G,01,0 a-f,1,G,01,00 o a-f,1\G,01,00
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(a) = {a} U LM(1)



Set Representation Landmarks from RTGs Summar

000000000000 0e0000

Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(b) = {b} U LM(I)
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Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

LM(e) = {e} U (LM(I) N LM(o1))
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a,l,o1 a-f,1,G,01,02

LM(o1) = {o1} U LM(a)
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a,l,o1 a-f,1,G,01,02

LM(c) = {c} U LM(o1)
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a,l,o1 a-f,1,G,01,02

LM(d) = {d} U LM(0,)
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a,l,o1 a,d,el, 01,00

LM(02) = {02} U LM(d) U LM(e)
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a,l,o1 a,d,el, 01,00

LM(f) = {f} U LM(02)
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a,l,o1 a,d,el, 01,00

LM(G) = {G} U LM(e) U LM(f)
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Relation to Planning Task Landmarks

Let M= (V,I,0,~) be a STRIPS planning task and
let L be the set of landmarks for reaching n¢ in sSRTG(M).

The set {v € V | n, € L} is exactly the set of
causal fact landmarks in N~

For operators o € O, if n, € L then {o} is a
disjunctive action landmark in 1T,
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)
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Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={a,b,c,d e, r},
I ={a, b, e},
01 = <{a}’ {Cv d, 6}7 {b}>7
= ({d, e}, {f},{a}), and
G ={e, f}.

m LM(ng) = {a,d, e, f,l,G, 01,02}
m a,d, e, and f are causal fact landmarks of M.

m {01} and {0z} are disjunctive action landmarks of ™.
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(Some) Landmarks of " Are Landmarks of Tl

Let T be a STRIPS planning task.

All fact landmarks of M are fact landmarks of 1 and all disjunctive
action landmarks of M are disjunctive action landmarks of I.

Let L be a disjunctive action landmark of ™ and 7 be a plan for
M. Then 7 is also a plan for M and, thus, = contains an operator
from L.

Let f be a fact landmark of M. If f is already true in the initial
state, then it is also a landmark of I. Otherwise, every plan for "
contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of ™. Therefore, also each plan of
I contains such an operator, making f a fact landmark of I1. DJ
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Not All Landmarks of 1™ are Landmarks of I

Consider STRIPS task ({a, b, c},0,{o1,02},{c}) with
o = ({},{a},{},1) and 0 = ({a}, {c},{a}, 1).

a A cis a formula landmark of M but not of M.
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Summary

m Fact landmark: atomic proposition that is true in each state
path to a goal

m Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

m We can efficiently compute all causal fact landmarks of a
delete-free STRIPS task from the (simplified) RTG.

m Fact landmarks of the delete relaxed task are also
landmarks of the original task.
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Why Landmark Orderings?

To compute a landmark heuristic estimate for state s
we need landmarks for s.

We could invest the time to compute them
for every state from scratch.

Alternatively, we can compute landmarks once and
propagate them over operator applications.

Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

(We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~~ LM-Cut.)
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Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?
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Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
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Terminology

Let 7 = (o1,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.
m o is true at time 7 if I[{o1,...,0)] E ¢.
m Also special case i = 0: ¢ is true at time 0 if | |= ¢.
m No formula is true at time i < 0.
m  is added at time i if it is true at time / but not at time / — 1.
m o is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p, ).

last(p, ) denotes the last time in which ¢ is added in 7.
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that

s[{o1, - - -, Ofirst(w,m)-1)] = -
“ must be true immediately before v is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that
s[(o1, - - - ; Ofirst(y,m)-1)] = -

“ must be true immediately before v is first added.”

m a weak ordering between ¢ and v (written © —, 1))
if in each plan 7 it holds that first(p, m) < last(y), 7).
“© must be true some time before v is last added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Natural Orderings

Definition

There is a natural ordering between ¢ and ¢ (written ¢ — 1)
if in each plan 7 it holds that first(p, ) < first(y), 7).

m We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

m For fact landmarks v, v/ with v # V/,
if n,, € LM(n,) then v/ — v.
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Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and ¢
(written ¢ —¢ 1)) if in each plan where ) is first added at time i,
p is true at time j — 1.

m We can again determine such orderings from the sRTG.

m For an OR node n,, we define the set of first achievers as
FA(n,) = {no | no € succ(n,) and n, & LM(n,)}.

m Then v/ —g, v if n, € succ(n,) for all n, € FA(ny).
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s

contains all landmarks from £, that are also
landmarks of s but not true in s.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

m Since the exact sets are defined over all paths
between certain states, we use approximations.
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Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-

Summar
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Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.
A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-
L is valid in state s if

m L =1 and Il has no s-plan, or

m L = (Lpast, Lrut) With Lpast 2 L3, and Lo C L5,




Orderings Landmark Propagation a k-count Heuristic
o} 0000@000000000 ocC

Context in Search: LM-BFS Algorithm

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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Context: Exploit Information from Multiple Paths

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), 1)
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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I\/Ierglng Landmark States

Merging combines the information from two landmark states.

merge_landmark_states(L, L")

if L=_1 orL/ = 1 then return L;
<»Cpast7 Efut) =L

<£;ast7 fut> =L
return (Lpast N Liage, Loue U Loy

If L and I are valid in a state s then also
merge_landmark_states(LL, L") is valid in s.
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Context: Progression for a Transition

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.

m Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.
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Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state (Lpast, Lsut) and transition
(s,0,s') to landmark state (Lpast U Ladd; Lut \ Ladd), Where

Lagd ={p€L)|slpands E oy}

“Extend the past with all landmarks added in s’ and
remove them from the future.”
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Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.
Goal progression maps landmark state (Lpast, L5yt) and transition
(s,0,s’) to landmark state (L, Lgoal), Where

Looal ={p € L1 |7 pand s’ [~ o}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”
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Weak Orderlng Progression

© —w ¥ " must be true some time before 1) is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Leut)
and transition (s, 0,s’) to landmark state

(Lr A | Jp =w b 1 0 & Lpast})-

“Landmark ¢ must be added in the future because we haven't
done something that must be done before v is last added.”
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Greedy-necessary Ordering Progression

© —+gn ¥: “p must be true immediately before v is first added.”

Definition (Greedy-necessary Ordering Progression)

The greedy necessary ordering progression maps landmark state
(Lpast, Lsut) and transition (s, 0,s’) to landmark state

m L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s’ E 1, and

m (L, {p|sEpand Jp 2P € O Y & Lpast, s = ¢})
otherwise.

“Landmark v has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”
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Natural Ordering Progression

© — 1. @ must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state

m L if thereis a ¢ — ¢ € Oy with ¢ & Ljaet and s’ = ¢, and
m (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.
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Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let I be a planning task, s be a state and L. = (Lpast, Lrut) be a
valid landmark state for s.

The LM-count heuristic for s and L is

hLM—count(S ]L) _ o0 if L= 1,
’ |Lyt| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.
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LM-count Heuristic is Path-dependent

m LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

m Search algorithms need estimates for states.
m ~ we use estimate from the current landmark state.

m ~ heuristic estimate for a state is not well-defined.



rk Orderings and gatiol Landmark-count Heuristic Summary

[e]e]e]e] Jo]

LM-count Heuristic is Inadmissible

Consider STRIPS planning task N = ({a, b}, I, {0}, {a, b}) with
I=0,0=(0,{a,b},0,1). Let L ={a,b} and O =0).

Landmark state ((), £) for the initial state is valid and the estimate
is hLM—count(/’ <®’ {a, b}>) =9
while h*(1) = 1.

~s pEM-count o inadmissible.
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LM-count Heuristic: Comments

m LM-Count alone is not a particularily informative heuristic.

hFF

m On the positive side, it complements very well.

m For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal pLM-count
estimate.

m The LM-sum heuristic is a cost-aware variant of the heuristic
that sums up the costs of the cheapest achiever (= operator
that adds the fact landmark) of each landmark.

m There is an admissible variant of the heuristic based on
operator cost partitioning.
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Summary

We can propagate landmark sets over action applications.

m Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

m We can combine the landmark information from several paths
to the same state.

m The LM-count heuristic counts how many landmarks still need
to be satisfied.

m The LM-count heuristic is inadmissible (but there is an
admissible variant).
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The remaining landmark topics focus on
disjunctive action landmarks.
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Minimum Hitting Set Heuristic Summar

Exploiting Disjunctive Action Landmarks

m The cost cost(L) of a disjunctive action landmark L is an
admissible heuristic, but it is usually not very informative.

m Landmark heuristics typically aim to combine multiple
disjunctive action landmarks.

How can we exploit a given set £ of disjunctive action landmarks?

m Sum of costs } . cost(L)?
~+ not admissible!

m Maximize costs max; ¢, cost(L)?
~> usually very weak heuristic

m better: Hitting sets
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Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {Fy,...,Fa} C 2X be a family of subsets of
Xandc: X — ]Rar be a cost function for X.

A hitting set is a subset H C X that “hits” all subsets in F, i.e.,
HNF #0 forall F e F. The cost of His )~ 4 c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)
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Example: Hitting Sets

X = {017 02, 03, 04}

F ={{os},{o1,0}, {01, 03}, {02, 03}}
c(o1) =3, c(o2) =4, c(o3) =5, c(os) =0

Specify a minimum hitting set.
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Example: Hitting Sets

X = {017 02, 03, 04}

F ={{os},{o1,0}, {01, 03}, {02, 03}}
c(o1) =3, c(o2) =4, c(o3) =5, c(os) =0

Specify a minimum hitting set.

Solution: {01, 02,04} with cost 3+4+4+0=7
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Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let £ be a set of disjunctive action landmarks. The hitting set
heuristic AMHS(L) is defined as the cost of a minimum hitting set
for £ with c(o) = cost(0).

Proposition (Hitting Set Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s.
Then hMH5(L) is an admissible estimate for s.
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Hitting Set Heuristic: Discussion

m The hitting set heuristic is the best possible heuristic
that only uses the given information. ..

m ...but is NP-hard to compute.

m ~~ Use approximations that can be efficiently computed.
= LP-relaxation, cost partitioning (both discussed later)
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Summary

m Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks.

m The computation of a minimal hitting set is NP-hard.
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Roadmap for this Chapter

m We first introduce a new normal form for delete-free STRIPS
tasks that simplifies later definitions.

m We then present a method that computes disjunctive action
landmarks for such tasks.

m We conclude with the LM-cut heuristic
that builds on this method.
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Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks
in a special form:

Definition (i-g Form for Delete-free STRIPS)
A delete-free STRIPS planning task (V. I, O,~) is in i-g form if

m V contains atoms / and g

m Initially exactly 7 is true: /(v) =T iff v =1
m g is the only goal atom: v = {g}

m Every action has at least one precondition.
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Transformation to i-g Form

Every delete-free STRIPS task N = (V,/, O,~) can easily be
transformed into an analogous task in i-g form.

m If i or g are in V already, rename them everywhere.
Add i and g to V.

® Add an operator ({i},{ve V|I(v)=T}{},0).

® Add an operator (v,{g},{},0).
L]
L]

Replace all operator preconditions T with /.

Replace initial state and goal.
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Transformation to i-g Form

Every delete-free STRIPS task N = (V,/, O,~) can easily be
transformed into an analogous task in i-g form.

If i or g are in V already, rename them everywhere.
m Add /j and g to V.

® Add an operator ({i},{ve V|I(v)=T}{},0).

® Add an operator (v,{g},{},0).

m Replace all operator preconditions T with J.

[

Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.
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Example: Delete-Free Planning Task in i-g Form

Consider a delete-relaxed STRIPS planning (V, [, O, ) with
V={iabcdgt | ={imTtU{v=F|veV\{i}},y=g
and operators
m ope = ({7}, {a, b}, {}.4),
Ogreen = <{i}a {37 C}7 {}7 5)!
Oblack = <{i}7 {b7 C}a {}a 3>'
ored = ({b, c},{d},{},2), and
Oorance = ({a,d},{g},{},0).

optimal solution?
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Example: Delete-Free Planning Task in i-g Form

Consider a delete-relaxed STRIPS planning (V, [, O, ) with
V={iabcdgt | ={imTtU{v=F|veV\{i}},y=g
and operators
m ope = ({7}, {a, b}, {}.4),
Ogreen = <{i}a {37 C}7 {}7 5)!
Oblack = <{i}7 {ba C}a {}a 3>'
Ored = <{b7 C}a {d}’ {}7 2>' and
Oorance = ({a,d},{g},{},0).

optimal solution to reach g from i:

u plan: <Ob|ue7 Oblack;s Ored Oorange>
mcost: 4+3+24+0=9 (= h*(/) because plan is optimal)
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Content of the Course

Prelude { Cost Partitioning ‘ { Orderings

Foundations B Post-Hoc LM-Count
Optimization Heuristic

Approaches

Network Flows ‘ { MHS Heuristic

Delete Relaxation

T

Abstraction B Counting
Potential
N Heuristics
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Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) P: O — V for a
delete-free STRIPS task N = (V, [, 0,~) in i-g form
maps each operator to one of its preconditions

(i.e. P(o) € pre(o) for all o € O).

Definition (Justification Graphs)

Let P be a pcf for (V, 1, 0,) in i-g form. The justification graph
for P is the directed, edge-labeled graph J = (V, E), where

m the vertices are the variables from V/, and

= E contains an edge P(0) = a for each o € O, a € add(o).
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Example: Justification Graph

Example (Precondition Choice Function)

P(oblue) = P(Ogrccn) = P(Oblack) =/, P(Ored) = b, P(Oorang,c) =a
Oblue = <{ }
Oween = ({1}, {a, e}, {1,
= ({i}

/ Oblack

(2)
=0 o= {ere) o, 1

ooranee = ({2, d}, {g}, {},
\ (4)
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Example: Justification Graph

Example (Precondition Choice Function)

P(oblue) = P(Ogrccn) = P(Oblack) =i, P(Ored) = b, P(Oorang,c) =a
P’ (0biue) = P’ (0green) = P’ (0black) = i, P'(0red) = ¢, P'(Oorange) = d
={i}
oueen = ({i}, {a, e}, {}
= ({i}

/ Oblack

(2)
=0 o= {ere) o, 1

ooranee = ({2, d}, {g}, {},
\ (4)

Oblue
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Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that
all paths from / to g contain an edge from C.
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Cuts

Definition (Cut)
A cut in a justification graph is a subset C of its edges such that
all paths from / to g contain an edge from C.

Oblue = <{ }
Ogreen = <{i}7 {aa C}v{ )
Oblack = <{ }
Ored = <

Oorange — <

-
o
Q
—
—~
0
—
—~~
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Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for (V,1,0,~) (in i-g form) and
C be a cut in the justification graph for P.

The set of edge labels from C (formally {o | (v,0,V') € C})
is a disjunctive action landmark for |.

Proof idea:

m The justification graph corresponds to a simpler problem
where some preconditions (those not picked by the pcf) are
ignored.

m Cuts are landmarks for this simplified problem.

m Hence they are also landmarks for the original problem.
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Example: Cuts in Justification Graphs

Example (Landmarks)

m Ly = {0orange} (cost = 0)

Oblue
ogrccn
Oblack

Ored = <

Oorange =— <

=
L
Q.
—
—~
oy
—
—~
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Example: Cuts in Justification Graphs

Example (Landmarks)

m Ly = {0y} (cost=0) m Ly ={0,1ccr,Oblack} (cost = 3)

Oblue
ogrccn
Oblack

Ored <

Oorange =— <

=
L
Q.
—
—~
[\
—
—~
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Example: Cuts in Justification Graphs

Example (Landmarks)

m Ly = {0y} (cost=0) m Ly ={0,1ccr,Oblack} (cost = 3)
m L3 = {0red} (cost = 2)

Oblue = ({/},{a, b}v{ )
Ogreen = ({l},{a, C},{ s
Oblack = <{/}

=0 g {d} {0,
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Example: Cuts in Justification Graphs

Example (Landmarks)

m Ly = {0y} (cost=0) m Ly ={0,1ccr,Oblack} (cost = 3)

B L3 = {04} (cost = 2) B L4 = {0sccn, Oplye} (cost = 4)

//’/ ,/, Oblue = <{i},{a, b}v{}74>

, ,/, Ogreen = <{i}7{av C}’{}75>

s S
Ored = yCrsy ) )

ooranee = ({a,d}, {g},{},0)
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Power of Cuts in Justification Graphs

m Which landmarks can be computed with the cut method?
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Power of Cuts in Justification Graphs

m Which landmarks can be computed with the cut method?

m all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state |. Then hMH3(L) = ht(1).

~» Hitting set heuristic for L is perfect.
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Power of Cuts in Justification Graphs

m Which landmarks can be computed with the cut method?

m all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state |. Then hMH3(L) = ht(1).

~» Hitting set heuristic for L is perfect.

Proof idea:

m Show 1:1 correspondence of hitting sets H for £ and plans,
i.e., each hitting set for £ corresponds to a plan,
and vice versa.
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Content of the Course

Prelude { Cost Partitioning ‘ { Orderings ‘

Foundations B Post-Hoc LM-Count
Optimization Heuristic

Approaches

Network Flows

{ MHS Heuristic ‘

B Operator { Cut Landmarks
Abstraction Counting

Delete Relaxation

T

Potential
Heuristics
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LM-Cut Heuristic: Motivation

m In general, there are exponentially many pcfs, hence
computing all relevant landmarks is not tractable.
m The LM-cut heuristic is a method that chooses pcfs
and computes cuts in a goal-oriented way.
m As a side effect, it computes a
m a cost partitioning over multiple instances of h™?* that is also

m a saturated cost partitioning over disjunctive action landmarks.
~~ next week
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LM-Cut Heuristic

htM-cut: Helmert & Domshlak (2009)

Initialize h-M-Ut(]) := 0. Then iterate:

o

Compute h™2* values of the variables. Stop if "M?*(g) = 0.
Compute justification graph G for the P that chooses
preconditions with maximal h™®* value

Determine the goal zone V, of G that consists of all nodes
that have a zero-cost path to g.

Compute the cut L that contains the labels of all edges
(v,0,Vv') such that v & V,, v € V and v can be reached
from i without traversing a node in V.

It is guaranteed that cost(L) > 0.

Increase h*M-cut([) by cost(L).
Decrease cost(o) by cost(L) for all o € L.
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Example: Computation of LM-Cut

ovve = ({i}, {a, b}, {},4)
Ogreen = <{’}7 {37 C}v {}7 5>
A Soindan
Ored = yCry ) 5
0 ooz = ({a,d}, {g},{},0)
e round | P(0oanse) | P(0red) landmark cost

hLM-Cut ( I) 0
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Example: Computation of LM-Cut

@ Compute ™™ values of the variables

=0 oes = ({b, c}, {d}, {},
5 Oorange = <{a7 d}7 {g}7 { 5
O
3 round | P(0oanse) | P(0red) landmark cost

hLM-Cut ( I) 0
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Example: Computation of LM-Cut

@ Compute justification graph

Oblue =
Ogreen =
Oblack =

0 os = {{b.c}. {d}. {}.
\ 5 oOml’vge - <{a7 d}7 {g}7 { ’

round | P(0oanse) | P(0red) landmark cost

hLM-Cut ( I) 0
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Example: Computation of LM-Cut

© Determine goal zone

Oblue = <{’}7 {37 b}? {}>4>
Ogreen = <{’}7 {37 C}v {}7 5>
Oblack = <{’}a {b7 C}v {}7 3>
Ored = {b7 C}7 {d}a {}?2>
ooranze = ({2, d}, {g}, {},0)
nee) | P(Ored) landmark cost
b
hLM-cut(I) 0
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Example: Computation of LM-Cut

@ Compute cut

Oblue = <{’}7 {37 b}? {}>4>

Ogreen = <{’}7 {37 C}v {}7 5>

Oblack = <{’}a {b7 C}v {}7 3>

Ored = {b7 C}7 {d}a {}?2>

ooranze = ({2, d}, {g}, {},0)

nee) | P(Ored) landmark cost

b {0red} 2
hLM-cut(I) 0
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Example: Computation of LM-Cut

@ Increase h*"<*(1) by cost(L)

Oblue = <{’}7 {37 b}? {}>4>

Ogreen = <{’}7 {37 C}v {}7 5>

Oblack = <{’}a {b7 C}v {}7 3>

Ored = {b7 C}7 {d}a {}?2>

ooranze = ({2, d}, {g}, {},0)

nee) | P(Ored) landmark cost

b {0red} 2
hLM-cut(I) 2
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Example: Computation of LM-Cut

@ Decrease cost(o) by cost(L) for all o € L

Oblue = <{’}7 {37 b}? {}>4>

Ogreen = <{’}7 {37 C}v {}7 5>

Oblack = <{’}a {b7 C}v {}7 3>

Ored = {b7 C}7 {d}a {}?O>

ooranze = ({2, d}, {g}, {},0)

nee) | P(Ored) landmark cost

b {0red} 2
hLM-cut(I) 2
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Example: Computation of LM-Cut

@ Compute ™™ values of the variables

=0 oes = ({b, c}, {d}, {},
4 Oorange = <{37 d}7{g}7{ )
3
3 round | P(0oanse) | P(0red) landmark cost
1 d b (o} 2

hLM-Cut ( I) 2
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Example: Computation of LM-Cut

@ Compute justification graph

Oblue =
Ogreen =
Oblack =

0 oed = ({b C} {d}.{}.
\ 4 Oorange = <{37 d}v {g}v { ’

round | P(0oanse) | P(0red) landmark cost
1 d b (o) 2
2 a b

hLM-Cut ( I) 2
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Example: Computation of LM-Cut

© Determine goal zone

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0red) landmark cost
b {Ored} 2
b

hLM-Cut ( I) 2
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Example: Computation of LM-Cut

@ Compute cut

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0red) landmark cost
b {Ored} 2
b {ogreen 5 Oblue} 4

hLM-Cut ( I) 2
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Example: Computation of LM-Cut

@ Increase h*"<*(1) by cost(L)

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0red) landmark cost
b {Ored} 2
b {ogreen 5 Oblue} 4

hLM-cut ( I) 6
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Example: Computation of LM-Cut

@ Decrease cost(o) by cost(L) for all o € L

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0red) landmark cost
b {Ored} 2
b {ogreen 5 Oblue} 4

hLM-Cut ( I) 6
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Example: Computation of LM-Cut

@ Compute ™™ values of the variables

opiue = ({7}
Ogreen = <{’}7 {37 C}v{ )
Y =0 e
Ored = »Cry k] I
{a,d}. {g}. {},

1 Oorange = <

1
1 round | P(0oanse) | P(0red) landmark cost
1 d b (o} 2
2 a b {Ogreeny Oblue} 4
3
hLM-Cut(I) 6
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Example: Computation of LM-Cut

@ Compute justification graph

obie = ({i},{a, b},{},0)
Ogreen = <{’}7 {37 C}v {}7 1>
Oblack = <{’}a {b7 C}v {}7 3>
= o= lbnch (0 (10

\

round | P(0oanse) | P(0red) landmark cost
1 d b (o) 2
2 a b {Ogrecns Oblue } 4
3 d c
hLM-cut ( I) 6




The LM-Cut Heuristic
000000

Example: Computation of LM-Cut

© Determine goal zone

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0req) landmark cost
b {Ored} 2
b {ogreen 5 Oblue} 4
C
hLM-cut(I) 6
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Example: Computation of LM-Cut

@ Compute cut

obie = ({i},{a, b},{},0)
Ogreen = <{’}7 {37 C}v {}7 1>
Oblack = <{’}a {b7 C}v {}7 3>

Ored = <{b7 C}7 {d}a {}? 0>

Oorange = <{37 d}v {g}v {}7 0>
P(0req) landmark cost
b {Ored} 2
b {Ogreen, Oblue } 4
c {ngeem Oblack} 1
hLM-cut(I) 6
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Example: Computation of LM-Cut

@ Increase h*"<*(1) by cost(L)

Oblue = <{’}7{av b}’{ )
Ogreen = ({I},{a, C},{ s
Oblack = ({I}

P(0req) landmark cost
b {Ored} 2
b {Ogreen, Oblue } 4
c {ngeem Oblack} 1
hLM-cut(I) 7
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Example: Computation of LM-Cut

@ Decrease cost(o) by cost(L) for all o € L

0
Oblue = <{’}7 {27 b}? {}> 0>
...... Ogrccﬂ = <{I}’ {a7 C}7 {}7 0>
0 """"" Oblack = <{’};{b7 C}v{}72>
g Ored = <{b7 C}f{d}v{}>0>
1 Oorange = <{37 d}v {g}v {}7 0>
S Dt T round | P(00anee) | P(0red) landmark cost
"""" 1 d b {orea} 2
2 a b {Ogreem Oblue} 4
3 d c {Ogreen s Oblack 1
hLM-cut(I) 7
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Example: Computation of LM-Cut

© Compute h™™ values of the variables. Stop if "m™(g) = 0.

Oblue = <{’}7 {37 b}? {}> 0>

Ogreen = <{’}7 {37 C}v {}7 0>

& Soindand

Ored = ;Cry IRSE)
0 Oorange = <{37 d}v{g}v{}70>
O
0 round | P(0oanse) | P(0red) landmark cost
1 d b (o) 2
2 a b {Ozreen, Oblue 4
3 d c {Ogreen, Oblack } 1
hLM-cut(I)
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g Form

Properties of LM-Cut Heuristic

Summar

Let (V,I,0,~) be a delete-free STRIPS task in i-g normal form.
The LM-cut heuristic is admissible: htM-cut([) < p*(1).

Proof omitted.

If M is not delete-free, we can compute h-M-<ut on M1+
Then htM-<Ut is bounded by h™.
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Summary
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o

Summary

m Cuts in justification graphs are a general method to find
disjunctive action landmarks.

® The minimum hitting set over all cut landmarks is a
perfect heuristic for delete-free planning tasks.

m The LM-cut heuristic is an admissible heuristic
based on these ideas.
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Integer Programs s « ms and Duality

Motivation

m This goes on beyond Computer Science
m Active research on IPs and LPs in

m Operation Research
m Mathematics

Many application areas, for instance:
m Manufacturing

Agriculture

Mining

Logistics

Planning

As an application, we treat LPs / IPs as a blackbox

We just look at the fundamentals

However, even on the application side there is much more
(e.g., modelling tricks or solver parameters to speed up
computation)
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Motivation

Example (Optimization Problem)

Consider the following scenario:
m A factory produces two products A and B
m Selling one (unit of) B yields 5 times the profit of selling one A

m A client places the unusual order to “buy anything that can
be produced on that day as long as two plus twice the units of
A is not smaller than the number of B"

More than 12 products in total cannot be produced per day

There is only material for 6 units of A
(there is enough material to produce any amount of B)

How many units of A and B does the client receive
if the factory owner aims to maximize her profit?
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

Xa>0, Xg>0

.

Example (Optimization Problem)

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

Xa>0, Xg=>0

.

Example (Optimization Problem)

m ‘“one B yields 5 times the profit of one A”

m “the factory owner aims to maximize her profit”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp

Xa>0, Xg=>0

.

Example (Optimization Problem)

m “two plus twice the units of A may not be

smaller than the number of B”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp
Xa+ Xg <12

Xa>0, Xg=>0

.

Example (Optimization Problem)

m “More than 12 products in total cannot be produced per day”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp
Xa+ Xg <12
Xa <6

Xa>0, Xg=>0

.

Example (Optimization Problem)

m "There is only material for 6 units of A"

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

2+2X4 > Xp
Xa+ Xg <12
XA <6

Xa>0, Xg>0

~> unique optimal solution:
produce 4 A (X, = 4) and 8 B (X = 8) for a profit of 44
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Same Program as Input for the Solver

Maximize

obj: X_A + 5 X_B
Subject To

cl: -2 X_ A+ X B<=2
c2: X_A + X_B <= 12
Bounds

0<=X_AK=6

0 <= X_B

General

X_A X_B

End

— Demo (Gurobi; same format also works with CPLEX and others)
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Integer Program Example: Visualization

XB
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8,
67 o
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Xg >0
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Integer Program Example: Visualization

XB
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Integer Programs

Integer Program

An integer program (IP) consists of:

m a finite set of integer-valued variables V'

m a finite set of linear inequalities (constraints) over V/

m an objective function, which is a linear combination of V/
|

which should be minimized or maximized.
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Terminology

m An integer assignment to all variables in V is feasible if it
satisfies the constraints.

m An integer program is feasible if there is such a feasible
assignment. Otherwise it is infeasible.

m A feasible maximum (resp. minimum) problem is
unbounded if the objective function can assume arbitrarily
large positive (resp. negative) values at feasible assignments.
Otherwise it is bounded.

m The objective value of a bounded feasible maximum
(resp. minimum) problem is the maximum (resp. minimum)
value of the objective function with a feasible assignment.
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Another Example

minimize  3X,, +4X,, +5X,, subject to

Xop 21
Xoy + X0, 21
Xop + Xy 21
Xop + Xoy > 1

X01 2 01 X02 2 Ol XO3 2 Ov XO4 Z 0

What example from a recent chapter does this IP encode?
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Another Example

minimize  3X,, +4X,, +5X,, subject to

Xop 21
Xoy + X0, 21
Xop + Xy 21
Xop + Xoy > 1

X01 2 01 X02 2 Ol XO3 2 Ov XO4 Z 0

What example from a recent chapter does this IP encode?

~> the minimum hitting set from Chapter F4
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Complexity of Solving Integer Programs

m As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

m Reminder: MHS is a “classical” NP-complete problem
m Good news: Solving an IP is not harder

~» Finding solutions for IPs is NP-complete.
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Complexity of Solving Integer Programs

m As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

m Reminder: MHS is a “classical” NP-complete problem
m Good news: Solving an IP is not harder
~» Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be
integer-valued leads to a simpler problem
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Linear Programs

Linear Program

A linear program (LP) consists of:
m a finite set of real-valued variables V/
m a finite set of linear inequalities (constraints) over V/
m an objective function, which is a linear combination of V
[

which should be minimized or maximized.

We use the introduced IP terminology also for LPs.

Mixed IPs (MIPs) are something between IPs and LPs:
some variables are integer-valued, some are real-valued.
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Linear Program: Example

Let X4 and Xg be the (real-valued) number of produced A and B

Example (Optimization Problem as Program)

maximize Xy +5Xg  subject to

2+2X, > Xg
Xa+Xp <12
Xa<6

Xa2>20, Xg=>0
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Linear Program: Example

Let X4 and Xg be the (real-valued) number of produced A and B

Example (Optimization Problem as Program)

maximize Xy +5Xg  subject to

2+2X, > Xg
Xa+Xp <12
Xa<6

Xa2>20, Xg=>0

~+ unique optimal solution:
Xa = 3% and Xg = 8% with objective value 46%
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Same Program as Input for the Solver

Maximize
obj: X_A + 5 X_B
Subject To
cl: -2 X_ A+ X B<=2
c2: X_A + X_B <= 12
Bounds
0<=X_AK=6
0 <= X_B
End

— Demo (Gurobi; same format also works with CPLEX and others)
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Solving Linear Programs

m Observation:
Here, LP solution is an upper bound for the corresponding IP.
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Solving Linear Programs

m Observation:

Here, LP solution is an upper bound for the corresponding IP.
m Complexity:

LP solving is a polynomial-time problem.
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Solving Linear Programs

m Observation:

Here, LP solution is an upper bound for the corresponding IP.
m Complexity:

LP solving is a polynomial-time problem.
m Common idea:

Approximate IP solution with corresponding LP
(LP relaxation).
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LP Relaxation

Theorem (LP Relaxation)

The LP relaxation of an integer program is the problem that arises
by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective
value of the LP relaxation is an upper (resp. lower) bound on the
value of the IP.

.

Proof idea.

Every feasible assignment for the IP is also feasible for the LP. [
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LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)
minimize  3X,, +4X,, +5X,, subject to

X, > 1
Xoy + Xop > 1

~> optimal solution of LP relaxation:
Xo, = Land X, = X,, = X, = 0.5 with objective value 6

4
~+ LP relaxation of MHS heuristic is admissible

and can be computed in polynomial time
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Standard Maximum Problem

Normal form for maximization problems:

Definition (Standard Maximum Problem)

Find values for xi, ..., x,, to maximize
C1X1 + CXx2 + - -+ + CpXp
subject to the constraints

ayixt +apxe + -+ awnxy, < by

ap1X1 + axnxo + -+ + apx, < by

amiX1 + amex2 + -+ - + amnXn < by

and x; > 0,x >0,...,x, > 0.
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Standard Maximum Problem: Matrix and Vectors

A standard maximum problem is often given by
m an m-vector b = (by,..., by) " (bounds),
® an n-vector ¢ = (c1,...,¢,) " (objective coefficients),

m and an m X n matrix

a1l di2 ... din
ani dno ... d2p o
A= . . .| (coefficients)
dml dm2 --- dmn
m Then the problem is to find a vector x = (x1,...,x,)" to

maximize ¢’ x subject to Ax < b and x > 0.
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Standard Minimum Problem

m there is also a standard minimum problem
m it's form is identical to the standard maximum problem,
except that
m the aim is to minimize the objective function
m subject to Ax > b
m All linear programs can efficiently be converted into a
standard maximum/minimum problem.
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Every LP has an alternative view (its dual LP).

Primal Dual
maximization (or minimization) | minimization (or maximization)
objective coefficients bounds

bounds
bounded variable
<-constraint
free variable
=-constraint

dual of dual: original LP

objective coefficients
>-constraint
bounded variable
=-constraint
free variable
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Dual Problem

Definition (Dual Problem)

The dual of the standard maximum problem

maximize ¢’ x subject to Ax < b and x>0

is the standard minimum problem

minimize b"y subject to ATy > candy >0
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Dual Problem: Example

Example (Dual of the Optimization Problem)

maximize Xy +5Xg  subject to

—2Xa+ Xg <2
Xa+Xg <12
Xa <6
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Dual Problem: Example

Example (Dual of the Optimization Problem)
maximize Xy +5Xg  subject to

[Yl] —2Xa+ Xg <2
[Y2] Xa+Xg <12
[Y3] Xa <6

Xa20, Xg>0 )
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Dual Problem: Example

Example (Dual of the Optimization Problem)
minimize 2Y7 +12Y>+4+6Y3 subject to

[Xal =20 Yo gl
[Xs] Yi+Y>2>5
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Duality Theorem

Theorem (Duality Theorem)

If a standard linear program is bounded feasible, then so is its dual,
and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.



Summary
[ lele}

Summary
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Summary

m Linear (and integer) programs consist of an objective function
that should be maximized or minimized subject to a set of
given linear constraints.

m Finding solutions for integer programs is NP-complete.

m LP solving is a polynomial time problem.

m The dual of a maximization LP is a minimization LP
and vice versa.

m The dual of a bounded feasible LP has the
same objective value.
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Further Reading

The slides in this chapter are based on the following
excellent tutorial on LP solving:

@ Thomas S. Ferguson.
Linear Programming — A Concise Introduction.
UCLA, unpublished document available online.
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Cost Partitioning artitioning

Exploiting Additivity

m Additivity allows to add up heuristic estimates admissibly.
This gives better heuristic estimates than the maximum.

m For example, the canonical heuristic for PDBs sums up where
addition is admissible (by an additivity criterion) and takes the
maximum otherwise.

m Cost partitioning provides a more general additivity criterion,
based on an adaption of the operator costs.
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Combining Heuristics (In)admissibly: Example

Let h = hy + hy + h3.

02,03, 04 02,03, 04
1 01 0}
b ()
01, 04 01, 04 01, 04

T N
s (& \B)

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.
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Combining Heuristics (In)admissibly: Example

Let h= hy + hy + hs.

02,03, 04 02,03, 04

>
=
°H
[®)
-y
ao

S

RS

L
o
R
L
S
9
N

Sl
N
&
S
(=)
8
(@]
G

o

S

8
o
S
o
w
o
S
8

(o
o

2 0

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.
Heuristics hy and hs both account for the single application of o0s.
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Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.
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Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.

Solution 1: We can ignore the cost of oy in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.



Introduction g Unifo Cost Partitioning Sat _ a oning Summar

[e]e]e]e] lelele)

Combining Heuristics Admissibly: Example

Let i = hy + ho + h:, where hy = h"3 assuming costz(0>) = 0.
3 g
02, 03, 04 02,03, 04

>
=
eH
[®)
-y
6

01,04 01, 04 01, 04
h2 A @ C
01,03 01,03 01,03
1 1 Q
02 04
3 0-cost U

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) = 3 an admissible estimate.
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Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.

Solution 1: We can ignore the cost of oy in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.
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Cost Partitioning

Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.

Solution 1: We can ignore the cost of oy in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o, between the
abstractions that use it (i.e. costi(02) =0,

costa(02) = costz(02) = 0.5).

This is a uniform cost partitioning.
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Combining Heuristics Admissibly: Example

Let h" = hy + h, + hj, where h: = h"i assuming
costi(02) = 0, costr(0z) = costz(02) = 0.5.

02,03, 04 02,03, 04
1 o 0
1
01, 04 01,04 01, 04
2
cost 0.5 U
01,03 01,03 01,03
1 o 1/@ 0
2 04
3 cost 0.5 \_/

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) =0+ 1.5+ 1.5 = 3 an admissible estimate.

—~
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Cost Partitioning

Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.

Solution 1: We can ignore the cost of oy in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o, between the
abstractions that use it (i.e. costi(02) =0,

costa(02) = costz(02) = 0.5).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

Z costi(0) < cost(o) for all o € O
i=1
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Cost Partitioning

Solution: Cost Partitioning
The reason that hy and h3 are not additive is because
the cost of o0, is considered in both.

Solution 1: We can ignore the cost of oy in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o, between the
abstractions that use it (i.e. costi(02) =0,

costa(02) = costz(02) = 0.5).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint
n

Z costi(0) < cost(o) for all o € O
i=1

What about 01, 03 and 047
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Cost Partitioning

Definition (Cost Partitioning)

Let I be a planning task with operators O.

A cost partitioning for N is a tuple (costy, ..., cost,), where
[ <:ost,-:O—>RaL for1<i<nand
m > 7, costi(o) < cost(o) for all o € O.
The cost partitioning induces a tuple (Iy,...,,) of planning

tasks, where each [1; is identical to 1 except that the cost
of each operator o is cost;j(0).
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Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let N be a planning task, (costi, ..., cost,) be a cost partitioning
and (My,...,MN,) be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for 1, i.e., 771 hyy < hy.




Introduction Cost Partitioning Uniform Cost Partitioning Saturatec st Partitioning Summary
000080000 ) o 00 00

Cost Partitioning: Admissibility (2)

Proof of Theorem.

If there is no plan for state s of I, both sides are co. Otherwise,
let 7 = (o01,...,0m) be an optimal plan for s. Then

Z hf.(s) < Zz cost;i(oj) (7 plan in each ;)
i=1

i=1 j=1
m n
= Z Z cost;(oj) (comm./ass. of sum)
j=1i=1
m
< Z cost(0;) (cost partitioning)
j=1
= hf(s) (m optimal plan in )
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Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write hp to denote heuristic h
evaluated on task [1.

Corollary (Sum of Admissible Estimates is Admissible)

Let N be a planning task and let (M, ...,MN,) be induced by a cost
partitioning.

For admissible heuristics hy, ..., h,, the sum h(s) =37 ; hin,(s)
is an admissible estimate for s in T1.
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Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let 1N be a planning task and let (MNy,...,M,) be induced
by a cost partitioning {(costi, ..., costp).

If hy, ..., h, are consistent heuristics then h = 27:1 hin
is a consistent heuristic for I1.

i

.

Let o be an operator that is applicable in state s.

n

h(s) = Z hiny(s) < ) _(costi(0) + hin,(s[o]))

=1l

= Z costi(o) + Z hin,(s[o]) < cost(o) + h(s[o])
i=1 i=1

.
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Cost Partitioning: Example
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Cost Partitioning: Example

a 2] 2 2
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Cost Partitioning: Example

Example (No Cost Partitioning)

Heuristic value: max{2,2} =2
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Cost Partitioning: Example

Example (Cost Partitioning 1)

Heuristic value: 1 +1=2
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Cost Partitioning: Example

Example (Cost Partitioning 2)

Heuristic value: 2 +2 =4
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Cost Partitioning: Example

Example (Cost Partitioning 3)

Heuristic value: 04+0=0
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Cost Partitioning: Quality

m h(s) = hin,(s) + -+ hnn,(s)
can be better or worse than any h; n(s)
— depending on cost partitioning

m strategies for defining cost-functions

uniform (now)
zero-one

saturated (afterwards)
optimal (next chapter)

Summar
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Idea

m Principal idea: Distribute the cost of each operator equally
(= uniformly) among all heuristics.

m But: Some heuristics do only account for the cost of certain
operators and the cost of other operators does not affect the
heuristic estimate. For example:

m a disjunctive action landmark accounts for the contained
operators,

m a PDB heuristic accounts for all operators affecting the
variables in the pattern.
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[e]e] le]ele]

m Principal idea: Distribute the cost of each operator equally
(= uniformly) among all heuristics.

m But: Some heuristics do only account for the cost of certain
operators and the cost of other operators does not affect the
heuristic estimate. For example:

m a disjunctive action landmark accounts for the contained
operators,

m a PDB heuristic accounts for all operators affecting the
variables in the pattern.

= Distribute the cost of each operator uniformly among all
heuristics that account for this operator.
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Example: Uniform Cost Partitioning for Landmarks

m For disjunctive action landmark L of state s in task I, let
hi v (s) be the cost of L in I

m Then h rv(s) is admissible (in T").
m Consider set £ = {Ly,...,L,} of disjunctive action landmarks
for state s of task [1.

Use cost partitioning (costy,, ..., cost;,), where

cost(o)/{Le L] oe L} ifoel;
0 otherwise

cost;(0) = {

Let (Mg,,...,Mg,) be the tuple of induced tasks.

h(s)=>1"1 hi;n,,(s) is an admissible estimate for s in I.

h is the uniform cost partitioning heuristic for landmarks.
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Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let £ be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic "Y°P(L£) is defined as

hYP (L) = Z m|n c’(o) with
LEE

c’(0) = cost(o)/|{L € L | 0 € L}|.
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Example: Uniform Cost Partitioning for Landmarks

Given disjunctive action landmarks
Ly = {o1,03}, Ly ={o01,00,04}, L3 ={o01,04,05}

with operator cost function
c(o1) =6, c(o2) =4, c(o3)=1, c(os) =6, c(os5)=3
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Example: Uniform Cost Partitioning for Landmarks

Given disjunctive action landmarks

Ly ={o1,03}, Ly ={o01,00,04}, L3 ={01,04,05}

with operator cost function

c(o1) =6, c(o) =4, c(o3)=1, c(os) =6, c(o5) =3

UCP for landmarks uses adapted costs
(o) =2, () =4, (03)=1, c(0s) =3, c'(05) =3
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Example: Uniform Cost Partitioning for Landmarks

Given disjunctive action landmarks

Ly ={o1,03}, Ly ={01,02,04}, L3 ={01,04,05}

with operator cost function

c(o1) =6, c(o) =4, c(o3)=1, c(os) =6, c(o5) =3
UCP for landmarks uses adapted costs

(o) =2, () =4, (03)=1, c(0s) =3, c'(05) =3

with resulting heuristic estimate
hUCP({I—l) L2a L3}) =
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Example: Uniform Cost Partitioning for Landmarks

Given disjunctive action landmarks
Ly = {o1,03}, Ly ={o01,00,04}, L3 ={o01,04,05}

with operator cost function
c(o1) =6, c(o2) =4, c(o3)=1, c(os) =6, c(os5)=3

UCP for landmarks uses adapted costs
(o) =2, () =4, (03)=1, c(0s) =3, c'(05) =3

with resulting heuristic estimate
hUCP({Ll, L2, L3}) =1+2+2=05.

(MHS heuristic estimate: 6)
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Idea

Heuristics do not always “need” all operator costs

m Pick a heuristic and use
minimum costs preserving all estimates

m Continue with remaining cost
until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff
between computation time and heuristic guidance in practice.
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Saturated Cost Function

Definition (Saturated Cost Function)

Let 1 be a planning task and h be a heuristic.
A cost function scf is saturated for h and cost if

@ scf(o) < cost(0) for all operators o and

Q hn(s) = hn(s) for all states s,
where [y is I with cost function scf.
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Minimal Saturated Cost Function

For abstractions, there exists a unique
minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let 1 be a planning task and « be an abstraction heuristic.
The minimal saturated cost function for « is

mscf(o) = max( max  h*(s) — h%(t),0)
a(s)>ra(t)
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Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

© Pick a heuristic h; that hasn't been picked before.
Terminate if none is left.

@ Compute h; given current cost

© Compute an (ideally minimal) saturated cost function scf;
for h;

© Decrease cost(0) by scf;(o) for all operators o

(scf1,...,scf,) is a saturated cost partitioning (SCP)
for (h1,..., hy) (in pick order)
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Example

Consider the abstraction heuristics h; and hy

01, 03, 04

02
hy | s, 52,53

{ } 01 () 02

S1 S Sa, S5 03
o
4

o N

o1 | 02 | 03 | 04
cost 1 1 1 1

03
S5

0




Example
Consider the abstraction heuristics h; and hy
@ Pick a heuristic h;

01, 03, 04

02
hy | st 52,83

B 01 () 02

S1 S Sa, S5 03
o
4

o N

o1 | 2| 03 | 04
cost 1 1 1 1

03 D
S5

0




Example
Consider the abstraction heuristics h; and hy
@ Compute h;

01, 03, 04

02
hy | s1,52,53
2

h2&y

o1 | 02 | 03 | 04
cost 1 1 1 1

03
S5

()
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Example
Consider the abstraction heuristics h; and hy

© Compute minimal saturated cost function mscf; for h;

01, 03, 04

02
hy | s1,52,53
2

B 01 () 02 [ ] :
S1 S2 S4, S5 03
o1 | 02| 03 | 04
cost 1 1 1 1

mscf; | 0 1 1 0

03
S5

- (2]
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Example
Consider the abstraction heuristics h; and hy

@ Decrease cost(o0) by mscfi(o) for all operators o

01, 03, 04

02
hy | s1,52,53
2

B 01 () 02 [ ]:
S1 S S4, S5 03
o
ho X V
o1 | 02| 03 | 04

cost 1 0 0 1

mscf; | 0 1 1 0

03
S5

- (2]




Example
Consider the abstraction heuristics h; and hy
@ Pick a heuristic h;

01, 03, 04

02
hy | s, 52,53
2

B 01 () 02 [ ] :
S1 S S4, S5 03
o
hy X V
01 | o2 | 03 | 04
cost 1 0 0 1
1

mscf; | 0

03 D
S5

- (2]
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Example

Consider the abstraction heuristics h; and hy

@ Compute h;
01,03, 04
o m O
h]_ 51,52, 53 2 Sa 3 S5
2 1 0
1 0 0
B 01 () 02 [ ] :
S1 S S4, S5 03
o
ho X V
o1 | 2| 03| 04
cost 1 0 0 1
0 mscf; | 0 1 1 0
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Example
Consider the abstraction heuristics h; and hy

© Compute minimal saturated cost function mscf; for h;

01, 03, 04
é 02 m O
h]_ 51,52, 53 Sa 3 S5
2 1 0
1 0 0
B 01 () 02 CJ -
S1 S S4, S5 03
o
4

o N

o1 | 02| 03 | 04
cost 1 0 0 1

0 mscf; | 0 1 1 0
mscf 1 0 0 1
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Example

Consider the abstraction heuristics h; and hy

@ Decrease cost(o0) by mscfi(o) for all operators o

01,03, 04
é 02 () (o]
h]_ 51,52, 53 Sa 3 S5
2 1 0
1 0 0
B o1 () 02 @D —
S1 S S4, S5 03
o
k4

o N

o1 | 2| 03 | 04
0
1
0

cost 0
0 mscf; | 0
mscf 1




0000008000000
Example
Consider the abstraction heuristics h; and hy

@ Pick a heuristic h;. Terminate if none is left.

01, 03, 04
é 02 m O
h]_ 51,52, 53 Sa 3 S5
2 1 0
1 0 0
B 01 () 02 CJ -
S1 S S4, S5 03
o
4

o N

o1 | 02| 03 | 04
cost 0 0 0 0

0 mscf; | 0 1 1 0
mscf 1 0 0 1
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Influence of Selected Order

m quality highly susceptible to selected order

m there are almost always orders where SCP performs much
better than uniform or zero-one cost partitioning

m but there are also often orders where SCP performs worse

Summar
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Consider the abstraction heuristics h; and hy

01, 03, 04

é 02 () 03
h]_ 51,52, 53 Sa S5

{ } 01 () 02

S1 S Sa, S5 03
o
4

o N

o1 | 02 | 03 | 04
cost 1 1 1 1




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy
@ Pick a heuristic h;

01, 03, 04

é 02 () 03
h]_ 51,52, 53 Sa S5

o m
S1 ! S 02 Sa, S5 03

ho Y @

o | 0| o3| oa
cost 1 1 1 1
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Consider the abstraction heuristics h; and hy

@ Compute h;
01,03, 04
é (o)) () 03
h]_ 51,52, 53 Sa S5

2 1 0
{ } 01 () 02
S1 S Sa, S5 03

le)
hy X @
o | 0| o3| oa
cost 1 1 1 1

2




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy

© Compute minimal saturated cost function mscf; for h;

01, 03, 04
é 02 () 03 D
h]_ 51,52, 53 Sa S5
2 1 0

hgxo%

o1 | 02 | 03 | 04
cost 1 1 1 1

2 mscfy | 1 1 1 0




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy

@ Decrease cost(o0) by mscfi(o) for all operators o

01, 03, 04
é 02 () 03 D
h]_ 51,52, 53 Sa S5
2 1 0

hgxo%

o1 | 02 | 03 | 04
cost 0 0 0 1

2 mscfy | 1 1 1 0




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy

@ Pick a heuristic h;

01,03, 04
é 02 () 03
h1 51,52, 53 Sa S5
2 1 0

@ 01 @ 02 @D 03
hy & Sy

o | 0| o3| oa
cost 0 0 0 1
1

2 mscf 1




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy

@ Compute h;

01,03,04
0 0 0
2 1 0

O
ha Ydﬁ)
03 | 04

cost 0 0 0 1
1

2 mscf 1




Saturated Cost Partitioning: Order
Consider the abstraction heuristics h; and hy

© Compute minimal saturated cost function mscf; for h;

01,03, 04
&} O () o
h]_ 51,52, 53 2 Sa 3 S5
0 0 0
2 1 0

hgxo%

o | 0| o3| o4
cost 0 0 0 1

2 mscfy | 1 1 1 0
mscf; | O 0 0 0




Saturated Cost Partitioning: Order

Consider the abstraction heuristics h; and hy

@ Decrease cost(o0) by mscfi(o) for all operators o

01,03, 04
é 02 () (o]
h]_ 51,52, 53 Sa 3 S5
0 0 0
2 1 0

hgxo%

o | 0| o3| o4
cost 0 0 0 1

2 mscfy | 1 1 1 0
mscf; | 0 0 0 0




Saturated Cost Partitioning: Order
Consider the abstraction heuristics h; and hy

@ Pick a heuristic h;. Terminate if none is left.

01,03, 04
é 02 () (o]
h]_ 51,52, 53 Sa 3 S5
0 0 0
2 1 0

hgxo%

o | 0| o3| o4
cost 0 0 0 1

2 mscfy | 1 1 1 0
mscf; | 0 0 0 0
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Cost Partitioning Saturated Cost Partitioning Summar

Influence of Selected Order

m quality highly susceptible to selected order

m there are almost always orders where SCP performs much
better than uniform or zero-one cost partitioning

m but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice
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SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a
minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let N be a planning task and £ be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(0) = Minee cost(o) ifoe L
o otherwise
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SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a
minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let N be a planning task and £ be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(0) = Minee cost(o) ifoe L
o otherwise

Does this look familiar?



Saturated Cost Partitioning
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Reminder: LM-Cut
Oblue = <{"}7 {av b}a {}7 4)
Ogreen = ({i}, {a, ¢}, {},5)
Oblack = <{l}7 {b7 C}7 {}7 3>
‘e Ored = <{b7 C}a{d}a{}72>
Oorange — <{ay d}3 {g}7 {}’ 0)
e round | P(0orange) | P(Ored) landmark cost
1 d b {Ored} 2
2 a b {Ogreem oblue} 4
3 d C {Ogreen, Oblack} 1
hLM—cut(/) 7
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Cost Partitioning Saturated Cost Partitioning Summar

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks,
where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let N be a planning task and £ be a disjunctive action landmark.
The minimal saturated cost function for L is

mscf(0) = Minee cost(o) ifoe L
o otherwise

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks
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Summary

m Cost partitioning allows to admissibly add up estimates of
several heuristics.

m This can be better or worse than the best individual heuristic
on the original problem, depending on the cost partitioning.

m Uniform cost partitioning distributes the cost of each operator
uniformly among all heuristics that account for it.

m Saturated cost partitioning offers a good tradeoff between
computation time and heuristic guidance.

m LM-Cut computes a SCP over disjunctive action landmarks.
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Optimal Cost Partitioning: General Approach

m Can we find a better cost partitioning than with the uniform
or saturation strategy? Even an optimal one?

m |dea: exploit linear programming
m Use variables for cost of each operator in each task copy

m Express heuristic values with linear constraints
m Maximize sum of heuristic values subject to these constraints
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Optimal Cost Partitioning
00®000000000

Optimal Cost Partitioning: General Approach

m Can we find a better cost partitioning than with the uniform
or saturation strategy? Even an optimal one?

m Idea: exploit linear programming
m Use variables for cost of each operator in each task copy

m Express heuristic values with linear constraints
m Maximize sum of heuristic values subject to these constraints

LPs known for
m abstraction heuristics (not covered in this course)

m disjunctive action landmarks (now)
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Optimal Cost Partitioning for Landmarks: Basic Version

m Use an LP that covers the heuristic computation and
the cost partitioning.

m LP variable C; , for cost of operator o in induced task for
disjunctive action landmark L (cost partitioning)

m LP variable Cost; for cost of disjunctive action landmark L in
induced task (value of individual heuristics)
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Optimal Cost Partitioning for Landmarks: Basic LP

Variables

Non-negative variable Cost; for each disj. action landmark L € £
Non-negative variable C; , for each L € £ and operator o

Objective

Maximize », . Cost;

Z Cr o < cost(o) for all operators o
LeL
Cost; < Cro forall Le Lando€ L




Optimal Cost Partitioning
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Optimal Cost Partitioning for Landmarks: Improved

m Observation: Explicit variables for cost partitioning not
necessary.

m Use implicitly cost; (o) = Cost; for all o € L and 0 otherwise.
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Co Summar
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Optimal Cost Partitioning for Landmarks: Improved LP

Variables

Non-negative variable Cost; for each disj. action landmark L € £

Objective

Maximize ;. » Cost,

Z Cost; < cost(o) for all operators o
LeL:ocl
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Example (1)

Let 1 be a planning task with operators o1, ..., 04 and
cost(o01) = 3, cost(0z) = 4, cost(o3) = 5 and cost(os) = 0.
Let the following be disjunctive action landmarks for I1:

£1 = {04}
Ly ={o1,02}
L3 = {o1,03}

L4 ={02,03}
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Example (2)

Maximize Costz, + Costz, 4+ Costz, + Cost, subject to

[01] Costz, + Costp, < 3
[02] Costz, + Cost,, < 4
[03] Costz, + Costz, <5
[04] Costg, <0

Costy, >0 for i€ {1,2,3,4}




Optimal Cost Partitioning o Summar

000000000800

Optimal Cost Partitioning for Landmarks (Dual view)

Variables
Non-negative variable Applied, for each operator o

Objective
Minimize ) Applied,, - cost(o)

> " Applied, > 1 for all landmarks L
o€l

Minimize “plan cost” with all landmarks satisfied.
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st Partitioning

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)
Minimize  3Applied, + 4Applied,, + 5Applied,,  subject to

Applied,, >1
Applied, + Applied,, > 1
Applied, + Applied,, > 1
Applied,, + Applied,, > 1
Applied, >0 fori € {1,2,3,4}
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st Partitioning

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)
Minimize  3Applied, + 4Applied,, + 5Applied,,  subject to

Applied,, >1
Applied, + Applied,, > 1
Applied, + Applied,, > 1
Applied,, + Applied,, > 1
Applied, >0 fori € {1,2,3,4}

This is equal to the LP relaxation of the MHS heuristic
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00000000000 e

Reminder: LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)
minimize  3X,, +4X,, +5X,, subject to

X, > 1
Xoy + Xop > 1

~> optimal solution of LP relaxation:
Xo, = Land X, = X,, = X, = 0.5 with objective value 6

4
~+ LP relaxation of MHS heuristic is admissible

and can be computed polynomial time
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General Cost Partitioning

Cost functions are usually non-negative.
m We tacitly also required this for task copies
m Makes intuitively sense: original costs are non-negative
m But: not necessary for cost-partitioning!
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General Cost Partitioning

Definition (General Cost Partitioning)

Let N be a planning task with operators O.

A general cost partitioning for I is a tuple (costy, . .., costy),
where
m costi: O —Rforl<i<nand

m Y7, costi(o) < cost(o) for all o € O.
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General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let I be a planning task, (costi, ..., cost,) be a general cost
partitioning and (M1, ...,M,) be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for 1, i.e., 77 hpy < hy.

(Proof omitted.)



General Cost Partitioning
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General Cost Partitioning: Example
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General Cost Partitioning: Example

OO0
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General Cost Partitioning: Example

Heuristic value: 2+2 =4
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General Cost Partitioning: Example

Heuristic value: 44+2 =06
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General Cost Partitioning: Example

Heuristic value: —0co +5 = —
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Summary

m For abstraction heuristics and disjunctive action landmarks,
we know how to determine an optimal cost partitioning, using
linear programming.

m Although solving a linear program is possible in polynomial
time, the better heuristic guidance often does not outweigh
the overhead (in particular for abstraction heuristics).

m In constrast to standard (non-negative) cost partitioning,
general cost partitioning allows negative operators costs.

m General cost partitioning has the same relevant properties as
non-negative cost partitioning but is more powerful.
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Example Task (1)

Example (Example Task)
SAST task M = (V, I, 0,v) with
m V ={A B, C} with dom(v) = {0,1,2,3,4} forall ve V
m/={A—0,B—0,C~— 0}
m O={inc; |veV,xe{0,1,2}}U{jump”|ve V}
minc,=(v=x,v:i=x+11)
m jump’ = (/\v/ev:v,#v v =4 v:=31)
y=A=3ANB=3ANC=3

Each optimal plan consists of three increment operators for
each variable ~» h*(/) =9

Each operator affects only one variable.
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Introduction
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Example Task (2)

m In projections on single variables we can reach the goal with a
jump operator: hAY(1) = WBY(1) = A1) = 1.

m In projections on more variables, we need for each variable
three applications of increment operators to reach the

abstract goal from the abstract initial state:
hABY(1) = iACH () = BCH() =6

Example (Canonical Heuristic)
C = {{A}, {B}, {C},{A B}, {A C},{B, C}}
H(5) = max{ ) (s) + KB (5) + LV (s), KA (5) + BN (s),
hiBY(s) + hACH(s), hC (s) 4+ AIABY ()}

(1) =7
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Post-hoc Optimization Heuristic: Idea

Consider the example task:

B type-v operator: operator modifying variable v
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Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hABr =6
= in any plan operators of type A or B incur at least cost 6.



Introduction
ocooe

Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hABr =6
= in any plan operators of type A or B incur at least cost 6.
m A =6
= in any plan operators of type A or C incur at least cost 6.
m hBCH =6
= in any plan operators of type B or C incur at least cost 6.
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Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hABr =6
= in any plan operators of type A or B incur at least cost 6.
m A =6
= in any plan operators of type A or C incur at least cost 6.
m hBCH =6
= in any plan operators of type B or C incur at least cost 6.

= any plan has at least cost 777.
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Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hAB =6
= in any plan operators of type A or B incur at least cost 6.
m A =6
= in any plan operators of type A or C incur at least cost 6.
m hBCH =6
= in any plan operators of type B or C incur at least cost 6.

= any plan has at least cost 777.

(let’s use linear programming. . .)
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Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hAB =6
= in any plan operators of type A or B incur at least cost 6.
m A =6
= in any plan operators of type A or C incur at least cost 6.
m hBCH =6
= in any plan operators of type B or C incur at least cost 6.

= any plan has at least cost 777.

(let’s use linear programming. . .)

= any plan has at least cost 9.
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Post-hoc Optimization Heuristic: Idea

Consider the example task:
B type-v operator: operator modifying variable v
m hAB =6
= in any plan operators of type A or B incur at least cost 6.
m A =6
= in any plan operators of type A or C incur at least cost 6.
m hBCH =6
= in any plan operators of type B or C incur at least cost 6.

= any plan has at least cost 777.

(let’s use linear programming. . .)

= any plan has at least cost 9.

Can we generalize this kind of reasoning?
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Post-hoc Optimization



Introduction Post-hoc Optimization
0®0000000000

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

m can be computed for any kind of heuristic . ..
m ... as long as we are able to determine relevance of operators

m if in doubt, it's always safe to assume
an operator is relevant for a heuristic

m but for PhO to work well, it's important that the set of
relevant operators is as small as possible



Post-hoc Optimization
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Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let 7 be a transition system, and let ¢ be one of its labels.
We say that ¢ affects 7 if 7 has a transition s L t with s # t.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction « if o affects T¢.

We can efficiently determine operator relevance for abstractions.
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Linear Program (1)

For a given set of abstractions {a1,...,a,}, we construct
a linear program:

m variable X, for each operator o € O
m intuitively, X, is cost incurred by operator o

m abstraction heuristics are admissible
Z Xo > h%(s) forae{ay,...,an}
oe0
m can tighten these constraints to

o
Zon:o relevant for o Xo 2 h (S) for o € {041, ceey an}
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Linear Program (2)

For set of abstractions {a1,...,a,}:

Variables
Non-negative variables X, for all operators o € O

Objective
Minimize > .5 Xo

Xo > h%(s) forae{ai,...,an}

X, >0 forall o € O

ZoGO:o relevant for «
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Simplifying the LP

m Reduce the size of the LP by aggregating variables
which always occur together in constraints.

m Happens if several operators are relevant
for exactly the same heuristics.

m Partitioning O/~ induced by this equivalence relation
m One variable X[, for each [o] € O/~
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Example

m only operators 01, 02, 03 and o4 are relevant for hy
and hl(So) =11

m only operators 03, 04, 05 and og are relevant for hy
and hy(sp) =11

m only operators o1, 0o and og are relevant for hs
and hs(sp) =8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?
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Introduction Post-hoc Optimization Summary

Example

m only operators 01, 02, 03 and o4 are relevant for hy
and hl(So) =11

m only operators 03, 04, 05 and og are relevant for hy
and hy(sp) =11

m only operators o1, 0o and og are relevant for hs
and hs(sp) =8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: 01 ~ 02 and 03 ~ 04
= Of~ = {[01]7 [03]7 [05]7 [06]}
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Simplifying the LP: Example

LP before aggregation

Variables
Non-negative variable Xi,..., Xs
for operators o1, ..., 06 )

Minimize X3 + Xo + X34+ Xy + X5 + X5  subject to

X1+ Xo+ X34+ X4 > 11
X3+ Xy + X5 + X > 11
X1+ X2 +Xe>38

Xi>0 forie{l,...,6}
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Summary

Simplifying the LP: Example
LP after aggregation
Variables

Non-negative variable X[ll’ X[g], X[S], X[6]
for equivalence classes [01], [03], [05], [06]

Minimize X[l] T X[3] S X[5] S X[6] subject to

X + X3 211
X[3] + X[5] + X[ﬁ] > 11

Xi =0 forie{[1],[3],[5], [6]}
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PhO Heuristic

Definition (Post-hoc Optimization Heuristic)
The post-hoc optimization heuristic hpahom an} for abstractions
a1,...,0Q, is the objective value of the following linear program:

Minimize Z X[o) subject to
[o]€ O/~

Z[o]EO/N:o relevant for o X[O] =1 (S) or alll e € {ah o ,CM,,}

X0 20 for all [o] € O/~,

where o ~ o' iff 0 and o’ are relevant for exactly the same
abstractions in aq, ..., a,.
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PhO Heuristic

hPhO

© Precompute all abstraction heuristics h™1, ..., h%".
@ Create LP for initial state sg.

© For each new state s:

m Look up h*(s) for all « € {a,...,an}.
m Adjust LP by replacing bounds with the h*(s) values.
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Let I be a planning task and {a1,...,a,} be a set of abstractions.
We show that there is a feasible variable assignment with objective
value equal to the cost of an optimal plan.

Let 7 be an optimal plan for state s and let cost,(O’) be the cost
incurred by operators from O’ C O in .

Setting each X[,] to costr([0]) is a feasible variable assignment:
Constraints X, > 0 are satisfied.
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each o € {a1,...,ap}, 7 is a solution in the abstract
transition system and the sum in the corresponding constraint
equals the cost of the state-changing abstract state transitions
(i.e.. not accounting for self-loops). As h*(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value h*(s)
(cost of ), so the objective value of the LP is admissible. O

V.
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Combining Estimates from Abstraction Heuristics

m Post-Hoc optimization combines multiple admissible heuristic
estimates into one.



Comparison

Introduction 0 0 Z
[e]e]e]e] e]e 0O®@00000

Combining Estimates from Abstraction Heuristics

m Post-Hoc optimization combines multiple admissible heuristic

estimates into one.
m We have already heard of two other such approaches for
abstraction heuristics,
m the canonical heuristic (for PDBs), and
m optimal cost partitioning (not covered in detail).
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Introduction

Combining Estimates from Abstraction Heuristics

m Post-Hoc optimization combines multiple admissible heuristic
estimates into one.
m We have already heard of two other such approaches for
abstraction heuristics,
m the canonical heuristic (for PDBs), and
m optimal cost partitioning (not covered in detail).

m How does PhO compare to these?
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What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. ..

m ...uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

m ...dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than AC.

B ...is very expensive to compute
(recomputing all abstract goal distances in every state).
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Introduction

PhO: Dual Linear Program

For set of abstractions {ai,...,a,}:

Variables
Y,, for each abstraction « € {aq,...,an}

Objective
Maximize 3° cta;. a1 H¥(S) Yo

.

< I~
Zae{al,...,an}:o relevant for Yozl el [O] < O/

Y,>0 foralla€{a,...,an}
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Introduction

PhO: Dual Linear Program

For set of abstractions {ai,...,a,}:

Variables
Y,, for each abstraction « € {aq,...,an}

Objective
Maximize 3° cta;. a1 H¥(S) Yo

.

< I~
Zae{al,...,an}:o relevant for Yozl el [O] < O/

Y,>0 foralla€{a,...,an}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 < Y, < 1.



Introduction 05! Comparison Summary

0O000e00

Relation to Optimal Cost Partitioning

Optimal cost partitioning dominates post-hoc optimization. \

Proof Sketch.

Consider a feasible assignment (Y,,,,..., Y,,) for the variables of
the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
(Yo, cost, ..., Y,, cost).
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Introduction

Relation to Canonical Heuristic

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value h®(s).
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Introduction

Relation to Canonical Heuristic

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value h®(s).

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.
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hPhO VS hC

m For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

m The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

m The post-hoc optimization heuristic solves an LP in each
state.

m With post-hoc optimization, a large number of small patterns
works well.



Summan
0

Summary



Introduction 1 ¢ zatiol Cc so Summary
0000 o o

Summary

m Post-hoc optimization heuristic constraints express
admissibility of heuristics

m exploits (ir-)relevance of operators for heuristics

m explores the middle ground between canonical heuristic and
optimal cost partitioning.

m For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

m The computation can be done in polynomial time.
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Reminder: SAS+ Planmng Tasks

For a SAS™ planning task M= (V, I, 0,):
m V is a set of finite-domain state variables,
m Each atom has the form v = d with v € V,d € dom(v).

m Operator preconditions and the goal formula ~
are satisfiable conjunctions of atoms.

Operator effects are conflict-free conjunctions of
atomic effects of the form vy :==di A--- A v, = dh.
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Example Task (1)

m One package, two trucks, two locations

m Variables:
m pos-p with dom(pos-p) = {locy, locy, t1, tp}
m pos-t-i with dom(pos-t-i) = {locy, loc,} for i € {1,2}

m The package is at location 1 and the trucks at location 2,
m | = {pos-p — locy, pos-t-1 — locy, pos-t-2 + locy)

m The goal is to have the package at location 2 and

truck 1 at location 1.

m v = (pos-p = locy) A (pos-t-1 = locy)



Introduction Transition Normal Form ristic Summar

[e]e]e] le]elele)

Example Task (2)

m Operators: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = locj,
pos-p := t;, 1)
unload(t;, loc;) = (pos-t-i = locj A\ pos-p = t;,
pos-p := loc;j, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,

pos-t-i := locg, 1)
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Example Task: Observations

Consider some atoms of the example task:

m pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
once more than it is unloaded.

m pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
once more than it is loaded.
m pos-p = ty initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?
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Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in 7.
Then the following holds:

m pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded

once more than it is unloaded.
#load(t1, loc1) + #load(ty, loci) =
1 + #unload(t1, loc1) + #unload(t», locy)

m pos-p = tp initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, loci) + #unload(t1, locy) =
#load(ty, loc1) + #load(t1, loco)
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Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.
These are satisfied by every plan of the task.
The cost of a plan is ) cost(o)#o

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

m As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?



0000000

Introduction ra [ Summary

How to Derive Flow Constraints?

m The constraints formulate how often an atom can be
produced or consumed.

m “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

m For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

m For general SAS™ tasks, the goal does not have to specify a
value for every variable.

m All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form
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Variables Occurring in Conditions and Effects

m Many algorithmic problems for SAS™ planning tasks
become simpler when we can make two further restrictions.

m These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(y), vars(e))

For a logical formula ¢ over finite-domain variables V/,
vars(y) denotes the set of finite-domain variables occurring in .

For an effect e over finite-domain variables V/,
vars(e) denotes the set of finite-domain variables occurring in e.
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Transition Normal Form

Definition (Transition Normal Form)

A SAS™T planning task M = (V, 1,0, ~)
is in transition normal form (TNF) if

m for all o € O, vars(pre(o)) = vars(eff{0)), and
m vars(y) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).
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Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:
m There exists a variable v € vars(pre(0)) \ vars(eff0)).

m There exists a variable v € vars(eff(0)) \ vars(pre(0)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v .= d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?
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Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

@ While there exists an operator o and a variable
v € vars(effl0)) with v ¢ vars(pre(o)):
m For each d € dom(v), add a new operator that is like o
but with the additional precondition v = d.
m Remove the original operator.

© Repeat the previous step until no more such variables exist.

Problem:

m If an operator o has n such variables, each with k values
in its domain, this introduces k" variants of o.

m Hence, this is an exponential transformation.
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Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values
@ For every variable v, add a new auxiliary value u to its domain.

@ For every variable v and value d € dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: (v =d,v:=u,0).
© For all operators o and all variables
v € vars(eff0)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:
m Transformation can be computed in linear time.

m Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.
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Converting Goals to TNF

m The auxiliary value idea can also be used
to convert the goal v to TNF.

m For every variable v ¢ vars(7y), add the condition v = u to .

With these ideas, every SAS™ planning task can be
converted into transition normal form in linear time.
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TNF for Example Task (1)

The example task is not in transition normal form:

m Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

m The goal does not specify a value for variable pos-t-2.
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TNF for Example Task (2)

Operators in transition normal form: for i, j, k € {1,2}:

load(t;, locj) = (pos-t-i = loc; A pos-p = log;,
pos-p = tj A\ pos-t-i .= locj, 1)
unload(t;, locj) = (pos-t-i = locj A\ pos-p = t;,
pos-p := locj \ pos-t-i := locj, 1)
drive(t;, loc;, locy) = (pos-t-i = loc;,

pos-t-i := locy, 1)
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TNF for Example Task (3)

To bring the goal in normal form,
® add an additional value u to dom(pos-t-2)

® add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u,0) and
02 = (pos-t-2 = locy, pos-t-2 := u, 0)
m Add pos-t-2 = u to the goal:
v = (pos-p = locz) A (pos-t-1 = locy) A (pos-t-2 = u)
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ormal Form Flow Heuristic

Notation

m In SAS™ tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

m In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

m For state s, we write (v = d) € s to express that s(v) = d.

m For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

m For effect e, we write (v = d) € e to express that e contains
the atomic effect v :=d.
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Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
m o produces atom a iff a € eff{0) and a & pre(o).
m o consumes atom a iff a € pre(o) and a & eff0).

m Otherwise o is neutral wrt. atom a.

~> State-independent
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Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal ~.
If v mentions all variables (as in TNF), the following holds:

m If a € s and a € v then atom a must be equally often
produced and consumed.

m Analogously for a & s and a & .

m If a€sand a ¢~y then a must be consumed once more than
it is produced.

m If a¢ s and a € v then a must be produced once more than it
is consumed.
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Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

1 if Pis true
[Pl = o
0 if P is false.

Example: [2#3] =1
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Flow Constraints (3)

Definition (Flow Constraint)

Let M= (V,I,O,~) be a task in transition normal form.
The flow constraint for atom a in state s is

[a€s]+ Z Count, =[a €]+ Z Count,
o€ 0:aceff(0) o€ 0:acpre(o)

m Count, is an LP variable for the number of occurrences of
operator o.

m Neutral operators either appear on both sides or on none.
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Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,I,0,7) be a SAS™ task in transition normal form and
let A={(v=d)|veV,de dom(v)} be the set of atoms of I1.

The flow heuristic h°%(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize ) . cost(o) - Count,  subject to

[aes]+ Y Counto=[ae~]+ > Count, forallac A
o€ 0:aceff(0) o€ 0:acpre(o)

Count, >0 foralloe O
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Flow Heuristic on Example Task

~ Demo
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Visualization of Flow in Example Task

drive-ty -1 -l

drive-ty-ly-l

load-ty -1 ,unload-t1 -, 0y

drive-ty-l1 -l

drive-t1-lh-ly,00

load-t; -1
unload-t1 -l
drive-ty-ly-h
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Flow Heuristic: Properties (1)

The flow heuristic h® is goal-aware, safe, consistent and
admissible.

.

Proof Sketch.

It suffices to prove goal-awareness and consistency.
Goal-awareness: If s = then Count, = 0 for all 0 € O is feasible
and the objective function has value 0. As Count, > 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller.

.
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Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s’ = s[o].

Increasing Count, by one in an optimal feasible assignment for the
LP for state s’ yields a feasible assignment for the LP for state s,
where the objective function is hf°"(s’) 4- cost(o).

This is an upper bound on hfl°*¥(s), so in total
hflow(s) < hflow(s') + cost(o). O
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Summary

m A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

m The flow heuristic computes a lower bound on the cost of

each operator sequence that satisfies these constraints for all
atoms.

m The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.
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Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B 0.4 COnsumes a

In natural language, the flow constraint expresses that
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Summary

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B 0.4 COnsumes a

In natural language, the flow constraint expresses that

every plan uses 0,4 once more than ogeen.




Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.
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-
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Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

210
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Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.
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011

“plans that use »
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once more than »"
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Operator-counting Framework
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Summar

Operator Counting

Operator counting

generalizes this idea to a framework that allows to
admissibly combine different heuristics.

uses linear constraints ...
. that describe number of occurrences of an operator ...
. and must be satisfied by every plan.

provides declarative way to describe
knowledge about solutions.

allows reasoning about solutions to derive heuristic estimates.
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Introduction Operator-counting Framework

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let I be a planning task with operators O and let s be a state.
Let V be the set of integer variables Count, for each o € O.

A linear inequality over V is called an operator-counting constraint
for s if for every plan 7 for s setting each Count, to the number of
occurrences of o in 7 is a feasible variable assignment.

’
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Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP¢ for a set C of
operator-counting constraints for state s is

Minimize Z cost(o) - Count,  subject to

C and Count, > 0 for all 0 € O,

where O is the set of operators.

The IP heuristic hl¥ is the objective value of IPc,
the LP heuristic h'@P is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is co.
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Operator-counting Constraints

m Adding more constraints can only remove feasible solutions.
m Fewer feasible solutions can only increase the objective value.
m Higher objective value means better informed heuristic

= Have we already seen other operator-counting constraints?



Introduction Operator-counting Framework
000 00000@000

Summar

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable Applied, for each operator o

Objective
Minimize ) cost(o) - Applied,

> " Applied, > 1 for all landmarks L
o€l
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Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable Count, for each operator o

Objective
Minimize )~ cost(o) - Count,

ZCounto > 1 for all landmarks L
o€L
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Reminder: Post-hoc Optimization Heuristic

For set of abstractions {a1,...,an}:

Variables

Non-negative variables X, for all operators 0 € O
X, is cost incurred by operator o

Objective
Minimize > .5 Xo

o
ZoEO:o relev. for o Xo 2 h (S) for o € {alv sy an}

Xo 20

forallo € O
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Operator Counting with Post-hoc Optimization Constraints

For set of abstractions {a1,...,a,}:

Variables

Non-negative variables Count, for all operators o € O
Count, - cost(0) is cost incurred by operator o

Objective

Minimize ), cost(o) - Count,

(o
ZoEO:o relev. for « COSt(O) ’ Counto = h (S) for a € {a’la O 704n}

cost(o) - Count, > 0 forallo € O
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Example
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Example
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Example

11

5
“plans that use »

at least once”
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Example

11

-
“plans that use -

at least once”

2

“plans that use »
once more than »"
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Introduction Operator-counting Framework

Further Examples?

m The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.

m With this extended definition we could also cover
more heuristics, e.g., the perfect relaxation heuristic h™
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Introduction c inting Framework Properties

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Let C be a set of operator-counting constraints for state s and w
be an optimal plan for s. The number of operator occurrences of m
are a feasible solution for C. As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of 7 and is
therefore an admissible estimate. [
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Dominance

Let C and C’ be sets of operator-counting constraints for s and let
CCC' Then|Pc <IP¢ and LPc < LP.

N

Every feasible solution of C’ is also feasible for C. As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C’. Ol

V.

Adding more constraints can only improve the heuristic estimate.
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Introduction c inting Framework Properties

Heuristic Combination

Operator counting as heuristic combination
m Multiple operator-counting heuristics can be combined by
computing hkp/h'cp for the union of their constraints.

m This is an admissible combination.

m Never worse than maximum of individual heuristics
m Sometimes even better than their sum

m We already know a way of admissibly combining heuristics:
cost partitioning.
= How are they related?
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Connection to Cost Partitioning

Let C1,...,C, be sets of operator-counting constraints for s and
C =", C. Then h'C-P is the optimal general cost partitioning
over the heuristics h'&',_).

.

Proof Sketch.

In LP¢, add variables Count’, and constraints Count, = Count,
for all operators 0 and 1 < i < n. Then replace Count, by
Count’ in C,.

Dualizing the resulting LP shows that h'@P computes a cost
partitioning. Dualizing the component heuristics of that cost
partitioning shows that they are h'@f’.

A\
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Comparison to Optimal Cost Partitioning

m some heuristics are more compact if expressed as operator
counting

m some heuristics cannot be expressed as operator counting

m operator counting IP even better than optimal cost
partitioning

m Cost partitioning maximizes, so heuristics must be encoded
perfectly to guarantee admissibility.

Operator counting minimizes, so missing information just
makes the heuristic weaker.
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Summary

m Many heuristics can be formulated in terms of
operator-counting constraints.

m The operator counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

m The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

m Operator counting is equivalent to optimal general cost
partitioning over individual constraints.
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Reminder: Transition Normal Form

In this chapter, we consider SAS™ tasks in transition normal form.

m A TNF operator mentions the same variables in the
precondition and in the effect.

m A TNF goal specifies a value for every variable.
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Idea

m Define simple numerical state features fi,...,f,.

m Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + - - + wpfp(s)
with weights (potentials) w; € R

m heuristic very fast to compute if feature values are
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Introduction Potential Heuristics Summary

Definition

Definition (Feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f: S — R.

Definition (Potential Heuristic)

A potential heuristic for a set of features F = {fi,...,fp}
is a heuristic function h defined as a linear combination
of the features:

h(s) = wifi(s) + - - - + wnfa(s)
with weights (potentials) w; € R.
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Definition

Definition (Feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f: S — R.

Definition (Potential Heuristic)

A potential heuristic for a set of features F = {fi,...,fp}
is a heuristic function h defined as a linear combination
of the features:

h(s) = wifi(s) + - - - + wnfa(s)
with weights (potentials) w; € R.

Many possibilities = need some restrictions
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Features for SAS™ Planning Tasks

Which features are good for planning?
Atomic features test if some atom is true in a state:

Definition (Atomic Feature)

Let v = d be an atom of a FDR planning task.

The atomic feature f,—, is defined as:

1 if variable v has value d in state s

0 otherwise

fi—d(s) =[(v=4d) es]= {

Offer good tradeoff between computation time and guidance
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Example: Atomic Features

Consider a planning task 1 with state variables v; and v» and
dom(vy) = dom(vp) = {d1, da, d3}. The set

F = {fVi:dj | S {172}7j = {17273}}
is the set of atomic features of 1 and the function
h(S) = 3fv1=d1 aF 0-5fv1:d2 = 2fv1=d3 aF 2'5fV2:d1

is a potential heuristic for F.
The heuristic estimate for a state s = {v; — do,vo — di } is

h(s)=3-04+05-1-2-0+25-1=3.
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Potentials for Optimal Planning

Which potentials are good for optimal planning
and how can we compute them?

m We seek potentials for which h is admissible and well-informed
= declarative approach to heuristic design

m We derive potentials for atomic features by solving an
optimization problem

How to achieve this? Linear programming to the rescue!
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Admissible and Consistent Potential Heuristics

We achieve admissibility through goal-awareness and consistency

Goal-awareness
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Admissible and Consistent Potential Heuristics

We achieve admissibility through goal-awareness and consistency

E w, =0
acy
V.
. o
E Wy — E w, < cost(o) for all transitions s — s’

acs acs’

One constraint transition per transition.
Can we do this more compactly?
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Admissible and Consistent Potential Heuristics

Consistency for a transition s > s’
cost(o) > Z W, — Z W,

:ZWa[aes]—ZWa[aES']
:Zwa([aes]—[aES’])
=Zwa[a€sbuta%s’]—ZWa[agésbutaES’]

a a
=D %= ) w

a consumed  a produced
by o by o
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Admissible and Consistent Potential Heuristics

Goal-awareness and Consistency independent of s

Goal-awareness
E w, =0
acy
V.
E Wy, — E w, < cost(o) for all operators o

a consumed  a produced
by o by o

.
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Potential Heuristics

m All atomic potential heuristics that satisfy these constraints
are admissible and consistent

m Furthermore, all admissible and consistent atomic potential
heuristics satisfy these constraints

Constraints are a compact characterization of all admissible and
consistent atomic potential heuristics.

LP can be used to find the best admissible and consistent potential
heuristics by encoding a quality metric in the objective function
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Well-Informed Potential Heuristics

What do we mean by the best potential heuristic?
Different possibilities, e.g., the potential heuristic that

m maximizes heuristic value of a given state s (e.g., initial state)

m maximizes average heuristic value of all states
(including unreachable ones)

m maximizes average heuristic value of some sample states

B minimizes estimated search effort
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Potential and Flow Heuristic

For state s, let h™®P°t(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hmaot(s) — pflow(s),

Proof idea: compare dual of h®¥(s) LP to potential heuristic
constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.



Summarn
0

Summary



Introduction 0 stics Summary
0000 o

Summary

m Potential heuristics are computed as a weighted sum of state
features

m Admissibility and consistency can be encoded compactly in
constraints

m With linear programming, we can efficiently compute the best
potential heuristic wrt some objective

m Potential heuristics can be used as fast admissible
approximations of hflow.



