Planning and Optimization

Al. Organizational Matters

Malte Helmert and Gabriele Roger

Universitat Basel

September 17, 2025

Planning and Optimization
September 17, 2025 — Al. Organizational Matters

Al.1 People & Coordinates

Al.2 Target Audience & Rules

A1.3 Course Content

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 2 /26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 1/26
Content of the Course
Foundations ‘ What is Planning?
Approaches Getting to Know
Delete Relaxation
Abstraction
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 3 /26

Al. Organizational Matters People & Coordinates

Al.1 People & Coordinates

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 4 /26

Al. Organizational Matters People & Coordinates

People: Lecturers

Malte Helmert

Gabriele Roger

Lecturers
Malte Helmert

» email: malte.helmert@unibas.ch

> office: room 06.004, Spiegelgasse 1

Gabriele Roger
P> email: gabriele.roeger@unibas.ch

> office: room 04.005, Spiegelgasse 1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 5 /26

Al. Organizational Matters

People: Assistant

Tanja Schindler
Assistant
Tanja Schindler
P> email: tanja.schindler@unibas.ch

> office: room 04.005, Spiegelgasse 1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

People & Coordinates

/26

Al. Organizational Matters People & Coordinates

People: Tutors

\

Esther M u gdla_n

Clemens Biichner

Tutors
Clemens Buchner

» email: clemens.buechner@unibas.ch

> office: room 04.001, Spiegelgasse 5
Esther Mugdan

» email: esther.mugdan@unibas.ch

> office: room 04.001, Spiegelgasse 5

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 7 /26

Al. Organizational Matters

Time & Place

Lectures
> time: Mon 14:15-16:00, Wed 14:15-16:00

» place: room 00.003, Spiegelgasse 1

Exercise Sessions
» time: Wed 16:15-18:00

» place: room 00.003, Spiegelgasse 1

first exercise session: today

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

People & Coordinates

/ 26

Al. Organizational Matters People & Coordinates

Communication Channels

lecture sessions (Mon, Wed)
exercise sessions (Wed)
course homepage

ADAM workspace

Discord server (invitation link on ADAM workspace)

vVvyVvyvVvyyepy

email

registration:
> https://services.unibas.ch/

> Please register today to receive all course-related emails!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 9 /26

Al. Organizational Matters

Planning and Optimization Course on the Web

Course Homepage
https://dmi.unibas.ch/en/studies/computer-science/
course-offer-fall-semester-25/
lecture-planning-and-optimization/

» course information

> slides

» link to ADAM workspace

» bonus materials (not relevant for the exam)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 17, 2025 10 /

People & Coordinates

Al. Organizational Matters Target Audience & Rules

A1.2 Target Audience & Rules

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 11 /26

Al. Organizational Matters

Target Audience

target audience:
» M.Sc. Computer Science
» Major in Machine Intelligence:
module Concepts of Machine Intelligence
module Methods of Machine Intelligence
» Major in Distributed Systems:
module Applications of Distributed Systems
» M.A. Computer Science (“Master-Studienfach”)
module Concepts of Machine Intelligence

» M.Sc. Data Science: module Electives in Data Science

» other students welcome

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 17, 2025 12/

Target Audience & Rules

26

https://services.unibas.ch/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/

Al. Organizational Matters Target Audience & Rules

Prerequisites

prerequisites:

P general computer science background: good knowledge of
> algorithms and data structures
> complexity theory
» mathematical logic
» programming

» background in Artificial Intelligence:
» Foundations of Artificial Intelligence course (13548)
> in particular chapters on state-space search

Gaps?
~> talk to us to discuss a self-study plan to catch up

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 13 /26

Al. Organizational Matters

Exam
> written examination (105 min)
> date and time: January 28, 14:00-16:00
P place: Biozentrum, room U1.131
» 8 ECTS credits
» admission to exam: 50% of the exercise marks
> final grade based on exam exclusively
> no repeat exam (except in case of illness)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

Target Audience & Rules

14 / 26

Al. Organizational Matters Target Audience & Rules

Exercise Sheets

exercise sheets (homework assignments):

» solved in groups of two or three (3 < 4), submitted in ADAM
> weekly homework assignments
> released Monday before the lecture
» have questions or need help?
~~ assistance provided in Wednesday exercises
> not sure if you need help?
~ start before Wednesday!
> due following Monday at 23:59

» mixture of theory, programming and experiments
> range from basic understanding to research-oriented

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 15 / 26

Al. Organizational Matters

Programming Exercises

programming exercises:
» part of regular assignments
> solutions that obviously do not work: 0 marks
» work with existing C++ and Python code

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

16 /

Target Audience & Rules

26

Al. Organizational Matters Target Audience & Rules

Exercise Sessions

exercise sessions:
> ask questions about current assignments (and course)
» work on homework assignments

> discuss past homework assignments

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 17 / 26

Al. Organizational Matters

Plagiarism

Plagiarism
Plagiarism is presenting someone else's work, ideas, or words
as your own, without proper attribution.

For example:
> Using someone's text without citation
» Paraphrasing too closely
» Using information from a source without attribution
» Passing off Al-generated content as your own original work

Long-term impact:
» You undermine your own learning.
» You start to lose confidence in your ability to think, write,
and solve problems independently.
» Damage to academic reputation and professional
consequences in future careers

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 17, 2025 18 /

Target Audience & Rules

Al. Organizational Matters Target Audience & Rules

Plagiarism in Exercises

» You may discuss material from the course,
including the exercise assignments, with your peers.

» But: You have to independently write down your exercise
solutions (in your team).

» Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:
» 0 marks for the exercise sheet (first time)

> exclusion from exam (second time)

If in doubt: check with us what is (and isn't) OK before submitting
Exercises too difficult? We are happy to help!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 19 / 26

Al. Organizational Matters

Special Needs?

» We (and the university) strive for equality of students
with disabilities or chronic illnesses.

» Contact the lecturers for small adaptations.

» Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 17, 2025 20 /

Target Audience & Rules

26

Al. Organizational Matters

Course Content Al. Organizational Matters Course Content

Learning Objectives

Learning Objectives

A13 Course Content » get to know theoretical and algorithmic foundations of

classical planning and work on practical implementations
» understand fundamental concepts underlying modern planning
algorithms and theoretical relationships that connect them

> become equipped to understand research papers
and conduct projects in this area

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 21 / 26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 22 /26

Al. Organizational Matters

Course Content Al. Organizational Matters Course Content

Course Material Git Repository

course material:

. . > We use a git repository for programming exercises
» slides (online) :
and for demos during the lecture.
» no textbook
> Setting up the repository is your first task for the exercises.
» additional material on request
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 23 / 26 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 24 /26

Al. Organizational Matters

Demo Examples

When working with the repository, go to its base directory:

Base Directory for Demos and Exercises
$ cd planopt-hs25

One-time demo set-up (from the base directory)
if the necessary software is installed on your machine:

Demo Set-Up
$ cd demo/fast-downward
$./build.py

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 17, 2025 25 /

Course Content

26

Al. Organizational Matters

Under Construction. ..

> Advanced courses are close to the frontiers of research
and therefore constantly change.

» We are always happy about feedback,
corrections and suggestions!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

Course Content

26 / 26

Planning and Optimization
A2. What is Planning?

Malte Helmert and Gabriele Roger

Universitat Basel

September 17, 2025

Planning and Optimization
September 17, 2025 — A2. What is Planning?

A2.1 Planning
A2.2 Planning Task Examples
A2.3 How Hard is Planning?

A2.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 1/29
Content of the Course
Approaches Getting to Know
Delete Relaxation
Abstraction
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 3 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 2/29
Before We Start. . .
Prelude (Chapters A1-A3): very high-level intro to planning

» our goal: give you a little feeling what planning is about

» preface to the actual course

~> main course content (beginning with Chapter B1)

will be mathematically formal and rigorous

» You can ignore the prelude when preparing for the exam.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 4 /29

A2. What is Planning? Planning

A2.1 Planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 5 /29

A2. What is Planning?

General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created
in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell
intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle,
by GPS. [...]

GPS was the first computer program which separated its
knowledge of problems (rules represented as input data) from its
strategy of how to solve problems (a generic solver engine).

~> these days called “domain-independent automated planning”
~> this is what the course is about

Planning

A2. What is Planning? Planning

So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)
“Planning is the art and practice of thinking before acting.”
— Patrik Haslum

Automated Planning (More Technical Definition)
“Selecting a goal-leading course of action
based on a high-level description of the world.”
— Jorg Hoffmann

Domain-Independence of Automated Planning
Create one planning algorithm that performs sufficiently well
on many application domains (including future ones).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 7 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 6 /29
A2. What is Planning? Planning
General Perspective on Planning
sole source of
-‘:0“7 G\‘\‘“3t vs. ‘
e
O‘OS!{W&"— xo Senous event s
<
vs. D2 dedenminishe
?ur‘\'q“y $ s shechaske
oLSWﬁk‘Q.
); iwstaulaneous
vS. Aut’a"\'vt
L r
| Actieve | [MAXIMIZE
F GoAL 3 [ExPECTED
CovDIToN OR
\'ul ul,
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 8 /29

A2. What is Planning? Planning

Example: Termes

Harvard TERMES robots, based on termites

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 10 / 29

A2. What is Planning? Planning
Example: Earth Observation
> satellite takes images of patches on Earth
> use weather forecast to optimize probability
of high-quality images
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 9 /29
A2. What is Planning? Planning
Example: Cybersecurity
SENSITIVE
CALDERA automated adversary emulation system
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 11 /29

A2. What is Planning? Planning

Example: Intelligent Greenhouse

photo (© LemnaTec GmbH

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 12 /29

A2. What is Planning? Planning

Classical Planning

Solc Soucrce oS,
2° = OIS 9%«

-cu“\l Iy 0‘:‘1’_:\:; vs. ‘
—_— 0 =it
: e
oksqws“ _“- xo 36\'\903 eventys
00 <
vs. 5 X2 ddderminishe
Pur‘\q“y % “.' vs. S\'oc\ncs \\'c.
o‘sswak\t
\ oo / iwstaunlaneous
vS. Aufﬁkvt
n r
| Actieve | [MAXIMIZE
[GoAL 3 LExPECTED
CovDiMoN OR REWARD
\ll[' A\
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 14 / 29

A2. What is Planning? Planning
Example: Red-finned Blue-eye
Edgbaston Reserve
' (QLD, Australia)
. Picture by ladine Chades

» red-finned blue-eye population threatened by gambusia

P springs connected probabilistically during rain season

> find strategy to save red-finned blue-eye from extinction
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 13 /29

Planning

A2. What is Planning?

Model-based vs. Data-driven Approaches

O Model-based approaches know
@@ the “inner workings” of the world
~> reasoning

Data-driven approaches rely only
on collected data from a black-box world
~> learning

We focus on model-based approaches.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 15 / 29

A2. What is Planning? Planning
Planning Tasks
input to a planning algorithm: planning task
> initial state of the world
P actions that change the state
» goal to be achieved
output of a planning algorithm:
P plan: sequence of actions taking initial state to a goal state
» or confirmation that no plan exists
~> formal definitions later in the course
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 16 / 29

A2. What is Planning? Planning

The Planning Research Landscape

one of the major subfields of Artificial Intelligence (Al)
represented at major Al conferences (IJCAI, AAAI, ECAI)

annual specialized conference ICAPS (& 250 participants)

vvyVvVyy

major journals: general Al journals (AlJ, JAIR)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 17 / 29

A2. What is Planning?

Classical Planning

This course covers classical planning:
> offline (static)

discrete

deterministic

fully observable

single-agent

vvyyvyyvyy

sequential (plans are action sequences)

» domain-independent

This is just one facet of planning.

Many others are studied in Al. Algorithmic ideas often
(but not always) translate well to more general problems.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

Planning

18 / 29

A2. What is Planning? Planning

More General Planning Topics

More general kinds of planning include:

> offline: online planning; planning and execution

> diserete: continuous planning (e.g., real-time/hybrid systems)
> deterministie. FOND planning; probabilistic planning
>

single-agent: multi-agent planning; general game playing;
game-theoretic planning

fully-ebservable: POND planning; conformant planning
> sequential: e.g., temporal planning

Domain-dependent planning problems in Al include:
» pathfinding, including grid-based and multi-agent (MAPF)

v

» continuous motion planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 19 / 29

A2. What is Planning?

A2.2 Planning Task Examples

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

Planning Task Examples

20 / 29

A2. What is Planning? Planning Task Examples

Example: The Seven Bridges of Konigsberg

image credits: Bogdan Giusc3 (public domain)

Demo
$ 1s demo/koenigsberg

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 21 /29

A2. What is Planning? Planning Task Examples

Example: Intelligent Greenhouse

photo (© LemnaTec GmbH

Demo
$ 1s demo/ipc/scanalyzer-08-strips

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 22 /29

A2. What is Planning? Planning Task Examples

Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Demo Material
$ 1s demo/ipc/freecell

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 23 /29

A2. What is Planning? Planning Task Examples

Many More Examples

Demo

$ 1s demo/ipc
agricola-optl8-strips
agricola-sat18-strips
airport

airport-adl

assembly
barman-mcol4-strips
barman-optll-strips
barman-optl4-strips

~+ (most) benchmarks of planning competitions IPC since 1998

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 24 /29

A2. What is Planning? How Hard is Planning?

A2.3 How Hard is Planning?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 25 /29

A2. What is Planning? How Hard is Planning?

Classical Planning as State-Space Search

classical planning as state-space search:

~~ much more on this later in the course

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 26 / 29

A2. What is Planning? How Hard is Planning?

Is Planning Difficult?

Classical planning is computationally challenging:

» number of states grows exponentially with description size
when using (propositional) logic-based representations

» provably hard (PSPACE-complete)

~~ we prove this later in the course

problem sizes:
» Seven Bridges of Konigsberg: 64 reachable states
» Rubik’'s Cube: 4.325 - 10'° reachable states

~~ consider 2 billion/second ~~ 1 billion years

0200

» standard benchmarks: some with > 1 reachable states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 27 /29

A2. What is Planning? Summary

A2.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025 28 / 29

A2. What is Planning?

Summary

planning = thinking before acting
major subarea of Artificial Intelligence

domain-independent planning = general problem solving

vvyyy

classical planning = the “easy case”
(deterministic, fully observable etc.)

v

still hard enough!
~» PSPACE-complete because of huge number of states

> often solved by state-space search

» number of states grows exponentially with input size

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 17, 2025

Summary

29 /

Planning and Optimization
A3. Getting to Know a Planner

Malte Helmert and Gabriele Roger

Universitat Basel

September 22, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 1/15

Planning and Optimization
September 22, 2025 — A3. Getting to Know a Planner

A3.1 Fast Downward and VAL

A3.2 15-Puzzle

A3.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 2 /15

Content of the Course

What is Planning? ‘

Foundations

1

Approaches
Delete Relaxation

Abstraction

Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 3 /15

A3. Getting to Know a Planner Fast Downward and VAL

A3.1 Fast Downward and VAL

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 4 /15

A3. Getting to Know a Planner

Fast Downward and VAL A3. Getting to Know a Planner Fast Downward and VAL

Getting to Know a Planner Planner: Fast Downward

Fast Downward
We now play around a bit with a planner and its input: We use the Fast Downward planner in this course

» look at problem formulation » because we know it well (developed by our research group)

» run a planner (= planning system/planning algorithm) » because it implements many search algorithms and heuristics

> validate plans found by the planner P because it is the classical planner most commonly used
as a basis for other planners

~» https://www.fast-downward.org

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 5/ 15 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 6 /15
A3. Getting to Know a Planner Fast Downward and VAL A3. Getting to Know a Planner 15-Puzzle
Validator: VAL
e A3.2 15-Puzzl
We use the VAL plan validation tool (Fox, Howey & Long) . uzzie

to independently verify that the plans we generate are correct.
> very useful debugging tool

> https://github.com/KCL-Planning/VAL

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 7 /15

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 8 /15

https://www.fast-downward.org
https://github.com/KCL-Planning/VAL

A3. Getting to Know a Planner 15-Puzzle

[llustrating Example: 15-Puzzle

L 2

15 4 10 8 13 | 14

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 9 /15

A3. Getting to Know a Planner

Solving the 15-Puzzle

Demo

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzle0l.pddl

$./fast-downward.py \
tile/puzzle.pddl tile/puzzleOl.pddl \
—--heuristic "h=ff(" \
--search "eager_greedy([h],preferred=[h])"

$ validate tile/puzzle.pddl tile/puzzleOl.pddl \
sas_plan

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

15-Puzzle

10 / 15

A3. Getting to Know a Planner 15-Puzzle

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:
> moving different tiles has different cost

» cost of moving tile x = number of prime factors of x

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzlell.pddl tile/weightO1.pddl

$./fast-downward.py \
tile/weight.pddl tile/weightO1.pddl \
—-heuristic "h=ff(O" \
--search "eager_greedy([h],preferred=[h])"

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 11 /15

A3. Getting to Know a Planner

Variation: Glued 15-Puzzle

Glued 15-Puzzle:
> some tiles are glued in place and cannot be moved

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/glued.pddl

$ meld tile/puzzlelOl.pddl tile/gluedO1l.pddl

$./fast-downward.py \
tile/glued.pddl tile/glued01.pddl \
—-heuristic "h=cgO" \
--search "eager_greedy([h] ,preferred=[h])"

Note: different heuristic used!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

15-Puzzle

12 / 15

A3. Getting to Know a Planner 15-Puzzle

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

» Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzlell.pddl tile/cheatO1.pddl

$./fast-downward.py \
tile/cheat.pddl tile/cheatO1l.pddl \
—--heuristic "h=ff(" \
--search "eager_greedy([h],preferred=[h])"

A3. Getting to Know a Planner

A3.3 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

September 22, 2025

Summary

14 / 15

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 13 /15
A3. Getting to Know a Planner Summary
Summary

» We saw planning tasks modeled in the PDDL language.
» We ran the Fast Downward planner and VAL plan validator.

» We made some modifications to PDDL problem formulations
and checked the impact on the planner.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 15 / 15

Planning and Optimization

B1. Transition Systems and Propositional Logic

Malte Helmert and Gabriele Roger

Universitat Basel

September 22, 2025

Planning and Optimization
September 22, 2025 — B1. Transition Systems and Propositional Logic

B1.1 Transition Systems
B1.2 Example: Blocks World
B1.3 Reminder: Propositional Logic

B1.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 1/27
Content of the Course
— Prelude -
— Normal Forms
— Approaches
- ; Computational
— Delete Relaxation | — .
Complexity
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 3 /27

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 2 /27
Next Steps
Our next steps are to formally define our problem:
» introduce a mathematical model for planning tasks:
transition systems
~~ Chapter B1
» introduce compact representations for planning tasks
suitable as input for planning algorithms
~~ Chapter B2
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 4 /27

B1. Transition Systems and Propositional Logic Transition Systems

B1.1 Transition Systems

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 5 /27

B1. Transition Systems and Propositional Logic Transition Systems

Transition System Example

Transition systems are often depicted as directed arc-labeled
graphs with decorations to indicate the initial state and goal states.

c(ti) =1, c(l) =1, c(¥3) =5, c(fs) =0

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 6 /27

B1. Transition Systems and Propositional Logic Transition Systems

Transition Systems

Definition (Transition System)
A transition system is a 6-tuple 7 = (S, L, c, T, sp, Sy) where
> S is a finite set of states,
» L is a finite set of (transition) labels,
» c:L— Ry is a label cost function,
> T C S x L xS isthe transition relation,
> sy € S is the initial state, and
> S, C S is the set of goal states.
We say that 7 has the transition (s, ¢,s') if (s,£,s') € T.
We also write this as s = s/, or s — s' when not interested in ¢.

Note: Transition systems are also called state spaces.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 7 /27

B1. Transition Systems and Propositional Logic Transition Systems

Deterministic Transition Systems

Definition (Deterministic Transition System)
A transition system is called deterministic if for all states s
and all labels ¢, there is at most one state s’ with s Ly

Example: previously shown transition system

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 8 /27

B1. Transition Systems and Propositional Logic Transition Systems

Transition System Terminology (1)

We use common terminology from graph theory:
» s’ successor of s if s — &

> s predecessor of s’ if s — &

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 9 /27

B1. Transition Systems and Propositional Logic Transition Systems

Transition System Terminology (2)

We use common terminology from graph theory:

» s’ reachable from s if there exists a sequence of transitions

SOl sl gt O —sands" = ¢
» Note: n =0 possible; then s = &’
> s ..., s"is called (state) path from s to s’
» {1,...,0,is called (label) path from s to s’
> S0 ﬁl—) st, ..., st £"—> s™ is called trace from s to s’
> length of path/trace is n
> cost of label path/trace is Y ;_, c(¢;)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 10 / 27

B1. Transition Systems and Propositional Logic Transition Systems

Transition System Terminology (3)

We use common terminology from graph theory:

» s’ reachable (without reference state) means
reachable from initial state sy
» solution or goal path from s: path from s to some s’ € S,
» if s is omitted, s = sp is implied

> transition system solvable if a goal path from sy exists

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 11 /27

B1. Transition Systems and Propositional Logic Example: Blocks World

B1.2 Example: Blocks World

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 12 /27

B1. Transition Systems and Propositional Logic Example: Blocks World B1. Transition Systems and Propositional Logic Example: Blocks World

Running Example: Blocks World Blocks World Rules (1)

Location on the table does not matter.

» Throughout the course, we occasionally use —
the blocks world domain as an example. o '

» In the blocks world, a number of different blocks
are arranged on a table. Location on a block does not matter.

» Our job is to rearrange them according to a given goal.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 13 /27 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 14 / 27

B1. Transition Systems and Propositional Logic Example: Blocks World B1. Transition Systems and Propositional Logic Example: Blocks World

Blocks World Rules (2) Blocks World Transition System for Three Blocks

At most one block may be below a block.

M
SN, SN
iy 8
At most one block may be on top of a block.
o
e "N

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 15 / 27 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 16 / 27

B1. Transition Systems and Propositional Logic

Blocks World Computational Properties

blocks states blocks states
1 1 10 58941091
2 3 11 824073141
3 13 12 12470162233
4 73 13 202976401213
5 501 14 3535017524403
6 4051 15 65573803186921
7 37633 16 1290434218669921
8 394353 17 26846616451246353
9 4596553 18 588633468315403843

» Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

» Finding a shortest solution is NP-complete
given a compact description of the problem.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

Example: Blocks World

17 /27

B1. Transition Systems and Propositional Logic

The Need for Compact Descriptions

» We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

» We therefore need compact descriptions of transition systems.
» For this purpose, we will use propositional logic,

which allows expressing information about 2" states

as logical formulas over n state variables.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

Example: Blocks World

18 / 27

B1. Transition Systems and Propositional Logic

B1.3 Reminder: Propositional Logic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

Reminder: Propositional Logic

19 /27

B1. Transition Systems and Propositional Logic

More on Propositional Logic

Need to Catch Up?
» This section is a reminder. We assume you are already
well familiar with propositional logic.

» If this is not the case, we recommend Chapters D1-D4
of the Discrete Mathematics in Computer Science course:
https://dmi.unibas.ch/en/studies/
computer-science/course-offer-hs24/
lecture-discrete-mathematics-in-computer-science/

» Videos for these chapters are available on request.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025

Reminder: Propositional Logic

20 / 27

https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/
https://dmi.unibas.ch/en/studies/computer-science/course-offer-hs24/lecture-discrete-mathematics-in-computer-science/

B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Syntax of Propositional Logic

Definition (Logical Formula)
Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

» T and L are logical formulas (truth and falsity).
» Forall a€ A, ais a logical formula (atom).
» If ¢ is a logical formula, then so is ¢ (negation).

> If and ¢ are logical formulas, then so are
(¢ V) (disjunction) and (¢ A %) (conjunction).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 21 /27

B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Syntactical Conventions for Propositional Logic

Abbreviations:
» (o — 1)) is short for (—p V 9b) (implication)
» (¢ <> 1)) is short for ((¢ — ¥) A (¢ — ¢)) (equijunction)
> parentheses omitted when not necessary:

» (=) binds more tightly than binary connectives
» (A) binds more tightly than (V),

which binds more tightly than (—),

which binds more tightly than (+)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 22 /27

B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Semantics of Propositional Logic

Definition (Interpretation, Model)
An interpretation of propositions A is a function / : A — {T,F}.

Define the notation / = ¢ (/ satisfies ¢; | is a model of ¢;
@ is true under /) for interpretations / and formulas ¢ by

> IET

> L

> | =a iff 1(a)=T (forall ac A)
> | = iff 1o

> IE=(evy) iff (I=porl=v)

> (pAy) iff (1 pand | 1)

Note: Interpretations are also called valuations
or truth assignments.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 23 /27

B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Propositional Logic Terminology (1)

> A logical formula ¢ is satisfiable
if there is at least one interpretation / such that / |= ¢.

» Otherwise it is unsatisfiable.

> A logical formula ¢ is valid or a tautology
if I = ¢ for all interpretations /.
> A logical formula v is a logical consequence
of a logical formula ¢, written ¢ = 1),
if I |= 1 for all interpretations / with / |= .
» Two logical formulas ¢ and 1) are logically equivalent,

written ¢ = 1, if o =1 and Y = .
Question: How to phrase these in terms of models?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 24 /27

B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Propositional Logic Terminology (2)

> A logical formula that is a proposition a or a negated
proposition —a for some atomic proposition a € A is a literal.

> A formula that is a disjunction of literals is a clause.
This includes unit clauses £ consisting of a single literal
and the empty clause L consisting of zero literals.

» A formula that is a conjunction of literals is a monomial.
This includes unit monomials £ consisting of a single literal
and the empty monomial T consisting of zero literals.

Normal forms:
> negation normal form (NNF)
» conjunctive normal form (CNF)

» disjunctive normal form (DNF)

B1. Transition Systems and Propositional Logic

B1.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

September 22, 2025

Summary

26 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 25 /27
B1. Transition Systems and Propositional Logic Summary
Summary
» Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.
P Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 22, 2025 27 /27

Planning and Optimization
B2. Introduction to Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

September 24, 2025

Planning and Optimization
September 24, 2025 — B2. Introduction to Planning Tasks

B2.1 Introduction

B2.2 State Variables

B2.3 State Formulas

B2.4 Operators and Effects

B2.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 24, 2025

2/ 34

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 1/34
Content of the Course
Transition
— Prelude Systems
= Approaches — Normal Forms
— Delete Relaxation Computational
Complexity
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 3 /34

B2. Introduction to Planning Tasks

B2.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 24, 2025

Introduction

4/34

B2. Introduction to Planning Tasks Introduction

The State Explosion Problem

» We saw in blocks world:
n blocks ~» number of states exponential in n

P same is true everywhere we look

» known as the state explosion problem

To represent transitions systems compactly,
need to tame these exponentially growing aspects:

> states
> goal states
> transitions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 5/ 34

B2. Introduction to Planning Tasks Introduction

Running Example: Transition System

c(my) =5, c(m) =5, c(h) =1, c(h) =1, c(u) =1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 6 /34

B2. Introduction to Planning Tasks State Variables

B2.2 State Variables

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 7/ 34

B2. Introduction to Planning Tasks State Variables

Compact Descriptions of Transition Systems

How to specify huge transition systems
without enumerating the states?

> represent different aspects of the world
in terms of different (propositional) state variables

» individual state variables are atomic propositions
~> a state is an interpretation of state variables

> n state variables induce 2" states
~~ exponentially more compact than “flat” representations

Example: n? variables suffice for blocks world with n blocks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 8 / 34

B2. Introduction to Planning Tasks State Variables

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

~ 9 variables for 3 blocks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 9 /34

B2. Introduction to Planning Tasks State Variables

Propositional State Variables

Definition (Propositional State Variable)
A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V/, i.e.,
a truth assignment s: V — {T,F}.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 10 / 34

B2. Introduction to Planning Tasks State Variables

Running Example: Compact State Descriptions

P In the running example, we describe 16 states
with 4 propositional state variables (2* = 16).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 11 / 34

B2. Introduction to Planning Tasks State Variables

Running Example: Opaque States

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 12 / 34

B2. Introduction to Planning Tasks State Variables

Running Example: Using State Variables

state variables V = {i, w, t1, t>}

states shown by true literals
example: {i— T,w—F, t1—= T, b= F} ~ i —w t; -t
September 24, 2025 13 / 34

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

B2. Introduction to Planning Tasks

Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R
transition labels:

» my/my: move first/second truck

» /1 /h: load package into first/second truck

» u: unload package from a truck

state variables:

> t; true if first truck is at location L (else at R)

> t true if second truck is at location L (else at R)
> | true if package is inside a truck
>

w encodes where exactly the package is:

> if i is true, w true if package in first truck
> if i is false, w true if package at location L

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

State Variables

14 / 34

B2. Introduction to Planning Tasks State Formulas

B2.3 State Formulas

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 15 / 34

B2. Introduction to Planning Tasks

Representing Sets of States

How do we compactly represent sets of states,
for example the set of goal states?

Idea: formula ¢ over the state variables represents the models of ¢.

Definition (State Formula)
Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

State Formulas

16 / 34

B2. Introduction to Planning Tasks State Formulas

Running Example: Representing Goal States

goal formula v = =/ A —=w represents goal states S,

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 17 / 34

B2. Introduction to Planning Tasks

B2.4 Operators and Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

Operators and Effects

18 / 34

B2. Introduction to Planning Tasks Operators and Effects

Operators Representing Transitions

How do we compactly represent transitions?
» most complex aspect of a planning task

P central concept: operators

Idea: one operator o for each transition label ¢, describing
> in which states s a transition s - s’ exists (precondition)
> how state s differs from state s (effect)
> what the cost of £ is

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 19 / 34

B2. Introduction to Planning Tasks

Syntax of Operators

Definition (Operator)
An operator o over state variables V is an object
with three properties:

» a precondition pre(o), a formula over V
> an effect eff0) over V, defined later in this chapter
> a cost cost(o) € R}

Notes:
» Operators are also called actions.

» Operators are often written as triples (pre(o), eff 0), cost(0)).

» This can be abbreviated to pairs (pre(o), eff 0))
when the cost of the operator is irrelevant.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

Operators and Effects

20 / 34

B2. Introduction to Planning Tasks Operators and Effects B2. Introduction to Planning Tasks Operators and Effects

Running Example: Operator Preconditions Running Example: Operator Preconditions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 21 / 34 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 22 / 34
B2. Introduction to Planning Tasks Operators and Effects B2. Introduction to Planning Tasks Operators and Effects
Running Example: Operator Preconditions Running Example: Operator Preconditions

pre(h) = =i A (w <> t1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 23 / 34 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 24 / 34

B2. Introduction to Planning Tasks Operators and Effects

Running Example: Operator Preconditions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 25 / 34

B2. Introduction to Planning Tasks Operators and Effects

Syntax of Effects

Definition (Effect)
Effects over propositional state variables V
are inductively defined as follows:

> T is an effect (empty effect).

> If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

> If e and € are effects, then (e A €') is an effect
(conjunctive effect).

> If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that ((e A €') A €”) behaves identically
to (e A (¢’ A €”)) and will write this as e A €' A €.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 26 / 34

B2. Introduction to Planning Tasks Operators and Effects

Effects: Intuition

Intuition for effects:
> The empty effect T changes nothing.

» Atomic effects can be understood as assignments
that update the value of a state variable.
» v means ‘v=T"
> —v means “v:=F"
» A conjunctive effect e = (&’ A €”) means that both subeffects
e and €’ take place simultaneously.

> A conditional effect e = (x > €’) means that subeffect €’
takes place iff x is true in the state where e takes place.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 27 / 34

B2. Introduction to Planning Tasks Operators and Effects

Running Example: Operator Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 28 / 34

B2. Introduction to Planning Tasks

Running Example: Operator Effects

Opera

tors and Effects

B2. Introduction to Planning Tasks

Running Example: Operator Effects

Opera

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 24, 2025 29 / 34

tors and Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 30 / 34

B2. Introduction to Planning Tasks

Running Example: Operator Effects

eff(mg) = ((t2 > ﬁtg) A\ (ﬁtg > t2))

Oper:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

ators and Effects

September 24, 2025 31/ 34

B2. Introduction to Planning Tasks

Running Example: Operator Effects

effu) = =i A (w > ((t1 > w) A (-t > —w)))
A(—w > ((t > w) A (—t > —w)))

Opera

tors and Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 32 / 34

B2. Introduction to Planning Tasks

B2.5 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

September 24, 2025

Summary

33/

B2. Introduction to Planning Tasks Summary

Summary

» Propositional state variables let us compactly describe
properties of large transition systems.

> A state is an assignment to a set of state variables.
> Sets of states are represented as formulas over state variables.

» Operators describe when (precondition), how (effect)
and at which cost the state of the world can be changed.

> Effects are structured objects including
empty, atomic, conjunctive and conditional effects.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 34 / 34

Planning and Optimization
B3. Formal Definition of Planning

Malte Helmert and Gabriele Roger

Universitat Basel

September 24, 2025

Planning and Optimization
September 24, 2025 — B3. Formal Definition of Planning

B3.1 Semantics of Effects and Operators

B3.2 Planning Tasks

B3.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 2 /19

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 1/19
Content of the Course
Transition
— Prelude Systems
= Approaches — Normal Forms
— Delete Relaxation Computational
Complexity
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 3/19

B3. Formal Definition of Planning Semantics of Effects and Operators

B3.1 Semantics of Effects and
Operators

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 4 /19

B3. Formal Definition of Planning

Semantics of Effects: Effect Conditions

Semantics of Effects and Operators

Definition (Effect Condition for an Effect)
Let ¢ be an atomic effect, and let e be an effect.

The effect condition effcond(¢, €) under which ¢ triggers
given the effect e is a propositional formula defined as follows:

> effcond(¢, T) = L

effcond(¢, e) = T for the atomic effect e = /¢
effcond(¢, e) = L for all atomic effects e = ¢/ £ ¢
effcond((, (e A €')) = (effcond(?, e) V effcond(¥, €'))
effcond(?, (x > e)) = (x A effcond(¢, e))

vvyyvyy

Intuition: effcond(¢, e) represents the condition that must be true
in the current state for the effect e to lead to the atomic effect ¢

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 5/ 19

B3. Formal Definition of Planning

Effect Condition: Example (1)

Example

Consider the move operator m; from the running example:
efimy) = ((t1 > —t1) A (0t > t1)).

Under which conditions does it set t; to false?

effcond(—ty, efmy)) = effcond(—t1, ((t1 > —t1) A (—t1 > t1)))
= effcond(—t1, (t1 > —t1)) V
effcond(—ty, (—ty > t1))
= (t1 A effcond(—t1, —t1))
(—t1 A effcond(—ty, t1))
=(tAT)V(-t1AL)
tivL>L
ty

\

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

Semantics of Effects and Operators

6 /19

B3. Formal Definition of Planning

Effect Condition: Example (2)

Semantics of Effects and Operators

Example
Consider the move operator m; from the running example:
eff(ml) = ((tl > —\tl) AN (—\tl > tl)).

Under which conditions does it set i/ to true?

effcond(i, efimy)) = effcond(i, ((t1 > —t1) A (—t1 > t1)))
= effcond(i, (t; > —ty)) V
effcond(i, (—t1 > t1))
= (ty A effcond(i, —t1)) V
(—t1 A effcond(i, t1))
=t AL)V(-ttAL)
=1lvLl
=1
M. Helmert, G. Réger (Universitit Basel)

Planning and Optimization September 24, 2025 7 /19

B3. Formal Definition of Planning

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e],
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v)=<F if s |= effcond(—v, e) A\ —effcond(v, €)

s(v) otherwise

What is the problem with this definition?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

Semantics of Effects and Operators

8 /19

B3. Formal Definition of Planning Semantics of Effects and Operators

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)
Let V be a set of propositional state variables.
Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e],
is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v)=<F if s = effcond(—v, e) A —effcond(v, e)
s(v) otherwise

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 9 /19

B3. Formal Definition of Planning Semantics of Effects and Operators

Add-after-Delete Semantics

Note:

» The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

» This is called add-after-delete semantics.

» This detail of effect semantics is somewhat arbitrary,
but has proven useful in applications.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

10 /

19

B3. Formal Definition of Planning Semantics of Effects and Operators

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)
Let V be a set of propositional state variables.
Let s be a state over V, and let o be an operator over V.

Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff{0)].

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 11 /19

B3. Formal Definition of Planning Planning Tasks

B3.2 Planning Tasks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025

12/

B3. Formal Definition of Planning Planning Tasks

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple [= (V, [, O,~) where
> V is a finite set of propositional state variables,
» | is an interpretation of V called the initial state,
» O is a finite set of operators over V, and

> ~ is a formula over V called the goal.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 13 /19

B3. Formal Definition of Planning

Running Example: Planning Task

Example
From the previous chapter, we see that the running example
can be represented by the task 1= (V,/, O,~) with
> V = {i, w, t1, tz}
> /={il—>F,Wi—>T,t1'—>F,t2'—>F}
» O ={my,my, li, h,u} where
mp = <T,((t1 > —|t1) A (—|t1 > t1)),5>
my = <T, ((tz > —\tg) A (—|t2 > f2)),5>
h={(-in(wt),(iAw)l)
h= <—|I AN (W > tz), (I/\ —|W), 1
u={(i,~iN(w> ((t1 > w)A (-t > w)))
A(=w s (> w)A (-t > —w))), 1)

vyvyvyvVvyy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Planning Tasks

September 24, 2025 14 /19

B3. Formal Definition of Planning Planning Tasks

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)
The planning task M = (V,/, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, Sx), where

> S is the set of all states over V,

» [is the set of operators O,

» c(o0) = cost(o) for all operators o € O,

» T ={(s,0,5') |s€S, oapplicable in s, s’ = s[o]},
» s9=1, and

>

S,={seS|skEn~}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 15 /19

B3. Formal Definition of Planning

Planning Tasks: Terminology

» Terminology for transitions systems is also applied
to the planning tasks [1 that induce them.

» For example, when we speak of the states of I1,
we mean the states of 7(I).

> A sequence of operators that forms a solution of 7(I1)
is called a plan of 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Planning Tasks

September 24, 2025 16 /19

B3. Formal Definition of Planning Planning Tasks

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)
Given: a planning task I
Output: a plan for I, or unsolvable if no plan for I exists

Definition (Optimal Planning)

Given: a planning task [1
Output: a plan for 1 with minimal cost among all plans for I,
or unsolvable if no plan for I1 exists

B3. Formal Definition of Planning

B3.3 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

September 24, 2025

Summary

18 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 17 / 19
B3. Formal Definition of Planning Summary
Summary

> Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

» A planning task consists of a set of state variables and an
initial state, operators and goal over these state variables.

> We gave formal definitions for these concepts.

» In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

» In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 24, 2025 19 / 19

Planning and Optimization

B4. Equivalent Operators and Normal Forms

Malte Helmert and Gabriele Roger

Universitat Basel

September 29, 2025

Planning and Optimization

September 29, 2025 — B4. Equivalent Operators and Normal Forms

B4.1 Reminder & Motivation
B4.2 Equivalence Transformations
B4.3 Conflict-Free Operators

B4.4 Flat Effects

B4.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 29, 2025

2 /28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 1/28
Content of the Course
Transition
— Prelude Systems
— Delete Relaxation Computational
Complexity
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 3 /28

B4. Equivalent Operators and Normal Forms

B4.1 Reminder & Motivation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Reminder & Motivation

September 29, 2025

4/ 28

B4. Equivalent Operators and Normal Forms Reminder & Motivation

Reminder: Syntax of Effects

Definition (Effect)
Effects over propositional state variables V
are inductively defined as follows:
> T is an effect (empty effect).
> If v € V is a propositional state variable,
then v and —v are effects (atomic effect).
> If e and € are effects, then (e A €’) is an effect
(conjunctive effect).

> If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
eg. cA(a> (mbA(c> (bA—-dA=a))))A(—b> —a)
~» Can we make our life easier?

B4. Equivalent Operators and Normal Forms Reminder & Motivation

Reminder: Semantics of Effects

» effcond(?, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ¢

» add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v, €) and s |= effcond(—v, e),
then s’(v) = T in the resulting state s’

This is a very subtle detail.
~~ Can we make our life easier?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 6 /28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 5 /28
B4. Equivalent Operators and Normal Forms Reminder & Motivation
Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 7 /28

B4. Equivalent Operators and Normal Forms Reminder & Motivation

Content of the Course

Transition { Equivalence

Prelude [Systems

Conflict-free

{ Planning Tasks || | Operators
Approaches - Flat Operators

Delete Relaxation Computational Positive Normal

Complexity Form

Abstraction

il

Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 8 /28

B4. Equivalent Operators and Normal Forms Reminder & Motivation

Notation: Applying Operator Sequences

Existing notation:
» We already write s[o] for the resulting state
after applying operator o in state s.
New extended notation:

» For a sequence m = (o1, ..., 0,) of operators
that are consecutively applicable in s,
we write s[7] for s[o1][oz] - .. [on]-
» This includes the case of an empty operator sequence:

s[0] =

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 9 /28

B4. Equivalent Operators and Normal Forms

B4.2 Equivalence Transformations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

10 /

Equivalence Transformations

B4. Equivalent Operators and Normal Forms Equivalence Transformations

Content of the Course

Transition
Prelude Systems

{ Planning Tasks || |

Computational || | Positive Normal
Complexity Form

Conflict-free
Operators

Approaches Flat Operators

Delete Relaxation

Abstraction

STRIPS

Constraints

il

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 11 /28

B4. Equivalent Operators and Normal Forms

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and €’ over state variables V are equivalent,
written e = €/, if s[e] = s[e’] for all states s.

Definition (Equivalent Operators)
Two operators o and o’ over state variables V are equivalent,
written o = 0/, if cost(o) = cost(0’) and for all states s, s’ over V,

. .. o . . . o’
o induces the transition s — s’ iff o’ induces the transition s — 5.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

12 /

Equivalence Transformations

28

B4. Equivalent Operators and Normal Forms Equivalence Transformations

Equivalence of Operators and Effects: Theorem

Theorem
Let o and o' be operators with pre(o) = pre(0’), eff(o) = eff(0’)
and cost(o) = cost(0'). Then o = 0'.

Note: The converse is not true. (Why not?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 13 /28

B4. Equivalent Operators and Normal Forms

Equivalence Transformations for Effects

Equivalence Transformations

eNe = e Nne
(ene)Nne’ = en(ene’)
TAe = e
x>e=xD>e if x=x'
Tr>e = e
l>e=T
Xx>(X'>e) = (xAX)>e
x> (ene) = (x>e)A(x>€)
(xze)A(X'>e) = (xVX)>e

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 29, 2025

B4. Equivalent Operators and Normal Forms Conflict-Free Operators

B4.3 Conflict-Free Operators

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 15 / 28

B4. Equivalent Operators and Normal Forms

Content of the Course

Conflict-Free Operators

Transition
Prelude Systems

Planning Tasks

Equivalence

i

Flat Operators

Delete Relaxation Computational

Complexity

Positive Normal
Form

Abstraction

Constraints

il

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

STRIPS

September 29, 2025

S O b

~— O~ — Y '

~ o~ o~ o~ o~ o~ o~ o~ o~

B4. Equivalent Operators and Normal Forms Conflict-Free Operators

Conflict-Freeness: Motivation

» The add-after-delete semantics makes effects like
(a> c) A (b > —c) somewhat unintuitive to interpret.

~ What happens in states where a A b is true?

» It would be nicer if effcond(?, e) always were the condition
under which the atomic effect ¢ actually materializes
(because of add-after-delete, it is not)

~= introduce normal form where “complicated case” never arises

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 17 / 28

B4. Equivalent Operators and Normal Forms

Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V/

is called conflict-free if effcond(v, e) A effcond(—v, e)
is unsatisfiable for all v € V.

An operator o is called conflict-free if eff{0) is conflict-free.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 29, 2025 18 /

Conflict-Free Operators

28

B4. Equivalent Operators and Normal Forms Conflict-Free Operators

Making Operators Conflict-Free

» In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)

» However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.
> Algorithm: given operator o, replace all atomic effects
of the form —wv by (—effcond(v, eff(0)) > —v).
The resulting operator o' is conflict-free and o = o’. (Why?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 19 / 28

B4. Equivalent Operators and Normal Forms Flat Effects

B4.4 Flat Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 20

/ 28

B4. Equivalent Operators and Normal Forms

Content of the Course

[

Transition Equivalence
Prelude Systems

Conflict-free

{ Planning Tasks || | Operators

| | Computational || | Positive Normal

Complexity Form

Approaches

Delete Relaxation

Abstraction

STRIPS

Constraints

il

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

Flat Effects

21 /28

B4. Equivalent Operators and Normal Forms Flat Effects

Flat Effects: Motivation

» CNF and DNF limit the nesting of connectives
in propositional logic.
» For example, a CNF formula is
» a conjunction of 0 or more subformulas,
» each of which is a disjunction of 0 or more subformulas,
» each of which is a literal.
» Similarly, we can define a normal form that limits
the nesting of effects.

» This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 22 /28

B4. Equivalent Operators and Normal Forms

Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect
or of the form (x > e), where e is an atomic effect.

Flat Effects

An effect e is flat if it is a conjunction of 0 or more simple effects,

and none of these simple effects include the same atomic effect.
An operator o is flat if effo) is flat.

Notes: analogously to CNF, we consider
P a single simple effect as a conjunction of 1 simple effect

> the empty effect as a conjunction of 0 simple effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

23 / 28

B4. Equivalent Operators and Normal Forms Flat Effects

Flat Effect: Example

Example
Consider the effect

cA(a> (=bA(c> (bA—dA=a))))A(—b>—a)

An equivalent flat (and conflict-free) effect is

cA
((an—c) > —b) A
((anc)>b)A
((anc) > —d) A
((=bV(anc)) > —a)

Note: if we want, we can write ¢ as (T > ¢) to make the structure
even more uniform, with each simple effect having a condition.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 24 /28

B4. Equivalent Operators and Normal Forms

Producing Flat Operators

Theorem

For every operator, an equivalent flat operator and an equivalent

flat, conflict-free operator can be computed in polynomial time.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

25 /

Flat Effects

28

B4. Equivalent Operators and Normal Forms

Producing Flat Operators: Proof

Proof Sketch.
Replace the effect e over variables V by

Avey(effcond(v, e) > v)
A Nyey(effcond(—v, €) > —v),

which is an equivalent flat effect.
To additionally obtain conflict-freeness, use

Avcv(effcond(v, e) > v)
A Nyey((effcond(—v, e) A —effcond(v, e)) > —v)

instead.

(Conjuncts of the form (x > e) where x = L
can be omitted to simplify the effect.)

Flat Effects

B4. Equivalent Operators and Normal Forms

B4.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

Summary

27 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 26 / 28
B4. Equivalent Operators and Normal Forms Summary
Summary
» Equivalences can be used to simplify operators and effects.
» In conflict-free operators, the “complicated case”
of operator semantics does not arise.
» For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.
> For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.
» Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 28 / 28

Planning and Optimization
B5. Positive Normal Form and STRIPS

Malte Helmert and Gabriele Roger
Universitat Basel

September 29, 2025

Planning and Optimization
September 29, 2025 — B5. Positive Normal Form and STRIPS

B5.1 Motivation
B5.2 Positive Normal Form
B5.3 STRIPS

B5.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 1/28
B5. Positive Normal Form and STRIPS Motivation
Planning and Optimization September 29, 2025 3 /28

M. Helmert, G. Roger (Universitat Basel)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 2 /28
B5. Positive Normal Form and STRIPS Motivation
Example: Freecell
v K .
v
X I
Example (Good and Bad Effects)
If we move K< to a free tableau position,
the good effect is that 4é is now accessible.
The bad effect is that we lose one free tableau position.
September 29, 2025 4 /28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

B5. Positive Normal Form and STRIPS Motivation

What is a Good or Bad Effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:
» Locking our door is good if we want to keep burglars out.
> Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 5 /28

B5. Positive Normal Form and STRIPS

B5.2 Positive Normal Form

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

6/

Positive Normal Form

28

B5. Positive Normal Form and STRIPS Positive Normal Form

Content of the Course

Transition Equivalence

Prelude [Systems

{ Planning Tasks || |

Computational
Complexity

E

Conflict-free
Operators

Approaches Flat Operators

Delete Relaxation

Abstraction

STRIPS

il
|

Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 7 /28

B5. Positive Normal Form and STRIPS

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula ¢ is positive if no negation symbols appear in .

Note: This includes the negation symbols implied by — and <.

Definition (Positive Operator)
An operator o is positive if pre(o) and
all effect conditions in eff{0) are positive.

Definition (Positive Propositional Planning Task)
A propositional planning task (V. I, O,~) is positive
if all operators in O and the goal are positive.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

8/

Positive Normal Form

B5. Positive Normal Form and STRIPS

Positive Normal Form

Definition (Positive Normal Form)
A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

Positive Normal Form

9 /28

B5. Positive Normal Form and STRIPS

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike \ —bike-locked, —=home A uni),
(bike N\ bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A\ ((bike N\ —bike-locked) t> —bike))}
v = lecture N\ bike

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

Positive Normal Form

10 / 28

B5. Positive Normal Form and STRIPS

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F}
O = {(home A bike N\ —bike-locked, —home A uniy,
(bike N\ bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A\ ((bike N\ —bike-locked) t> —bike))}
~ = lecture N\ bike

Identify state variable v occurring negatively in conditions.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025

Positive Normal Form

11 /28

B5. Positive Normal Form and STRIPS

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F. bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike N\ bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A\ ((bike N\ —bike-locked) t> —bike))}
~v = lecture N bike

Introduce new variable ¥ with complementary initial value.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025

Positive Normal Form

12 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike \ —bike-locked, —=home A uni),
(bike N\ bike-locked, —bike-locked),
(bike N\ —bike-locked, bike-locked),
(uni, lecture A\ ((bike N\ —bike-locked) t> —bike))}
~ = lecture N\ bike

Identify effects on variable v.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025 13 /28

B5. Positive Normal Form and STRIPS

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike \ —bike-locked, —=home A uni),
(bike N\ bike-locked, —bike-locked N\ bike-unlocked),
(bike N\ —bike-locked, bike-locked N —bike-unlocked),
(uni, lecture A\ ((bike N\ —bike-locked) > —bike))}

~ = lecture N\ bike

Introduce complementary effects for V.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025

Positive Normal Form

14 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}
| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}
O = {(home A bike N\ —bike-locked, —home A uni),
(bike N bike-locked, —bike-locked N bike-unlocked),
(bike N\ —bike-locked, bike-locked N\ —bike-unlocked),
(uni, lecture A\ ((bike N\ —bike-locked) t> —bike))}
~v = lecture N\ bike

Identify negative conditions for v.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025 15 / 28

B5. Positive Normal Form and STRIPS

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike N\ bike-unlocked, ~home A uni,
(bike N bike-locked, —bike-locked N bike-unlocked),
(bike N\ bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A\ ((bike N bike-unlocked) t> —bike)) }

~v = lecture N\ bike

Replace by positive condition ¥.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization September 29, 2025

Positive Normal Form

16 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V' = {home, uni, lecture, bike, bike-locked, bike-unlocked}

| = {home — T, bike — T, bike-locked — T,
uni — F, lecture — F, bike-unlocked — F}

O = {(home A bike A bike-unlocked, ~home A unij,
(bike N\ bike-locked, —bike-locked N\ bike-unlocked),
(bike N bike-unlocked, bike-locked N\ —bike-unlocked),
(uni, lecture A\ ((bike N bike-unlocked) t> —bike)) }

~ = lecture N\ bike

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 17 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task I, there is an equivalent
propositional planning task [in positive normal form.
Moreover, " can be computed from I in polynomial time.

Note: Equivalence here means that the transition systems induced
by M and IV, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 18 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Positive Normal Form: Algorithm

Transformation of (V, [, O,~) to Positive Normal Form
Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal —v:
Let v be a variable which occurs negatively in a condition.
V=V U{V} for some new propositional state variable ¥
) i {F f I(V)=T
T ifl(v)=F
Replace the effect v by (v A =¥) in all operators o € O.
Replace the effect =v by (=v A ¥) in all operators o € O.
Replace —v by v in all conditions.
Convert all operators o € O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 19 / 28

B5. Positive Normal Form and STRIPS Positive Normal Form

Why Positive Normal Form is Interesting

In the absence of conditional effects, positive normal form allows
us to distinguish good and bad effects easily:

> Effects that make state variables true
(add effects) are good.

> Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study in Part D.

(Why restriction “in the absence of conditional effects”?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 20 / 28

B5. Positive Normal Form and STRIPS STRIPS

B5.3 STRIPS

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 21 / 28

B5. Positive Normal Form and STRIPS

Content of the Course

[

Transition Equivalence
Prelude Systems

Conflict-free

{ Planning Tasks || | Operators

Computational Positive Normal
Complexity Form

Approaches

Delete Relaxation

Abstraction

Constraints

il

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025

STRIPS

22 /28

B5. Positive Normal Form and STRIPS STRIPS

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)
An operator o of a prop. planning task is a STRIPS operator if

» pre(o) is a conjunction of state variables, and

> eff0) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task (V, I, O,~) is a STRIPS
planning task if all operators o € O are STRIPS operators
and -~y is a conjunction of state variables.

Note: STRIPS operators are conflict-free and flat.
STRIPS is a special case of positive normal form.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 23 /28

B5. Positive Normal Form and STRIPS

STRIPS Operators: Remarks

» Every STRIPS operator is of the form
(VIA-AVn, LLA- Nl

where v; are state variables and /; are atomic effects.
» Often, STRIPS operators o are described
via three sets of state variables:
> the preconditions (state variables occurring in pre(0))
> the add effects (state variables occurring positively in eff0))
> the delete effects (state variables occurring negatively in eff{0))
» Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.
» There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.
September 29, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

STRIPS

24 / 28

B5. Positive Normal Form and STRIPS STRIPS

Why STRIPS is Interesting

» STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

» In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapters B6-B7).

» Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STRIPS
STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 25

28

B5. Positive Normal Form and STRIPS STRIPS

Transformation to STRIPS

> Not every operator is equivalent to a STRIPS operator.

» However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

» However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

» There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

September 29, 2025 26 /

28

B5. Positive Normal Form and STRIPS Summary

B5.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 27

B5. Positive Normal Form and STRIPS Summary

Summary

» A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

> A positive task with flat operators is in positive normal form.

» STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

> Both forms are expressive enough to capture
general propositional planning tasks.

» Transformation to positive normal form is possible
with polynomial size increase.

» Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization September 29, 2025 28

28

Planning and Optimization
B6. Computational Complexity of Planning: Background

Malte Helmert and Gabriele Roger

Universitat Basel

October 1, 2025

Planning and Optimization

October 1, 2025 — B6. Computational Complexity of Planning: Background

B6.1 Motivation
B6.2 Turing Machines
B6.3 Complexity Classes

B6.4 Summary

M. Helmert, G. Rger (Universitit Basel) Planning and Optimization October 1, 2025 1/18
Content of the Course
Transition
— Prelude B Systems
-— Planning Tasks
— Approaches — Normal Forms
[Planning
— Delete Relaxation
— Abstraction
— Constraints
M. Helmert, G. Rger (Universitit Basel) Planning and Optimization October 1, 2025 3/18

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 2 /18
B6. Computational Complexity of Planning: Background Motivation
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 4 /18

B6. Computational Complexity of Planning: Background Motivation

How Difficult is Planning?

» Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

> However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

$

Do non-exponential planning algorithms exist?

i

What is the precise computational complexity of planning?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 5/ 18

B6. Computational Complexity of Planning: Background

Why Computational Complexity?

» understand the problem
» know what is not possible

> find interesting subproblems that are easier to solve
» distinguish essential features from syntactic sugar
> Is STRIPS planning easier than general planning?

M. Helmert, G. Roger (Universitat Basel)

Motivation

Planning and Optimization October 1, 2025 6 /18

B6. Computational Complexity of Planning: Background Motivation

Reminder: Complexity Theory

Need to Catch Up?
> We assume knowledge of complexity theory:
» languages and decision problems
» Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
» complexity classes: P, NP, PSPACE
» polynomial reductions
> If you are not familiar with these topics, we recommend
Chapters B11, D1-D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
10948-main-lecture-theory-of-computer-science/

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 7/ 18

B6. Computational Complexity of Planning: Background

B6.2 Turing Machines

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Turing Machines

October 1, 2025 8 /18

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/10948-main-lecture-theory-of-computer-science/

B6. Computational Complexity of Planning: Background Turing Machines

Turing Machines: Conceptually

infinite tape
- [Olgdlblalclalc|allc|alnjo] |-
|
read-write head

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 9 /18

B6. Computational Complexity of Planning: Background Turing Machines

Turing Machines

Definition (Nondeterministic Turing Machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0,Q, q0, gv,) with the following components:
» input alphabet ¥ and blank symbol [0 ¢ &
» alphabets always nonempty and finite
> tape alphabet ¥ =X U {0}
> finite set @ of internal states with initial state gp € Q@
and accepting state gy € Q
> nonterminal states Q" := Q \ {gv}

> transition relation § : (Q' x) — 2@xTox{-1+1}

Deterministic Turing machine (DTM):
|0(g,s)| =1 forall (g,s) € Q' x Xy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 10 / 18

B6. Computational Complexity of Planning: Background Turing Machines

Turing Machines: Accepted Words

» Initial configuration
> state qo
» input word on tape, all other tape cells contain [J
> head on first symbol of input word
> Step
> If in state g, reading symbol s, and (¢’,s’,d) € (g, s) then
» the NTM can transition to state q’, replacing s with s’ and
moving the head one cell to the left/right (d = —1/+1).

» Input word (€ X*) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state gv.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 11 /18

B6. Computational Complexity of Planning: Background Complexity Classes

B6.3 Complexity Classes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 12 /18

B6. Computational Complexity of Planning: Background Complexity Classes

Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)
Let f : Ng — Np.

A NTM accepts language L C X* in time f if it accepts each w € L
within f(|w]|) steps and does not accept any w ¢ L (in any time).

It accepts language L C X* in space f if it accepts each w € L
using at most f(|w|) tape cells and does not accept any w ¢ L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 13 /18

B6. Computational Complexity of Planning: Background

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f : Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025

Complexity Classes

14 /18

B6. Computational Complexity of Planning: Background Complexity Classes

Polynomial Time and Space Classes

Let P be the set of polynomials p: Ny — Ny
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P = U,ep DTIME(p)
NP = U,cp NTIME(p)
PSPACE = J,,.p DSPACE(p)

NPSPACE = |, NSPACE(p)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 15 /18

B6. Computational Complexity of Planning: Background

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P C NP C PSPACE = NPSPACE

Proof.

P € NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch's theorem (Savitch 1970).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025

Complexity Classes

16 / 18

B6. Computational Complexity of Planning: Background

B6.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 1, 2025

Summary

17/

B6. Computational Complexity of Planning: Background

Summary

> We recalled the definitions of the most important
complexity classes from complexity theory:

» P: decision problems solvable in polynomial time
» NP: decision problems solvable in polynomial time
by nondeterministic algorithms
» PSPACE: decision problems solvable in polynomial space
» NPSPACE: decision problems solvable in polynomial space
by nondeterministic algorithms

Summary

» These classes are related by P C NP C PSPACE = NPSPACE.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025

18 / 18

Planning and Optimization
B7. Computational Complexity of Planning: Results

Malte Helmert and Gabriele Roger

Universitat Basel

October 1, 2025

Planning and Optimization
October 1, 2025 — B7. Computational Complexity of Planning: Results

B7.1 (Bounded-Cost) Plan Existence
B7.2 PSPACE-Completeness of Planning
B7.3 More Complexity Results

B7.4 Summary

M. Helmert, G. Rger (Universitit Basel) Planning and Optimization October 1, 2025 1/19
Content of the Course
Transition
— Prelude B Systems
-— Planning Tasks
— Approaches — Normal Forms
[Planning
— Delete Relaxation
— Abstraction
— Constraints
M. Helmert, G. Rger (Universitit Basel) Planning and Optimization October 1, 2025 3/19

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 2 /19

B7. Computational Complexity of Planning: Results (Bounded-Cost) Plan Existence
B7.1 (Bounded-Cost) Plan Existence

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 4 /19

B7. Computational Complexity of Planning: Results (Bounded-Cost) Plan Existence

Decision Problems for Planning

Definition (Plan Existence)
Plan existence (PLANEX) is the following decision problem:

GIVEN:
QUESTION:

planning task Il
Is there a plan for 17

~~ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)
Bounded-cost plan existence (BCPLANEX)
is the following decision problem:

GIVEN:
QUESTION:

planning task [1, cost bound K € Ny
Is there a plan for I with cost at most K7

~ decision problem analogue of optimal planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 5/ 19

B7. Computational Complexity of Planning: Results

Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX)
PLANEX <, BCPLANEX

Proof.
Consider a planning task I with state variables V.

Let cmax be the maximal cost of all operators of I1.

Compute the number of states of M as N = 2/VI.

M is solvable iff there is solution with cost at most cmax - (N — 1)
because a solution need not visit any state twice.

~» map instance I1 of PLANEX to instance (1, ¢max - (N — 1))
of BCPLANEX

~> polynomial reduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025

O

(Bounded-Cost) Plan Existence

6 /19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

B7.2 PSPACE-Completeness of
Planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 7/ 19

B7. Computational Complexity of Planning: Results

Membership in PSPACE

Theorem
BCPLANEX € PSPACE

Proof.
Show BCPLANEX € NPSPACE and use Savitch's theorem.
Nondeterministic algorithm:
def plan((V,/,0,7), K):
s:=1
k=K
loop forever:
if s = v: accept
guess 0 € O
if o is not applicable in s: fail
if cost(o) > k: fail
s:=s[o]
k := k — cost(0)
October 1, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

O

PSPACE-Completeness of Planning

8 /19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

PSPACE-Hardness

Idea: generic reduction

» For an arbitrary fixed DTM M with space bound polynomial p
and input w, generate propositional planning task
which is solvable iff M accepts w in space p(|w]).

> Without loss of generality, we assume p(n) > n for all n.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 9 /19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

Reduction: State Variables

Let M = (X,00, Q, qo, gy,) be the fixed DTM,
and let p be its space-bound polynomial.

Given input ws ... w,, define relevant tape positions
X :={=p(n),....p(n)}
State Variables

> stateq for all g € Q

» head; for all i € X U{—p(n) —1,p(n) +1}

> content; , forall i€ X, ac ¥n

~> allows encoding a Turing machine configuration

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 10 / 19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

Reduction: Initial State

Let M = (X,0, Q, qo, gy, 9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}
Initial State
Initially true:
> stateg,
> head;
» content;,, forall i e {1,...,n}
» content; for all i € X\ {1,...,n}
Initially false:
> all others

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 11 /19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

Reduction: Operators

Let M = (X,0, Q, qo, gy,) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions

X = {=p(n)..... p(n)}

Operators
One operator for each transition rule §(q,a) = (¢', d, d)
and each cell position i € X:

> precondition: state; A head; A content; ,

> effect: —statey A —head; A —~content; ,
A statey A head;q A content;

Note that add-after-delete semantics are important here!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 12 /19

B7. Computational Complexity of Planning: Results PSPACE-Completeness of Planning

Reduction: Goal

Let M = (X,0, Q, qo, gy,) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions
X i={=p(n).....p(n)}

Goal
stateg,

October 1, 2025 13 /19

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

B7. Computational Complexity of Planning: Results

PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)
PLANEX and BCPLANEX are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPLANEX was already shown.

Hardness for PLANEX follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PLANEX. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PLANEX and hardness for BCPLANEX follow
from the polynomial reduction from PLANEX to BCPLANEX. [

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 1, 2025 14 /

PSPACE-Completeness of Planning

19

B7. Computational Complexity of Planning: Results More Complexity Results

B7.3 More Complexity Results

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 15 /19

B7. Computational Complexity of Planning: Results

More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

» different planning formalisms

> e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

» syntactic restrictions of planning tasks

> e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

P semantic restrictions of planning task

> e.g., restricting variable dependencies (“causal graphs”)
» particular planning domains

» e.g., Blocksworld, Logistics, FreeCell

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 1, 2025 16 /

More Complexity Results

19

B7. Computational Complexity of Planning: Results More Complexity Results

Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
» nondeterministic effects:
> fully observable: EXP-complete (Littman, 1997)
» unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
> partially observable: 2-EXP-complete (Rintanen, 2004)
» schematic operators:
> usually adds one exponential level to PLANEX complexity
> e.g., classical case EXPSPACE-complete (Erol et al., 1995)
» numerical state variables:
» undecidable in most variations (Helmert, 2002)
» decidable in restricted setting with at most two
numeric state variables (Helal and Lakemeyer, 2025)

B7. Computational Complexity of Planning: Results

B7.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 1, 2025

Summary

18 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 17 / 19
B7. Computational Complexity of Planning: Results Summary
Summary

» Classical planning is PSPACE-complete.

» This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).
» The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:
> DTM configurations are encoded by state variables.
> Operators simulate transitions between DTM configurations.
» The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.
» This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

> It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 1, 2025 19 / 19

Planning and Optimization
C1. Overview of Classical Planning Algorithms (Part 1)

Malte Helmert and Gabriele Roger

Universitat Basel

October 6, 2025

Planning and Optimization

October 6, 2025 — C1. Overview of Classical Planning Algorithms (Part 1)

C1.1 The Big Three

C1.2 Explicit Search

C1.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 6, 2025

2/17

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 1/17
Content of the Course
— Prelude
— Delete Relaxation | — SAT Planning
— Abstraction — Symbolic Search
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 3/17

C1. Overview of Classical Planning Algorithms (Part 1)

C1.1 The Big Three

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Big Three

October 6, 2025

4/17

C1. Overview of Classical Planning Algorithms (Part 1) The Big Three

Classical Planning Algorithms

Let's start solving planning tasks!

This Chapter and the Next
very high-level overview of classical planning algorithms

> bird's eye view: no details, just some very brief ideas

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 5/ 17

C1. Overview of Classical Planning Algorithms (Part 1)

The Big Three

Of the many planning approaches, three techniques stand out:
~> Chapters C3-C4, Parts D-F

~ Chapters C5—C6

~~ Chapters C7-C8

P explicit search
» SAT planning

» symbolic search

also: many algorithm portfolios

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

6/

The Big Three

17

C1. Overview of Classical Planning Algorithms (Part 1) The Big Three

Satisficing or Optimal Planning?

must carefully distinguish:
» satisficing planning: any plan is OK (cheaper ones preferred)

» optimal planning: plans must have minimum cost

solved by similar techniques, but:
> details very different

> almost no overlap between best techniques for satisficing
planning and best techniques for optimal planning

» many tasks that are trivial for satisficing planners
are impossibly hard for optimal planners

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 7/ 17

C1. Overview of Classical Planning Algorithms (Part 1)

C1.2 Explicit Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

8/

Explicit Search

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

Explicit Search

You know this one already! (Hopefully.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

Reminder: State-Space Search

Need to Catch Up?
» We assume prior knowledge of basic search algorithms:

uninformed vs. informed (heuristic)
satisficing vs. optimal

heuristics and their properties

specific algorithms: e.g., breadth-first search,
greedy best-first search, A*

>
>
>
>

» If you are not familiar with them, we recommend Part B
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£fs25/
13548-1ecture-foundations-of-artificial-intelligence/

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 10 /

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

> init() ~> returns initial state

» is goal(s) ~ testsif s is a goal state

» succ(s) ~~ returns all pairs (a,s’) with s 2 s’
> cost(a) ~> returns cost of action a

> h(s) ~- returns heuristic value for state s

~» Foundations of Artificial Intelligence course, Chap. B2 and B9

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

State Space vs. Search Space

» Planning tasks induce transition systems (a.k.a. state spaces)
with an initial state, labeled transitions and goal states.

> State-space search searches state spaces with an initial state,
a successor function and goal states.

~ looks like an obvious correspondence
» However, in planning as search, the state space being searched
can be different from the state space of the planning task.

» When we need to make a distinction, we speak of

> the state space of the planning task
whose states are called world states vs.

» the search space of the search algorithm
whose states are called search states.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 12/

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

Design Choice: Search Direction

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Direction
> progression: forward from initial state to goal

> regression: backward from goal states to initial state

» bidirectional search

~~ Chapters C3-C4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 13 /17

C1. Overview of Classical Planning Algorithms (Part 1)

Design Choice: Search Algorithm

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Algorithm
» uninformed search:
depth-first, breadth-first, iterative depth-first, ...

» heuristic search (systematic):
greedy best-first, A*, weighted A*, IDA*, ...

» heuristic search (local):
hill-climbing, simulated annealing, beam search, ...

Explicit Search

C1. Overview of Classical Planning Algorithms (Part 1) Explicit Search

Design Choice: Search Control

How to apply explicit search to planning? ~» many design choices!

Design Choice: Search Control
» heuristics for informed search algorithms
P pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, ...

How do we find good heuristics in a domain-independent way?

~~ one of the main focus areas of classical planning research
~ Parts D-F

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 15 /17

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 14 /17
C1. Overview of Classical Planning Algorithms (Part 1) Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 16 / 17

C1. Overview of Classical Planning Algorithms (Part 1)

Summary

(Joint summary follows after next chapter.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 6, 2025

Summary

17 /17

Planning and Optimization
C2. Overview of Classical Planning Algorithms (Part 2)

Malte Helmert and Gabriele Roger

Universitat Basel

October 6, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 1/25

Planning and Optimization
October 6, 2025 — C2. Overview of Classical Planning Algorithms (Part 2)

C2.1 SAT Planning
C2.2 Symbolic Search
C2.3 Planning System Examples

C2.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

2 /25

Content of the Course

— Prelude

— Foundations

— Delete Relaxation | — SAT Planning

— Abstraction — Symbolic Search

- Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 3 /25

The Big Three (Repeated from Last Chapter)

Of the many planning approaches, three techniques stand out:
P explicit search ~> Chapters C3-C4, Parts D-F
» SAT planning ~~ Chapters C5-C6
» symbolic search ~~ Chapters C7-C8

also: many algorithm portfolios

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

4/ 25

C2. Overview of Classical Planning Algorithms (Part 2)

C2.1 SAT Planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

SAT Planning

October 6, 2025

5/

25

C2. Overview of Classical Planning Algorithms (Part 2) SAT Planning

SAT Planning: Basic Idea

» formalize problem of finding plan with a given horizon
(length bound) as a propositional satisfiability problem
and feed it to a generic SAT solver

> to obtain a (semi-) complete algorithm,
try with increasing horizons until a plan is found
(= the formula is satisfiable)

P important optimization: allow applying several non-conflicting
operators “at the same time" so that a shorter horizon suffices

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 6 /25

C2. Overview of Classical Planning Algorithms (Part 2)

SAT Encodings: Variables

» given propositional planning task (V,/, O,)
» given horizon T € Ng

Variables of SAT Encoding
> propositional variables v/ forallve V,0<i< T
encode state after / steps of the plan
> propositional variables o' forallo € 0,1<i< T
encode operator(s) applied in i-th step of the plan

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

SAT Planning

October 6, 2025

7/

25

C2. Overview of Classical Planning Algorithms (Part 2) SAT Planning

Design Choice: SAT Encoding

Again, there are several important design choices.

Design Choice: SAT Encoding
» sequential or parallel

» many ways of modeling planning semantics in logic

~» main focus of research on SAT planning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 8 /25

C2. Overview of Classical Planning Algorithms (Part 2)

Design Choice: SAT Solver

Again, there are several important design choices.

Design Choice: SAT Solver
» out-of-the-box like Glucose, CaDiCal, MiniSAT

» planning-specific modifications

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

SAT Planning

October 6, 2025

9/

25

C2. Overview of Classical Planning Algorithms (Part 2)

Design Choice: Evaluation Strategy

Again, there are several important design choices.

Design Choice: Evaluation Strategy

SAT Planning

> always advance horizon by +1 or more aggressively

» possibly probe multiple horizons concurrently

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 6, 2025 10 / 25

C2. Overview of Classical Planning Algorithms (Part 2)

C2.2 Symbolic Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Symbolic Search

October 6, 2025

11/

C2. Overview of Classical Planning Algorithms (Part 2)

Symbolic Search Planning: Basic ldeas

> search processes sets of states at a time

Symbolic Search

> operators, goal states, state sets reachable with a given cost
etc. represented by binary decision diagrams (BDDs)

(or similar data structures)

P hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

» perform symbolic breadth-first search (or something

more sophisticated) on these set representations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 6, 2025 12 /25

C2. Overview of Classical Planning Algorithms (Part 2)

Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search
def bfs-progression(V, I, O, v):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;;1 = reached;:
return no solution exists
i=i+1

~ If we can implement operations models, {I}, N, # 0, U,
apply and = efficiently, this is a reasonable algorithm.

M. Helmert, G. Roger (Universitat Basel)

Symbolic Search

Planning and Optimization October 6, 2025 13 /25

C2. Overview of Classical Planning Algorithms (Part 2) Symbolic Search

Design Choice: Symbolic Data Structure

Again, there are several important design choices.

Design Choice: Symbolic Data Structure
» BDDs

» ADDs
» EVMDDs
» SDDs

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 14 / 25

C2. Overview of Classical Planning Algorithms (Part 2)

Other Design Choices

> additionally, same design choices as for explicit search:
> search direction
» search algorithm
» search control (incl. heuristics)
P in practice, hard to make heuristics and other
advanced search control efficient for symbolic search
~> rarely used

M. Helmert, G. Roger (Universitat Basel)

Symbolic Search

Planning and Optimization October 6, 2025 15 / 25

C2. Overview of Classical Planning Algorithms (Part 2) Planning System Examples

C2.3 Planning System Examples

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 16 / 25

C2. Overview of Classical Planning Algorithms (Part 2) Planning System Examples

Planning Systems: FF

FF (Hoffmann & Nebel, 2001)

problem class: satisficing

algorithm class: explicit search

search algorithm: enforced hill-climbing

F

>

>

» search direction: forward search

|

» heuristic: FF heuristic (inadmissible)
>

other aspects: helpful action pruning; goal agenda manager

~» breakthrough for heuristic search planning;
winner of IPC 2000

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 17 / 25

C2. Overview of Classical Planning Algorithms (Part 2)

Planning Systems: LAMA

LAMA (Richter & Westphal, 2008)
» problem class: satisficing

algorithm class: explicit search
search direction: forward search
search algorithm: restarting Weighted A* (anytime)

heuristic: FF heuristic and landmark heuristic (inadmissible)

vVvYVYyVvy

other aspects: preferred operators; deferred heuristic
evaluation; multi-queue search

~ still one of the leading satisficing planners;
winner of IPC 2008 and IPC 2011 (satisficing tracks)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

Planning System Examples

18 / 25

C2. Overview of Classical Planning Algorithms (Part 2) Planning System Examples

Planning Systems: Madagascar-pC

Madagascar (Rintanen, 2014)
» problem class: satisficing

algorithm class: SAT planning
encoding: parallel 3-step encoding
SAT solver: using planning-specific action variable selection

evaluation strategy: exponential horizons, parallelized probing

vVvyyVYyVvVvyy

other aspects: invariants

~+ second place at IPC 2014 (agile track)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 19 / 25

C2. Overview of Classical Planning Algorithms (Part 2)

Planning Systems: SymBA*

SymBA* (Torralba, 2015)
» problem class: optimal

algorithm class: symbolic search
symbolic data structure: BDDs
search direction: bidirectional

search algorithm: mixture of (symbolic) Dijkstra and A*

vVvyVYyVvVvyy

heuristic: perimeter abstractions/blind

~» winner of IPC 2014 (optimal track)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025

Planning System Examples

20 / 25

C2. Overview of Classical Planning Algorithms (Part 2) Planning System Examples

Planning Systems: Scorpion

Scorpion 2023 (Seipp, 2023)
» problem class: optimal

algorithm class: explicit search
search direction: forward search

search algorithm: A*

vvyVvVvyy

heuristic: abstraction heuristics and cost partitioning

~> runner-up of IPC 2023 (optimal track)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 21 /25

C2. Overview of Classical Planning Algorithms (Part 2)

Planning System Examples

Planning Systems: Fast Downward Stone Soup

Fast Downward Stone Soup 2023, optimal version

(Biichner et al., 2023)
» problem class: optimal

algorithm class: (portfolio of) explicit search

search direction: forward search

>
>
» search algorithm: A*
>

heuristic: all admissible heuristics considered in the course

~ winner of IPC 2011 (optimal track);
various awards in IPC 2011-2023

C2. Overview of Classical Planning Algorithms (Part 2) Planning System Examples

Planning Systems: SymK

SymK (Speck et al., 2025)
P problem class: optimal

algorithm class: symbolic search
symbolic data structure: BDDs
search direction: bidirectional

search algorithm: symbolic Dijkstra algorithm

vvyYvyyvyy

heuristic: blind

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 23 /25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 22 / 25
C2. Overview of Classical Planning Algorithms (Part 2) Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 24 /25

C2. Overview of Classical Planning Algorithms (Part 2) Summary

Summary

big three classes of algorithms for classical planning:
> explicit search

» design choices: search direction, search algorithm,
search control (incl. heuristics)

> SAT planning
» design choices: SAT encoding, SAT solver, evaluation strategy
» symbolic search

» design choices: symbolic data structure
+ same ones as for explicit search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 6, 2025 25 / 25

Planning and Optimization

C3. Progression and Regression Search

Malte Helmert and Gabriele Roger

Universitat Basel

October 8, 2025

Planning and Optimization
October 8, 2025 — C3. Progression and Regression Search

C3.1 Introduction

C3.2 Progression

C3.3 Regression

C3.4 Regression for STRIPS Tasks

C3.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025

2/32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 1/32
Content of the Course
— Prelude
— Foundations — Introduction
— Delete Relaxation | — SAT Planning
— Abstraction — Symbolic Search
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 3 /32

C3. Progression and Regression Search

C3.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025

Introduction

4/32

C3. Progression and Regression Search Introduction

Search Direction

Search direction
> one dimension for classifying search algorithms
» forward search from initial state to goal based on progression
» backward search from goal to initial state based on regression

» bidirectional search

In this chapter we look into progression and regression planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 5 /32

C3. Progression and Regression Search Introduction

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms
» init() ~+ returns initial state

» is_goal(s) ~» testsif s is a goal state

» succ(s) ~~ returns all pairs (a,s’) with s 2 &/

» cost(a) ~> returns cost of action a

> ~

h(s)

returns heuristic value for state s

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

6 /32

C3. Progression and Regression Search Progression

C3.2 Progression

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 7/ 32

C3. Progression and Regression Search

Planning by Forward Search: Progression

Progression: Computing the successor state s[o] of a state s
with respect to an operator o.
Progression planners find solutions by forward search:

> start from initial state

> iteratively pick a previously generated state and progress it
through an operator, generating a new state

> solution found when a goal state generated

pro: very easy and efficient to implement

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Progression

8 /32

C3. Progression and Regression Search Progression

Search Space for Progression

Search Space for Progression

search space for progression in a planning task M= (V. /I, O,~)
(search states are world states s of [T;

actions of search space are operators o € O)

C3. Progression and Regression Search Progression

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 10 / 32

> init() ~> returns /

> is_goal(s) ~ testsifs=r

» succ(s) ~ returns all pairs (o, s[o])

where 0 € O and o is applicable in s

» cost(o) ~> returns cost(o) as defined in [

> h(s) ~~ estimates cost from s to v (~~ Parts D-F)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 9 /32
C3. Progression and Regression Search Progression

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 11 /32

C3. Progression and Regression Search Progression

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 12 / 32

C3. Progression and Regression Search Progression

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 13 / 32

C3. Progression and Regression Search

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Progression

14 / 32

C3. Progression and Regression Search Progression

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 15 / 32

C3. Progression and Regression Search

Progression Planning Example

Example of a progression search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Progression

16 / 32

C3. Progression and Regression Search Regression

C3.3 Regression

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 17 / 32

C3. Progression and Regression Search Regression

Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:

» forward search starts from a single initial state;
backward search starts from a set of goal states

» when applying an operator o in a state s in forward direction,
there is a unique successor state s’;
if we just applied operator o and ended up in state s,
there can be several possible predecessor states s

~> in most natural representation for backward search in planning,
each search state corresponds to a set of world states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025 18 /

32

C3. Progression and Regression Search Regression

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S’, o)
of a set of states S’ (“subgoal”) given the last operator o
that was applied.

~~ formal definition in next chapter

Regression planners find solutions by backward search:
> start from set of goal states

> iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

» solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 19 / 32

C3. Progression and Regression Search Regression

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

» each search state corresponds to a set of world states
(“subgoal”)

P each search state is represented by a logical formula:
@ represents {s € S | s =}

» many basic search operations like detecting duplicates
are NP-complete or coNP-complete

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025 20 /

32

C3. Progression and Regression Search Regression

Search Space for Regression

Search Space for Regression

search space for regression in a planning task N = (V,/, 0,~)
(search states are formulas ¢ describing sets of world states;
actions of search space are operators o € O)

C3. Progression and Regression Search Regression

Regression Planning Example (Depth-first Search)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 22 / 32

> init() ~> returns vy

> is_goal(p) ~ testsif | =

» succ(y) ~> returns all pairs (o, regr(¢, 0))

where o € O and regr(y, 0) is defined

» cost(o) ~> returns cost(o) as defined in [

> h(y) ~~ estimates cost from / to ¢ (~ Parts D-F)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 21 / 32
C3. Progression and Regression Search Regression

Regression Planning Example (Depth-first Search)

O O ® O O O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 23 / 32

C3. Progression and Regression Search Regression

Regression Planning Example (Depth-first Search)

@1 = regr(7y, —) $1——> 7

O O O O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 24 / 32

C3. Progression and Regression Search Regression

Regression Planning Example (Depth-first Search)

p1 = regr(y, —) P2 —> 1 —>7

@2 = regr(p1, —)

—O
o’x —
O O \ O
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 8, 2025 25 / 32

C3. Progression and Regression Search Regression

Regression Planning Example (Depth-first Search)

3 —> P2 —> P1 —> 7

@1 = regr(y, —)
@2 = regr(p1, —)
w3 = regr(yp2, —), | = 3

o A@

O O O O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025 26 / 32

C3. Progression and Regression Search Regression for STRIPS Tasks

C3.4 Regression for STRIPS Tasks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 27 / 32

C3. Progression and Regression Search

Regression for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

» Consider subgoal ¢ that is conjunction of atoms a; A --- A a,
(e.g., the original goal 7 of the planning task).

» First step: Choose an operator o that deletes no a;.

» Second step: Remove any atoms added by o from .

» Third step: Conjoin pre(o) to .

~» Qutcome of this is regression of ¢ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one a;

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 8, 2025 28 /

Regression for STRIPS Tasks

32

C3. Progression and Regression Search Regression for STRIPS Tasks

STRIPS Regression

Definition (STRIPS Regression)

Let ¢ = 1 A -+ A @, be a conjunction of atoms, and

let o be a STRIPS operator which adds the atoms ay, ..., ax
and deletes the atoms dy, ..., d,.

The STRIPS regression of ¢ with respect to o is

L if ;i = d; for some i/,

sregr(p, 0) 1= pre(0) A N({p1,- - ot \ a1, ..., ak}) else

Note: sregr(¢, 0) is again a conjunction of atoms, or L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 29 / 32

C3. Progression and Regression Search Regression for STRIPS Tasks

Does this Capture the ldea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property
For all sets of states described by a conjunction of atoms ¢,
all states s and all STRIPS operators o,

s = sregr(p,0) iff s[o] E .

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

30 /

32

C3. Progression and Regression Search Summary

C3.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 31 /32

C3. Progression and Regression Search

Summary

» Progression search proceeds forward from the initial state.

P In progression search, the search space is identical
to the state space of the planning task.

P> Regression search proceeds backwards from the goal.

» Each search state corresponds to a set of world states,
for example represented by a formula.

» Regression is simple for STRIPS operators.

» The theory for general regression is more complex.
This is the topic of the following chapter.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Summary

32/

32

Planning and Optimization
October 8, 2025 — C4. General Regression

Planning and Optimization

C4. General Regression

C4.1 Regressing State Variables

C4.2 Regressing Formulas Through Effects
Malte Helmert and Gabriele Roger

C4.3 Regressing Formulas Through Operators

Universitat Basel

202
October 8, 2025 C4.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 1/28 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 2 /28
Content of the Course Regression for General Planning Tasks
— Prelude
W Foundations — Introduction » With disjunctions and conditional effects, things become more

tricky. How to regress a \VV (b A ¢) with respect to (q,d > b)?

--_ » In this chapter, we show how to regress general sets of states

through general operators.

— Delete Relaxation | — SAT Planning > We extensively use the idea of representing sets of states
as formulas.

— Abstraction — Symbolic Search

- Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 3 /28 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 4 /28

C4. General Regression

C4.1 Regressing State Variables

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Regressing State Variables

C4. General Regression Regressing State Variables

Regressing State Variables: Motivation

Key question for general regression:
> Assume we are applying an operator with effect e.

» What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 6 /28

C4. General Regression

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s’.

Propositional state variable v is true in s’ iff
> effect e makes it true, or
> it remains true, i.e., it is true in s and not made false by e.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Regressing State Variables

C4. General Regression Regressing State Variables

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)
Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v, e),
is defined as the following logical formula:

regr(v, e) = effcond(v, e) V (v A —effcond(—v, €)).

Does this capture add-after-delete semantics correctly?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 8 /28

C4. General Regression Regressing State Variables

Regressing State Variables: Example

Example
Lete=(b>a)A(c>-a)AbA—d.

v ‘ effcond(v, e) effcond(—v, e) ‘ regr(v, e)

alb c bV (aN—c)

b|T 1 TV(bA-L)=T
c| L 1 Lv(cn-Ll)=c
d| L T LVv(dA-T)=1

Reminder: regr(v, e) = effcond(v, e) V (v A\ —effcond(—v, e))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 9 /28

C4. General Regression

Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v,e))
Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v, e) iff s[e] = v.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Regressing State Variables

10 / 28

C4. General Regression Regressing State Variables

Regressing State Variables: Correctness (2)

Proof.
(=): We know s |= regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, e)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v, e).
Then s[e] = v by the first case in the definition of s[e] (Ch. B3).

Case 2: s |= (v A —effcond(—v, e)).

Then s = v and s £ effcond(—v, e).

We may additionally assume s [~ effcond(v, e)

because otherwise we can apply Case 1 of this proof.
Then s[e] = v by the third case in the definition of s[e].

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 11 /28

C4. General Regression

Regressing State Variables: Correctness (3)

Proof (continued).
(«<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].
» By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, e)).
» Hence s |= —effcond(v, e) A (—v V effcond(—v, €)).
» From the first conjunct, we get s |= —effcond(v, e)
and hence s [~ effcond(v, e).
» From the second conjunct, we get s |= —v V effcond(—v, e).
» Case 1: s = —w. Then v is false before applying e
and remains false, so s[e] = v.

» Case 2: s |= effcond(—v, e). Then v is deleted by e
and not simultaneously added, so s[e] F~ v.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025

Regressing State Variables

12 / 28

C4. General Regression Regressing Formulas Through Effects

C4.2 Regressing Formulas Through
Effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 13 /28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Idea

> We can now generalize regression from state variables
to general formulas over state variables.

» The basic idea is to replace every occurrence of every state
variable v by regr(v, e) as defined in the previous section.

» The following definition makes this more formal.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 14 / 28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,

and let ¢ be a formula over propositional state variables.
The regression of ¢ through e, written regr(p, €),

is defined as the following logical formula:

regr(T,e) =T
regr(l,e) =1
regr(v, e) = effcond(v, e) V (v A —effcond(—v, e))
regr(—), €) = ~regr(v,)
regr(v) V x, €) = regr(y, e) V regr(x; e)
regr(y) A x, e) = regr(v, e) A regr(x; e).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 15 / 28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Example

Example
Lete=(b>a)A(c>-a)AbA—d.
Recall:

» regr(a,e) = bV (aA-c)

> regr(b, e) =

We get:

regr((avVd)A(cVvd),e)=((bV(aA—c))VL)A(cV L)
=(bVv(an—c))Ac
=bAc

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 16 / 28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(, €))
Let ¢ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s = regr(p, €) iff s[e] = ¢.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 17 / 28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Correctness (2)

Proof.
The proof is by structural induction on ¢.

Induction hypothesis: s |= regr(v, e) iff s[e] = ¢
for all proper subformulas 1) of .

Base case ¢ = T:
We have regr(T,e) =T, and s = T iff s[e] &= T is correct.

Base case ¢ = L:
We have regr(L,e) = L, and s = L iff s[e] = L is correct.

Base case p = v:
We have s |= regr(v, e) iff s[e] = v from the previous lemma.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 18 / 28

C4. General Regression Regressing Formulas Through Effects

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).
Inductive case ¢ = —:
s = regr(—, e) iff s |= —regr(1), €)
iff s b= regr(v, e)
iff s[e] = ¢
iff s[e] E -

Inductive case ¢ =Y V x:
s |= regr(t V X,) iff s |= regr(, €) V regr(x, €)
iff s |= regr(1, e) or s |= regr(x, e)
iff s[e] = ¢ or s[e] = x
iff se] = Vv x
Inductive case ¢ =Y A x:
Like previous case, replacing “V" by “A"
and replacing “or” by “and”.]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 19 / 28

C4. General Regression Regressing Formulas Through Operators

C4.3 Regressing Formulas Through
Operators

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 20 / 28

C4. General Regression Regressing Formulas Through Operators

Regressing Formulas Through Operators: Idea

> We can now regress arbitrary formulas
through arbitrary effects.

» The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula .

» There are two requirements:

» The operator o must be applicable in the state s.
» The resulting state s[o] must satisfy .

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 21 / 28

C4. General Regression Regressing Formulas Through Operators

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)
In a propositional planning task, let o be an operator,
and let ¢ be a formula over state variables.

The regression of ¢ through o, written regr(¢p, o),
is defined as the following logical formula:

regr(, 0) = pre(o) A regr(p, eff(0)).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 22 /28

C4. General Regression Regressing Formulas Through Operators

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(ip, 0))
Let ¢ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s |= regr(y, o) iff o is applicable in s and s[o] = .

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 23 /28

C4. General Regression Regressing Formulas Through Operators

Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(p, 0) = pre(o) A regr(p, eff0))

Proof.

Case 1: s |= pre(0).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(yp, e) iff s[e] = ¢, where e = eff{0).

This was proved in the previous lemma.

Case 2: s [~ pre(0).

Then s [~ regr(p, 0) and o is not applicable in s.

Hence both statements are false and therefore equivalent. [

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 24 /28

C4. General Regression Regressing Formulas Through Operators

Regression Examples (1)

Examples: compute regression and simplify to DNF

> regr(b, (a, b))
=aA(TV(bA—-L))
=a

> regr(bAcAd,(a,b))
=aAN(TV(bA-LYOA(LV(cA=-L)A(LV(dA-DL))
=aAcANhd

» regr(b A —c,(a,bAc))
=aAN(TV(bA-L)A(TV(cA—L))

C4. General Regression Regressing Formulas Through Operators

Regression Examples (2)

Examples: compute regression and simplify to DNF
» regr(b,(a,c > b))
=aA(cV(bA—1))
=aA(cVb)
=(aAc)V(anb)
> regr(b, (a,(c > b) A ((d A —c) > —b)))
=aA(cV(bA-(dAc)))
=aA(cV(bA(=d V)
an(cV(bA=d)V(bAc))
aN(cV(bA—d))
=(anc)V(aAbA—d)

=aANTAL
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 25 / 28
C4. General Regression Summary

C4.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 27 / 28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 26 / 28
C4. General Regression Summary
Summary

> Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

> state variables made true (by add effects)
> state variables remaining true (by absence of delete effects)
» Regression of propositional state variables can be generalized
to arbitrary formulas ¢ by replacing each occurrence
of a state variable in ¢ by its regression.
P> Regressing a formula ¢ through an operator involves
regressing through the effect and enforcing the precondition.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 8, 2025 28 / 28

Planning and Optimization
C5. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Roger

Universitat Basel

October 13, 2025

Planning and Optimization

October 13, 2025 — C5. SAT Planning: Core ldea and Sequential Encoding

C5.1 Introduction

C5.2 Formula Overview

C5.3 Initial State, Goal, Operator Selection

C5.4 Transitions

C5.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 13, 2025

2/30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 1 /30
Content of the Course
— Prelude
— Foundations —{ Introduction
— Abstraction — Symbolic Search
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 3 /30

C5. SAT Planning: Core ldea and Sequential Encoding

C5.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 13, 2025

Introduction

4/ 30

C5. SAT Planning: Core Idea and Sequential Encoding Introduction

SAT Solvers

» SAT solvers (algorithms that find satisfying assignments
to CNF formulas) are one of the major success stories
in solving hard combinatorial problems.

» Can we leverage them for classical planning?

~» SAT planning (a.k.a. planning as satisfiability)

background on SAT Solvers:
~» Foundations of Artificial Intelligence Course, Ch. E4-E5

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 5 /30

C5. SAT Planning: Core Idea and Sequential Encoding Introduction

Complexity Mismatch

» The SAT problem is NP-complete,
while PLANEX is PSPACE-complete.

~ one-shot polynomial reduction from PLANEX to SAT
not possible (unless NP = PSPACE)

C5. SAT Planning: Core Idea and Sequential Encoding Introduction

Solution: lterative Deepening

» We can generate a propositional formula that tests
if task I has a plan with horizon (length bound) T
in time O(||M||* - T) (~ pseudo-polynomial reduction).
» Use as building block of algorithm that probes
increasing horizons (a bit like IDA™).

» Can be efficient if there exist plans
that are not excessively long.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 7/ 30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 6 / 30
C5. SAT Planning: Core Idea and Sequential Encoding Introduction
SAT Planning: Main Loop
basic SAT planning algorithm:
SAT Planning
def satplan():
for Te{0,1,2,... }:
¢ := build_sat_formula(, T)
| = sat_solver(yp) > returns a model or none
if / is not none:
return extract_plan(l, T, /)
Termination criterion for unsolvable tasks?
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 8 /30

C5. SAT Planning: Core Idea and Sequential Encoding

C5.2 Formula Overview

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

9/

Formula Overview

30

C5. SAT Planning: Core Idea and Sequential Encoding Formula Overview

SAT Formula: CNF?

» SAT solvers require conjunctive normal form (CNF), i.e.,
formulas expressed as collection of clauses.

» We will make sure that our SAT formulas are in CNF
when our input is a STRIPS task.

» We do allow fully general propositional tasks, but then
the formula may need additional conversion to CNF.

October 13, 2025 10 / 30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

C5. SAT Planning: Core Idea and Sequential Encoding

SAT Formula: Variables

» given propositional planning task N = (V,/,0,~)
» given horizon T € Nyg

Variables of the SAT Formula
> propositional variables v/ forallve V,0<i< T
encode state after / steps of the plan
» propositional variables o' forallo € 0,1<i< T
encode operator(s) applied in i-th step of the plan

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

11/

Formula Overview

C5. SAT Planning: Core Idea and Sequential Encoding Formula Overview

Formulas with Time Steps

Definition (Time-Stamped Formulas)
Let ¢ be a propositional logic formula over the variables V.
Let0 </ <T.

We write ¢’ for the formula obtained from ¢

by replacing each v € V with v'.

Example: ((aAb)V —c)d = (a3 Ab3)V -3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 12 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Formula Overview

SAT Formula: Motivation

We want to express a formula whose models

are exactly the plans/traces with T steps.

For this, the formula must express four things:
» The variables v° (v € V) define the initial state.
» The variables v (v € V) define a goal state.

> We select exactly one operator variable o' (o € O)
for each timestep 1 </ < T.

> If we select o', then variables v/~ and v/ (v € V)
describe a state transition from the (i — 1)-th state of the plan
to the i-th state of the plan (that uses operator o).

The final formula is the conjunction of all these parts.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 13 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Initial State, Goal, Operator Selection

C5.3 Initial State, Goal, Operator
Selection

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 14 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

SAT Formula: Initial State

Initial State, Goal, Operator Selection

SAT Formula: Initial State
initial state clauses:

> 0 forall ve Vwith I(v)=T
» -0 forall ve Vwith I(v)=F

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 15 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Initial State, Goal, Operator Selection

SAT Formula: Goal

SAT Formula: Goal
goal clauses:

PfyT

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 16 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Initial State, Goal, Operator Selection

SAT Formula: Operator Selection

Let O = {o1,...,0n}.

SAT Formula: Operator Selection
operator selection clauses:

> ojV---Vol forall1<i<T
operator exclusion clauses:

> ﬁoj’-'\/ﬁo,’; forall 1<i<T,1<j<k<n

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 17 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

C5.4 Transitions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

Transitions

18 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Transitions

SAT Formula: Transitions

We now get to the interesting/challenging bit:
encoding the transitions.
Key observations: if we apply operator o at time i,
> its precondition must be satisfied at time i — 1:
o' — pre(o)'~1
» variable v is true at time j iff its regression is true at i — 1:
o' — (v < regr(v, ef0))71)

Question: Why regr(v, eff0)), not regr(v,0)?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 19 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

Simplifications and Abbreviations

» Let us pick the last formula apart to understand it better
(and also get a CNF representation along the way).

» Let us call the formula 7 (“transition”):
T=0 — (v < regr(v,eff0))71).
» First, some abbreviations:
> Let e = eff0).
> Let p = regr(v, e) (“regression”).
We have p = effcond(v, €) V (v A —effcond(—v, €)).
> Let a = effcond(v, €) (“added”).
> Let ¢ = effcond(—v, e) (“deleted”).

~ =0 = (v & pTl) with p=a V(v A —d)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

Transitions

20 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Transitions C5. SAT Planning: Core Idea and Sequential Encoding Transitions

Picking it Apart (1) Picking it Apart (2)

Reminder: 74 = o' — (v/ — p'~1) with p = a V (v A =6)

Reminder: 7= o — (v/ +3 p'~1) with p = a V (v A =d) n=0 — (Vi s pi—l)
F=o (v ¢ pit =0 = (=pt =)
=o' > (V' 5 /A (V) = (@A) = o
= (0 = (Vs)AL = (0 V) = (0" A=(@ TV (VTR AST))) =
- - = (o' A (=P A (mVITEV Y)Y = oV
(A

= ((o' A=t A=V = v)
™ pe

v
o' A=a Tt AGTY) =
((

v

~~ consider this two separate constraints 74 and ™

~~ consider this two separate constraints 791 and 717

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 21 / 30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 22 / 30
C5. SAT Planning: Core Idea and Sequential Encoding Transitions C5. SAT Planning: Core Idea and Sequential Encoding Transitions
Interpreting the Constraints (1) Picking it Apart (3)

Can we give an intuitive description of 711 and 7157
~+ Yes! Almost done!
> 1= (o' Ama/TEA VT = v Reminder: 7 = o' — (p'~! — v/) with p = a V (v A —6)
“When applying o, if v is false and o does not add it,
it remains false.” m=0 = (pt = v)
» called negative frame clause
» in clause form: =o' V o/ v v v Y

> 7= (o' AT AT = v

= (oi A pi_l) i
= (oi A (ai_l vV (v’._1 A —|5i_1))) —

— (A i-1 i inyiml A _5i-1 i
“When applying o, if o deletes v and does not add it, =((0ha™) =)/\S(O AV AST) o V)
it is false afterwards.” (Note the add-after-delete semantics.) 21 22
> called negative effect clause . . .
> in clause form: —o/ V a1V —§i~1\ =y ~~ consider this two separate constraints 751 and 7

For STRIPS tasks, these are indeed clauses. (And in general?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 23 / 30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 24 /30

C5. SAT Planning: Core Idea and Sequential Encoding

Interpreting the Constraints (2)

How about an intuitive description of 151 and 157
> = (0 AaT) = v
“When applying o, if o adds v, it is true afterwards.”
> called positive effect clause
» in clause form: =o' V =o'~ v v/
> 1o = (o' AviTL A=) = v
“When applying o, if v is true and o does not delete it,
it remains true.”
» called positive frame clause
» in clause form: =o' vV =v/TL v 6Ly Y/

For STRIPS tasks, these are indeed clauses. (But not in general.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

Transitions

25 /

30

C5. SAT Planning: Core Idea and Sequential Encoding Transitions

SAT Formula: Transitions

SAT Formula: Transitions
precondition clauses:

> -0’V pre(o)~1 forall1<i<T,o0€O
positive and negative effect clauses:

> —o' Vool forall1<i<T,oeO,veV

> o' va Tty oy forall1<i<T,0€0,veV
positive and negative frame clauses:

> o v-vitlveilyyi forall1</<T,0e€0,veV

> o valvvitlv =y forall1<i<T,o0eO0,veV
where o = effcond(v, eff0)), 6 = effcond(—v, eff{ 0)).

For STRIPS, all except the precondition clauses are in clause form.

The precondition clauses are easily convertible to CNF
(one clause —o’ V v/~ ! for each precondition atom v of o).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 26 / 30

C5. SAT Planning: Core Idea and Sequential Encoding

C5.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

Summary

27 /

C5. SAT Planning: Core Idea and Sequential Encoding Summary

Summary: Sequential SAT Encoding (1)

Sequential SAT Encoding (1)
initial state clauses:
> 0 forall ve Vwith I(v) =T
> -0 for all v € V with I(v) =F
goal clauses:
> ,}/T
operator selection clauses:
> o{\/---\/o,"7 forall1<i<T
operator exclusion clauses:

> —|of\/—|o,"< forall1<i<T,1<j<k<n

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 28 / 30

C5. SAT Planning: Core Idea and Sequential Encoding Summary C5. SAT Planning: Core Idea and Sequential Encoding Summary

Summary: Sequential SAT Encoding (2) Summary

Sequential SAT Encoding (2) » SAT planning (planning as satisfiability) expresses a sequence
precondition clauses: of bounded-horizon planning tasks as SAT formulas.

> -0V pre(o)t forall1<i<T,ocO > Plans can be extracted from satisfying assignments;
positive and negative effect clauses: unsolvable tasks are challenging for the algorithm.

> —o'v-allvy/ forall1<i<T,o0€eO,veV > For' each time s'tep, there are proposit'ions encoding .

. . . .) which state variables are true and which operators are applied.
> —o'vatv=slyv =y forall1<i<T,oeO,veV .)) .
.] » We describe a basic sequential encoding

positive and negative frame clauses: where one operator is applied at every time step.

g ﬁo’: v ﬁf/iil v {5;71 v Vi, foralll<i<T,0€0 veV » The encoding produces a CNF formula for STRIPS tasks.

> colvaltvyTiveyt forall1<i< T, 0€0, veV » The encoding follows naturally (with some work) from using
where o = effcond(v, eff0)), § = effcond(—v, eff(0)). regression to link state variables in adjacent time steps.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 29 / 30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 30 / 30

Planning and Optimization
C6. SAT Planning: Parallel Encoding

Malte Helmert and Gabriele Roger

Universitat Basel

October 13, 2025

Planning and Optimization
October 13, 2025 — C6. SAT Planning: Parallel Encoding

C6.1 Introduction

C6.2 Adapting the SAT Encoding

C6.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 13, 2025

2/ 20

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 1/20
Content of the Course
— Prelude
— Foundations —{ Introduction
— Abstraction — Symbolic Search
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 3/20

C6. SAT Planning: Parallel Encoding

C6.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 13, 2025

Introduction

4/ 20

C6. SAT Planning: Parallel Encoding Introduction C6. SAT Planning: Parallel Encoding Introduction

Efficiency of SAT Planning Number of Variables

Reminder:

> given propositional planning task N = (V,/, 0,)

» All other things being equal, the most important aspect > given horizon T € N
for efficient SAT solving is the number of propositional
variables in the input formula. Variables of the SAT Formula

» For sufficiently difficult inputs, runtime scales > propositional variables v/ forallve V,0<i< T
exponentially in the number of variables. encode state after / steps of the plan

~> Can we make SAT planning more efficient > propositional variables o' forallo€ 0,1<i< T
by using fewer variables? encode operator(s) applied in i-th step of the plan

~ V|- (T +1)+|O0|- T variables
~> SAT solving runtime usually exponential in T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 5 /20 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 6 /20
C6. SAT Planning: Parallel Encoding Introduction C6. SAT Planning: Parallel Encoding Introduction
Parallel Plans and Commutativity Parallel Plan Extraction

Can we get away with shorter horizons?

Idea:
» allow parallel plans in the SAT encoding:
multiple operators can be applied in the same step
if they do not interfere

> If we can guarantee commutativity, we can allow multiple
operators at the same time in the SAT encoding.

> A parallel plan (with multiple o’ used for the same i)
extracted from the SAT formula can then be converted
into a “regular” plan by ordering the operators
within each time step arbitrarily.

Definition (commutative, interfere)
Let O’ = {o1,...,0n} be a set of operators applicable in state s.
We say that O’ is commutative in s if
» for all permutations 7 of O', s[x] is defined, and
» for all permutations 7, ' of O', s[r] = s[’].
We say that the set O’ interferes in s if it is not commutative in s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 7 /20 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 8 /20

C6. SAT Planning: Parallel Encoding Introduction

Challenges for Parallel SAT Encodings

Two challenges remain:
» our current SAT encoding does not allow concurrent operators

» how do we ensure that concurrent operators are commutative?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 9 /20

C6. SAT Planning: Parallel Encoding Adapting the SAT Encoding

C6.2 Adapting the SAT Encoding

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 10 / 20

C6. SAT Planning: Parallel Encoding

Reminder: Sequential SAT Encoding (1)

Adapting the SAT Encoding

Sequential SAT Encoding (1)
initial state clauses:

> 0 forall ve Vwith I(v) =T

> -0 for all v € V with I(v) =F
goal clauses:

> ,}/T

operator selection clauses:
> ojV---Vol

operator exclusion clauses:
> —of Vo] forall1<i<T,1<j<k<n

forall1<i<T

~~ operator exclusion clauses must be adapted

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 11 / 20

C6. SAT Planning: Parallel Encoding Adapting the SAT Encoding

Reminder: Sequential SAT Encoding (2)

Sequential SAT Encoding (2)
precondition clauses:

> -0V pre(o) ! forall1<i<T,o0€O
positive and negative effect clauses:

> o' Vool forall1<i<T,o0€eO,veV

> o' va Tty forall1<i<T,o€O0,veV
positive and negative frame clauses:

> o'Vttt forall1<i<T,o0€e0,veV

> —o'vatvvitly=y o forall1<i<T,0eO,veV
where o = effcond(v, eff0)), § = effcond(—v, eff(0)).

~= rewrite clauses as implications

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 12 / 20

C6. SAT Planning: Parallel Encoding Adapting the SAT Encoding

Sequential SAT Encoding (2) Rewritten as Implications

Sequential SAT Encoding (2) Rewritten
precondition clauses:

> o — pre(o) ! forall1<i<T,0€O
positive and negative effect clauses:
> (o' AaiTt) = v forall 1 <i

T,0€0,veV
> (/AN sV forall 1< i< T

,0€0,veV
positive and negative frame clauses:
> (' AVITIA-V) 56t forall1<i<T,0€0,veV
> (ol A=vITIAV) s a7t forall1<i<T,0€0,veV
where o = effcond(v, eff0)), § = effcond(—v, eff(0)).

~~ frame clauses must be adapted

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 13 /20

C6. SAT Planning: Parallel Encoding

Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses =0/ \VV =0}
forall1<i<T,1<j<k<n

> Ideally: replace with clauses that express “for all states s,
the operators selected at time / are commutative in s”

> but: testing if a given set of operators interferes
in any state is itself an NP-complete problem
~> use something less heavy: a sufficient condition
for commutativity can be expressed
at the level of pairs of operators

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Adapting the SAT Encoding

October 13, 2025 14 / 20

C6. SAT Planning: Parallel Encoding Adapting the SAT Encoding

Conflicting Operators

> Intuitively, two operators conflict if

» one can disable the precondition of the other,
» one can override an effect of the other, or
» one can enable or disable an effect condition of the other.

» If no two operators in a set O’ conflict,
then O’ is commutative in all states.

» This is still difficult to test, so we restrict attention
to the STRIPS case in the following.

Definition (Conflicting STRIPS Operator)
Operators o and o' of a STRIPS task M conflict if
> o deletes a precondition of o’ or vice versa, or

P> o deletes an add effect of o’ or vice versa.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 15 / 20

C6. SAT Planning: Parallel Encoding

Adapting the Operator Exclusion Clauses: Solution

Reminder: operator exclusion clauses ﬂof V =0l
forall1<i<T,1<j<k<n

Solution:
Parallel SAT Formula: Operator Exclusion Clauses
operator exclusion clauses:

> ol Voo forall 1<i<T,1<j<k<n
such that o; and o, conflict

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 13, 2025 16 /

Adapting the SAT Encoding

20

C6. SAT Planning: Parallel Encoding

Adapting the Frame Clauses: Idea

Reminder: frame clauses
(" AviTEA =) = 61 forall1 <
(o' AN=viTEAV) = a7t forall 1<
What is the problem?
> These clauses express that if o is applied at time i
and the value of v changes, then o caused the change.
» This is no longer true if we want to be able
to apply two operators concurrently.

~> Instead, say “If the value of v changes,
then some operator must have caused the change.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

Adapting the SAT Encoding

T,oc0O,veV
T,ocO,veV

C6. SAT Planning: Parallel Encoding

Adapting the Frame Clauses: Solution

Reminder: frame clauses
(o' AviTEA V) = 671 forall 1<
(o' AN=viTEAV) = a7t forall 1<

T, o0, veV
T, o0, veV

INIA

Solution:

Parallel SAT Formula: Frame Clauses
positive and negative frame clauses:
> (VA = (0] A GG) VeV (0 A GG)
forall1<i<T,veV
> (vTEAV) = ((of Aag) Ve V(o Ay)
forall1<i<T,veV

where «a, = effcond(v, eff0)), do, = effcond(—v, eff0)),
O ={o1,...,0n}.

For STRIPS, these are in clause form.

Adapting the SAT Encoding

C6. SAT Planning: Parallel Encoding

C6.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 18 / 20
C6. SAT Planning: Parallel Encoding Summary
Summary
» As a rule of thumb, SAT solvers generally perform better
on formulas with fewer variables.
» Parallel encodings reduce the number of variables
by shortening the horizon needed to solve a planning task.
» Parallel encodings replace the constraint that
operators are not applied concurrently by the constraint that
conflicting operators are not applied concurrently.
» To make parallelism possible, the frame clauses
also need to be adapted.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 13, 2025 20 / 20

Planning and Optimization
C7. Symbolic Search: Binary Decision Diagrams

Malte Helmert and Gabriele Roger

Universitat Basel

October 15, 2025

Planning and Optimization
October 15, 2025 — C7. Symbolic Search: Binary Decision Diagrams

C7.1 Motivation

C7.2 Data Structures for State Sets
C7.3 Binary Decision Diagrams

C7.4 BDDs as Canonical Representations

C7.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 1/32
Content of the Course
— Prelude
— Foundations — Introduction
— Delete Relaxation | — SAT Planning
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 3 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 2 /32
C7. Symbolic Search: Binary Decision Diagrams Motivation
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 4 /32

C7. Symbolic Search: Binary Decision Diagrams Motivation C7. Symbolic Search: Binary Decision Diagrams Motivation
Symbolic Search Planning: Basic ldeas Symbolic Breadth-First Progression Search
Symbolic Breadth-First Progression Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
P> come up with a good data structure for sets of states (eaclz)edo = {/}
i=
> hope: (at least some) exponentially large state sets loop:
can be represented as polynomial-size data structures

if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

> simulate a standard search algorithm like
breadth-first search using these set representations

~ If we can implement operations models, {I}, N, # 0, U,
apply and = efficiently, this is a reasonable algorithm.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 5 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 6 /32

C7. Symbolic Search: Binary Decision Diagrams

Data Structures for State Sets C7. Symbolic Search: Binary Decision Diagrams

Representing State Sets

Data Structures for State Sets

C7.2 Data Structures for State Sets

We need to represent and manipulate state sets (again)!
> How about an explicit representation, like a hash table?

» And how about our good old friend, the formula?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 15, 2025 7 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 8 /32

C7. Symbolic Search: Binary Decision Diagrams Data Structures for State Sets

Time Complexity: Explicit Representations vs. Formulas

Let k be the number of state variables,
|S| the number of states in S and
|S|| the size of the representation of S.

C7. Symbolic Search: Binary Decision Diagrams

Which Operations are

» Explicit representatio

Important?

ns such as hash tables

are unsuitable because their size grows linearly
with the number of represented states.

» Formulas are very efficient for some operations,

but not for other important operations

needed by the breadt

h-first search algorithm.

» Examples: S # 0?7, S =57

Data Structures for State Sets

Hash table Formula

seS? O(k) o(lISI1)

S:=5U{s} O(k) O(k)

S:=5\{s} O(k) O(k)

Sus’ O(K|S| + k|S')) 0(1)

sns O(k|S| + k|S']) 0(1)

S\ O(k|S| + k|S')) 0(1)

5 O(k2%) 0(1)

{s|s(v) =T} O(k2") o(1)

S=0? 0o(1) co-NP-complete

5$=57 O(k|S]) co-NP-complete

|S| 0o(1) #P-complete
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 9 /32
C7. Symbolic Search: Binary Decision Diagrams Data Structures for State Sets

Canonical Representations

» One of the problems with formulas is that they allow
many different representations for the same set.

» For example, all unsatisfiable formulas represent (.
This makes equality tests expensive.

> We would like data structures with a canonical representation,
i.e., with only one possible representation for every state set.

» Reduced ordered binary decision diagrams (BDDs)
are an example of such a canonical representation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 11 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 10 / 32
C7. Symbolic Search: Binary Decision Diagrams Data Structures for State Sets
Time Complexity: Formulas vs. BDDs
Let k be the number of state variables,
|S| the number of states in S and
|S|| the size of the representation of S.
Formula BDD
s€S? o(JIs) O(k)
S:=5U{s} O(k) O(k)
S:=5\{s} O(k) O(k)
sus’ o) oSSy
sns o) olsiis)
S\S o(1) o(lIsIIIs 1N
S o(1) o(lIslh)
{s|s(v)=T} o(1) o(1)
S=07 co-NP-complete 0(1)
s$=57 co-NP-complete 0o(1)
|S]| #P-complete o(lISsl)
Remark: Optimizations allow BDDs with complementation (S)
in constant time, but we will not discuss this here.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 12 / 32

C7. Symbolic Search: Binary Decision Diagrams Binary Decision Diagrams

C7.3 Binary Decision Diagrams

October 15, 2025 13 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

C7. Symbolic Search: Binary Decision Diagrams

BDD Example

Example
Possible BDD for (u A v) V w

October 15, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Binary Decision Diagrams

14 / 32

C7. Symbolic Search: Binary Decision Diagrams Binary Decision Diagrams

Binary Decision Diagrams: Definition

Definition (BDD)
Let V be a set of propositional variables.

A binary decision diagram (BDD) over V is a directed acyclic
graph with labeled arcs and labeled vertices such that:

» There is exactly one node without incoming arcs.
» All sinks (nodes without outgoing arcs) are labeled 0 or 1.

P All other nodes are labeled with a variable v € V
and have exactly two outgoing arcs, labeled 0 and 1.

A note on notation:
» In BDDs, 1 stands for T and 0 for F.

> We follow this customary notation in BDDs,
but stick to T and F when speaking of logic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 15 / 32

C7. Symbolic Search: Binary Decision Diagrams

Binary Decision Diagrams: Terminology

BDD Terminology
» The node without incoming arcs is called the root.
» The labeling variable of an internal node
is called the decision variable of the node.
» The nodes reached from node n via the arc labeled i € {0,1}
is called the /-successor of n.
» The BDDs which only consist of a single sink
are called the zero BDD and one BDD.
Observation: If B is a BDD and n is a node of B, then the
subgraph induced by all nodes reachable from n is also a BDD.

» This BDD is called the BDD rooted at n.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

Binary Decision Diagrams

16 / 32

C7. Symbolic Search: Binary Decision Diagrams Binary Decision Diagrams

BDD Semantics

Testing whether a BDD Includes a Variable Assignment
def bdd-includes(B: BDD, I: variable assignment):
Set n to the root of B.
while n is not a sink:
Set v to the decision variable of n.
Set n to the 1-successor of n if /(v) =T and
to the 0-successor of n if /(v) =F.
return true if n is labeled 1, false if it is labeled 0.

Definition (Set Represented by a BDD)
Let B be a BDD over variables V.
The set represented by B, in symbols r(B),

consists of all variable assignments / : V — {T,F}
for which bdd-includes(B, I) returns true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 17 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations

C7.4 BDDs as Canonical
Representations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 18 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations

Ordered BDDs: Motivation

In general, BDDs are not a canonical representation for sets of
interpretations. Here is a simple counter-example (V = {u, v}):

Example (BDDs for u A =v with Different Variable Order)

=
o

1 0 1 0

Both BDDs represent the same state set, namely the singleton set
{{u—T,v— F}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 19 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations

Ordered BDDs: Definition

> As a first step towards a canonical representation,
we now require that the set of variables is totally ordered
by some ordering <.

» In particular, we will only use variables vy, v, v3, ...
and assume the ordering v; < v; iff i <.

Definition (Ordered BDD)

A BDD is ordered (w.r.t. <) iff for each arc from a node
with decision variable v to a node with decision variable v,
we have u < v.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 20 / 32

C7. Symbolic Search: Binary Decision Diagrams

Ordered BDDs: Example

BDDs as Canonical Representations

Example (Ordered and Unordered BDD)

=
o

1 0 1 0

The left BDD is ordered w.r.t. the ordering we use in this chapter,
the right one is not.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 21 / 32

C7. Symbolic Search: Binary Decision Diagrams

Reduced Ordered BDDs: Are Ordered BDDs Canonical?

BDDs as Canonical Representations

Example (Two equivalent BDDs that can be reduced)

o : T]L\\.\

» Ordered BDDs are still not canonical:
both ordered BDDs represent the same set.

0 11 0

o

» However, ordered BDDs can easily be made canonical.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 22 / 32

C7. Symbolic Search: Binary Decision Diagrams

Reduced Ordered BDDs: Reductions (1)

BDDs as Canonical Representations

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Isomorphism Reduction)

If the BDDs rooted at two different nodes n and n’ are isomorphic,
then all incoming arcs of n’ can be redirected to n,
and all BDD nodes unreachable from the root can be removed.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 23 /32

C7. Symbolic Search: Binary Decision Diagrams

Reduced Ordered BDDs: Reductions (2)

BDDs as Canonical Representations

Example (Isomorphism Reduction)

1
0,
0
1
0 11 0
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 24 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

M. Helmert, G. Roger (Universitat Basel) October 15, 2025 25 / 32

Planning and Optimization

C7. Symbolic Search: Binary Decision Diagrams

Reduced Ordered BDDs: Reductions (2)

Example (Isomorphism Reduction)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

BDDs as Canonical Representations

October 15, 2025 26 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations

Reduced Ordered BDDs: Reductions (3)

There are two important operations on BDDs
that do not change the set represented by it:

Definition (Shannon Reduction)

If both outgoing arcs of an internal node n of a BDD lead to
the same node m, then n can be removed from the BDD,
with all incoming arcs of n going to m instead.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 27 / 32

C7. Symbolic Search: Binary Decision Diagrams

Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

0 1

o

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

BDDs as Canonical Representations

October 15, 2025 28 / 32

C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations C7. Symbolic Search: Binary Decision Diagrams BDDs as Canonical Representations
Reduced Ordered BDDs: Reductions (4) Reduced Ordered BDDs: Definition
Definition (Reduced Ordered BDD)
Example (Shannon Reduction) An ordered BDD is reduced iff it does not admit
any isomorphism reduction or Shannon reduction.
1
Theorem (Bryant 1986)
0 For every state set S and a fixed variable ordering,
1 there exists exactly one reduced ordered BDD representing S.
1 Moreover, given any ordered BDD B, the equivalent reduced
0 ordered BDD can be computed in linear time in the size of B.
. . ~> Reduced ordered BDDs are the canonical representation
we are looking for.
From now on, we simply say BDD for reduced ordered BDD.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 29 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 30 / 32
C7. Symbolic Search: Binary Decision Diagrams Summary C7. Symbolic Search: Binary Decision Diagrams Summary
Summary

» Symbolic search is based on the idea of performing a

C7 . 5 S um mary state—spac.e search where many states are c.ons.lc!ered at once
by operating on sets of states rather than individual states.

» Binary decision diagrams are a data structure to compactly
represent and manipulate sets of variable assignments.

» Reduced ordered BDDs are a canonical representation
of such sets.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 31 /32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 32 /32

Planning and Optimization
C8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

October 15, 2025

Planning and Optimization
October 15, 2025 — C8. Symbolic Search: Full Algorithm

(8.1 Basic BDD Operations

(8.2 Formulas and Singletons
(8.3 Renaming

C8.4 Symbolic Breadth-first Search
(8.5 Discussion

C8.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 1/ 46
Content of the Course
— Prelude
— Foundations —{ Introduction
— Delete Relaxation | — SAT Planning
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 3 /46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 2/ 46
Devising a Symbolic Search Algorithm
» We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
» use BDDs as a black box data structure:
P care about provided operations and their time complexity
» do not care about their internal implementation
> Efficient implementations are available as libraries, e.g.:
» CUDD, a high-performance BDD library
» libbdd, shipped with Ubuntu Linux
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 4/ 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations: Preliminaries

C8 1 BaSiC BDD Operations > All BDDs work on a fixed and totally ordered

set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B||, the number of nodes in the BDD B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 5/ 46 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 6 /46
C8. Symbolic Search: Full Algorithm Basic BDD Operations C8. Symbolic Search: Full Algorithm Basic BDD Operations
BDD Operations (1) BDD Operations (2)
BDD operations: logical/set atoms BDD operations: logical/set connectives
» bdd-fullset(): build BDD representing all assignments » bdd-complement(B): build BDD representing r(B)
» in logic: T > in logic: —p
> time complexity: O(1) > time complexity: O(||B||)
» bdd-emptyset(): build BDD representing 0 » bdd-union(B, B'): build BDD representing r(B) U r(B’)
» in logic: L > in logic: (¢ V)
> time complexity: O(1) > time complexity: O(||B| - ||B'|)
» bdd-atom(v): build BDD representing {s | s(v) = T} » bdd-intersection(B, B’): build BDD representing r(B) N r(B’)
» in logic: v > in logic: (¢ A %)
> time complexity: O(1) > time complexity: O(||B|| - |B’]])

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 7/ 46 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 8 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, /): return true iff | € r(B)
> in logic: | |= 7
> time complexity: O(k)
» bdd-equals(B, B'): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 9 / 46

C8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written [T /v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=C)[T/Bl=(AAN(TV-C)=A
» (AN(BV-C))[F/Bl=(AAN(LV-C)=AAN-C

C8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—F,B—F,C— F},
{A—»T,B—T,C+— F},
{A-T,B—T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=-T,C—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 11 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 10 / 46
C8. Symbolic Search: Full Algorithm Basic BDD Operations
Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and Jv S (for sets).

Formally:

> v =o[T/v]Ve[F/V]
» JvS=S[T/v]USI[F/v]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 12 / 46

C8. Symbolic Search: Full Algorithm

Basic BDD Operations C8. Symbolic Search: Full Algorithm

Forgetting: Example BDD Operations (4)

Basic BDD Operations

Examples:

» S={{A—F,B—F, C— F},
{A»T,B—T,C+— F},
{A-T,B—~T,C—T}}

BDD operations: conditioning and forgetting

» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]

> in logic: ¢[t/Vv]

~ dABS ={{A—F,C — F}, > time complexity: O(||B||)
{A=T,C—F}, > bdd-forget(B, v):
{A-T,C—T}} build BDD representing 3v r(B)
~ 3CS={{A~F,B~ F}, > inlogic: 3vp (= [T/v]V ¢[F/V])
(A T,B TH > time complexity: O(||B||?)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 13 / 46 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 14 / 46

C8. Symbolic Search: Full Algorithm

Formulas and Singletons C8. Symbolic Search: Full Algorithm

Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of .

» We denote this computation with bdd-formula(y).

C8.2 Formulas and Singletons

» Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2") time.
(How is this possible?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 15 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 16 / 46

C8. Symbolic Search: Full Algorithm Formulas and Singletons

Singleton BDDs

> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).

C8. Symbolic Search: Full Algorithm Renaming

C8.3 Renaming

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 18 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 17 / 46
C8. Symbolic Search: Full Algorithm Renaming
Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> o =(AN(BV~C())
~ @[A— D] =(DAN(BV-C))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 19 / 46

C8. Symbolic Search: Full Algorithm Renaming

How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.

» For a BDD B, it is equally simple (O(||B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
o[X = Y] =3IX(p A (X < Y))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 20 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

C8.4 Symbolic Breadth-first Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 15, 2025 21 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 15, 2025 23 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V,/, O,~) with states S.
In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.
» use unprimed variables v to describe sets of states:
{s € S | some property}

» use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:

{(s,s’) | some property}

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 15, 2025 22 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-formula.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 24 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-singleton.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 15, 2025 25 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-union.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 27 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-emptyset, bdd-equals.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 15, 2025 26 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 28 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i =0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

How to do this?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 29 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that result from
applying some operator o € O in some state s € reached.

We have seen something similar already. ..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 30 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 7v(0) := pre(o) A A\, c\/ (regr(v, eff0)) < Vv').

States that o is applicable and describes how
» the new value of v, represented by v/,
P> must relate to the old state, described by variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 31 /46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (2)

» The formula 7y(0) describes all transitions s > s’
» induced by a single operator o
» in terms of variables V describing s
» and variables V// describing s’.
» The formula \/, .o Tv(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.
» The resulting BDD is called the transition relation
of the planning task, written as Ty (O).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 32 /46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 33 /46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B = T\/(O)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V',

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 34 /46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V',

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 35 /46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 36 / 46

C8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 37 / 46

C8. Symbolic Search: Full Algorithm

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.

Symbolic Breadth-first Search

C8. Symbolic Search: Full Algorithm Discussion

C8.5 Discussion

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 39 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 38 / 46
C8. Symbolic Search: Full Algorithm Discussion
Discussion
» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
> We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
> In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
Planning and Optimization October 15, 2025 40 / 46

M. Helmert, G. Roger (Universitat Basel)

C8. Symbolic Search: Full Algorithm

Variable Orders

For good performance, we need a good variable ordering.

> Variables that refer to the same state variable
before and after operator application (v and V')
should be neighbors in the transition relation BDD.

Discussion

C8. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to. ..

P regression and bidirectional search:
this is very easy and often effective

» uniform-cost search:
requires some work, but not too difficult in principle

P heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 42 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 41 / 46
C8. Symbolic Search: Full Algorithm Discussion
Literature (1)
[Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677691, 1986.
Reduced ordered BDDs.
@ Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 43 / 46

C8. Symbolic Search: Full Algorithm Discussion

Literature (2)

ﬁ Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

[@ David Speck, Jendrik Seipp and Alvaro Torralba.
Symbolic Search for Cost-Optimal Planning
with Expressive Model Extensions.

Journal of Artificial Intelligence Research 82,
pp. 1349-1405, 2025.
More general classes of planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025 44 / 46

C8. Symbolic Search: Full Algorithm

C8.6 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 15, 2025

Summary

45 /

46

C8. Symbolic Search: Full Algorithm

Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented
as BDDs.

» Based on this, we can implement a blind breadth-first search
in an efficient way.

» A good variable ordering is crucial for performance.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 15, 2025

Summary

46 /

46

Planning and Optimization
D1. Delete Relaxation: Relaxed Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

October 20, 2025

Planning and Optimization
October 20, 2025 — D1. Delete Relaxation: Relaxed Planning Tasks

D1.1 Heuristics
D1.2 Coming Up with Heuristics

D1.3 Relaxed Planning Tasks

D1.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 1/19
Content of the Course
— Prelude
—| Foundations
— Approaches
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 3/19

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 2 /19
D1. Delete Relaxation: Relaxed Planning Tasks Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 4/ 19

D1. Delete Relaxation: Relaxed Planning Tasks Heuristics

Planning as Heuristic Search

» Heuristic search is the most common approach to planning.

P ingredients: general search algorithm + heuristic
P heuristic estimates cost from a given state to a given goal

P progression: from varying states s to fixed goal ~
» regression: from fixed initial state / to varying subgoals ¢

» Over the next weeks, we study the main ideas
behind heuristics for planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 5/ 19

D1. Delete Relaxation: Relaxed Planning Tasks Heuristics

Reminder: Heuristics

Need to Catch Up?
» We assume familiarity with heuristics and their properties:
> heuristic h: S — Ry U {00}
» perfect heuristic h*: h*(s) cost of optimal solution from s

(oo if unsolvable)
» properties of heuristics h:
> safe: (h(s) = oo = h*(s) = oo) for all states s
> goal-aware: h(s) = 0 for all goal states s
» admissible: h(s) < h*(s) for all states s
> consistent: h(s) < cost(o) + h(s’) for all transitions s = s’

P connections between these properties

» If you are not familiar with these, we recommend Ch. B9-B10
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/studium/
computer-science-informatik/lehrangebot-£s25/
13548-1ecture-foundations-of-artificial-intelligence/

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 6 /19

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

D1.2 Coming Up with Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 7 /19

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

A Simple Heuristic for Propositional Planning Tasks

STRIPS (Fikes & Nilsson, 1971) used the number of state variables
that differ in current state s and a STRIPS goal vi A -+ A vy

h(s) :={i €{1,...,n} | s }E v}
Intuition: more satisfied goal atoms ~~ closer to the goal

~» STRIPS heuristic (a.k.a. goal-count heuristic)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 8 /19

https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/
https://dmi.unibas.ch/en/studium/computer-science-informatik/lehrangebot-fs25/13548-lecture-foundations-of-artificial-intelligence/

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

Criticism of the STRIPS Heuristic

What is wrong with the STRIPS heuristic?

» quite uninformative:
the range of heuristic values in a given task is small;
typically, most successors have the same estimate

> very sensitive to reformulation:
can easily transform any planning task into an equivalent one
where h(s) =1 for all non-goal states (how?)

P ignores almost all problem structure:
heuristic value does not depend on the set of operators!

~ need a better, principled way of coming up with heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 9 /19

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
» Simplify the problem, for example by removing
problem constraints.

» Solve the simplified problem (ideally optimally).
» Use the solution cost for the simplified problem
as a heuristic for the real problem.

As heuristic values are computed for every generated search state,
it is important that they can be computed efficiently.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 10 / 19

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

Relaxing a Problem: Example

Example (Route Planning in a Road Network)

The road network is formalized as a weighted graph over points

in the Euclidean plane. The weight of an edge is the road distance
between two locations.

Example (Relaxation for Route Planning)

Use the Euclidean distance \/]xl — %2+ |y1 — y2|?
as a heuristic for the road distance between (x1, y1) and (x2, y2)
This is a lower bound on the road distance (~> admissible).

~ We drop the constraint of having to travel on roads.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 11 /19

D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics

Planning Heuristics: Main Concepts

Major ideas for heuristics in the planning literature:

> delete relaxation ~ Part D
P abstraction ~ Part E
> critical paths ~~ not considered in this course
» landmarks ~ Part F
» network flows ~» Part F
» potential heuristics ~- Part F

We will consider most of them in this course.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 12 /19

D1. Delete Relaxation: Relaxed Planning Tasks Relaxed Planning Tasks

D1.3 Relaxed Planning Tasks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 13 /19

D1. Delete Relaxation: Relaxed Planning Tasks Relaxed Planning Tasks

Content of the Course

— Prelude

— Foundations

D1. Delete Relaxation: Relaxed Planning Tasks Relaxed Planning Tasks

Delete Relaxation: ldea

In positive normal form (Chapter B5, remember?),
good and bad effects are easy to distinguish*:

> Effects that make state variables true are good
(add effects).

» Effects that make state variables false are bad
(delete effects).

Idea of delete relaxation heuristics: ignore all delete effects.

(*) with a small caveat regarding conditional effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 15 / 19

Graphs
—|{ Abstraction
Relaxation
— Constraints Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 14 /19
D1. Delete Relaxation: Relaxed Planning Tasks Relaxed Planning Tasks

Delete-Relaxed Planning Tasks

Definition (Delete Relaxation of Operators)

The delete relaxation o™ of an operator o in positive normal form
is the operator obtained by replacing all negative effects —a
within eff0) by the do-nothing effect T.

Definition (Delete Relaxation of Propositional Planning Tasks)

The delete relaxation M of a propositional planning task
M= (V,I,O,v) in positive normal form is the planning task
Nt :=(V,I,{o" | 0 € 0},7).

Definition (Delete Relaxation of Operator Sequences)

The delete relaxation of an operator sequence m = (o1, ..., 0p)
is the operator sequence 71 := (o], ..., 0]).

Note: “delete” is often omitted: relaxation, relaxed

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 16 / 19

D1. Delete Relaxation: Relaxed Planning Tasks Relaxed Planning Tasks

Relaxed Planning Tasks: Terminology

» Planning tasks in positive normal form without delete effects
are called relaxed planning tasks.

» Plans for relaxed planning tasks are called relaxed plans.

» If M is a planning task in positive normal form and 7+
is a plan for M, then 7 is called a relaxed plan for I1.

D1. Delete Relaxation: Relaxed Planning Tasks

D1.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 20, 2025

Summary

18 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 17 / 19
D1. Delete Relaxation: Relaxed Planning Tasks Summary
Summary

> A general way to come up with heuristics:
solve a simplified version of the real problem,
for example by removing problem constraints.

> delete relaxation: given a task in positive normal form,
discard all delete effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 19 / 19

Planning and Optimization
D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

October 20, 2025

Planning and Optimization
October 20, 2025 — D2. Delete Relaxation: Properties of Relaxed Planning Tasks

D2.1 The Domination Lemma
D2.2 The Relaxation Lemma
D2.3 Consequences

D2.4 Monotonicity

D2.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 2 /24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 1/24
Content of the Course
— Prelude
— Foundations
Graphs
— Abstraction
Relaxation

— Constraints Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 3 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

D2.1 The Domination Lemma

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 4 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

On-Set and Dominating States

Definition (On-Set)
The on-set of an interpretation s is the set of propositional
variables that are true in s, i.e., on(s) = s 1({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)
An interpretation s’ dominates an interpretation s if
on(s) C on(s").

~ all state variables true in s are also true in s’

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 5 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

Domination Lemma (1)

Lemma (Domination)

Let s and s’ be interpretations of a set of propositional variables V,
and let x be a propositional formula over V

which does not contain negation symbols.

If s = x and s’ dominates s, then s’ = x.

Proof.
Proof by induction over the structure of y.

> Base case x = [: then s’ = T.
» Base case y = L: then s |~ L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 6 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

Domination Lemma (2)

Proof (continued).
» Base case x = v € V: if s |= v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ = v.
» Inductive case y = x1 /A Xx2: by induction hypothesis, our
claim holds for the proper subformulas y1 and 2 of x.

s Ex = s ExiAxe
= s Exiands Ex2
LH. (twi
(twiee) s'Exiand s’ Exo
== s' | x1 A X2
= s Ex.

» Inductive case y = x1 V x2: analogous
O]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 7/ 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

D2.2 The Relaxation Lemma

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 8 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

The add set of e in s, written addset(e,s),

and the delete set of e in s, written delset(e, s),

are defined as the following sets of state variables:

addset(e,s) = {v € V | s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff{ 0), s).

October 20, 2025 9 /24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)
Let s be a state, and let s’ be a state that dominates s.
© If o is an operator applicable in s,
then ot is applicable in s’ and s'[o™] dominates s[o].
@ If w is an operator sequence applicable in s,
then w is applicable in s' and s'[r"] dominates s[r].

© If additionally 7 leads to a goal state from state s,
then 7+ leads to a goal state from state s’.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025

The Relaxation Lemma

10 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (1)

Proof.
Let V be the set of state variables.
Part 1: Because o is applicable in s, we have s |= pre(o).

Because pre(o) is negation-free and s’ dominates s,
we get s’ = pre(o) from the domination lemma.

Because pre(ot) = pre(o), this shows that o™ is applicable in s

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 11 /24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s'[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff(0),s) = {v € V| s |= effcond(v, eff0))}
={ve V|s [effcond(v,effot))} (1)
C{ve V|s [effcond(v,effo™))} (2)

= addset(effo™),s'),

where (1) uses effcond(v, eff(0)) = effcond(v, effo™))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025

The Relaxation Lemma

12 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (3)

Proof (continued).
We then get:

on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s)
on(s) U addset(eff{0), s)

on(s') U addset(eff{o™), s")

on(s'[o™]),

N 1N

and thus s’[o™] dominates s[o].

This concludes the proof of Part 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 13 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Proof of Relaxation Lemma (4)

Proof (continued).
Part 2: by induction over n = |r|

Base case: m = ()

The empty plan is trivially applicable in s’, and

s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (01,...,0p41)

By the induction hypothesis, (0", ..., o) is applicable in &,
and t' = s'[(o], ..., 0)] dominates t = s[{o1,...,0n)].
Also, op41 is applicable in t.

Using Part 1, o, ; is applicable in t’ and s'[7] = [0}, ,]
dominates s[r] = t[on+1]-

This concludes the proof of Part 2.
October 20, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Relaxation Lemma

14 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (5)

Proof (continued).
Part 3: Let v be the goal formula.

From Part 2, we obtain that t’ = s'[7"] dominates t = s[r].
By prerequisite, t is a goal state and hence t |= .

Because the task is in positive normal form, =y is negation-free,
and hence t’' |= 7 because of the domination lemma.

Therefore, t' is a goal state. O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 15 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

D2.3 Consequences

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025

16

Consequences

/ 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Consequences

Consequences of the Relaxation Lemma

» The relaxation lemma is the main technical result
that we will use to study delete relaxation.

> Next, we show two further properties of delete relaxation
that will be useful for us.

» They are direct consequences of the relaxation lemma.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 17 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Consequences

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)
Let w be an operator sequence that is applicable in state s.
Then 7+ is applicable in s and s[7"] dominates s[r].

If T is a plan for 1, then 7% is a plan for M.

Proof.
Apply relaxation lemma with s’ = s. O]

~ Relaxations of plans are relaxed plans.
~+ Delete relaxation is no harder to solve than original task.

~ Optimal relaxed plans are never more expensive
than optimal plans for original tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 18 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Consequences

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let 7T be a relaxed operator sequence applicable in s.

Then 7 is applicable in s’ and s'[7 "] dominates s[n].

Proof.
Apply relaxation lemma with 7+ for 7,
noting that (7 +)" = x. O

~ If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 19 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Monotonicity

D2.4 Monotonicity

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 20 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Monotonicity

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Proof.
Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™),s) = on(s[o™]). O

~ Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 21 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Monotonicity

Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

~> next chapter

D2. Delete Relaxation: Properties of Relaxed Planning Tasks Summary

D2.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 23 / 24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 22 / 24
D2. Delete Relaxation: Properties of Relaxed Planning Tasks Summary
Summary

» With positive normal form, having more true variables is good.
» We can formalize this as dominance between states.

> It follows that delete relaxation is a simplification:
it is never harder to solve a relaxed task than the original one.

P In delete-relaxed tasks, applying an operator always takes us
to a dominating state and therefore never hurts.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 20, 2025 24 /24

Planning and Optimization
D3. Delete Relaxation: Finding Relaxed Plans

Malte Helmert and Gabriele Roger

Universitat Basel

October 22, 2025

Planning and Optimization
October 22, 2025 — D3. Delete Relaxation: Finding Relaxed Plans

D3.1 Greedy Algorithm

D3.2 Optimal Relaxed Plans

D3.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 22, 2025

2/ 16

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 1/16
Content of the Course
— Prelude
— Foundations
Graphs
— Abstraction
Relaxation

— Constraints Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 3 /16

D3. Delete Relaxation: Finding Relaxed Plans

D3.1 Greedy Algorithm

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Greedy Algorithm

October 22, 2025

4/ 16

D3. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

The Story So Far

> A general way to come up with heuristics is to solve
a simplified version of the real problem.

> delete relaxation: given a task in positive normal form,
discard all delete effects

» relaxation lemma: solutions for a state s
also work for any dominating state s’
» monotonicity lemma: s[o] dominates s

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 5/ 16

D3. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V [, 0", ~)

s:=1
= ()
loop forever:
if s =~
return 7

else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator o™ to 7.
s :=s[o"]
else:
return unsolvable

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 6 /16

D3. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Correctness of the Greedy Algorithm

The algorithm is sound:

> If it returns a plan, this is indeed a correct solution.
» [f it returns “unsolvable”, the task is indeed unsolvable

» Upon termination, there clearly is no relaxed plan from s.
> By iterated application of the monotonicity lemma,

s dominates /.
» By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
» Each iteration of the loop adds at least one atom to on(s).

» This guarantees termination after at most |V/| iterations.

» Thus, the algorithm can clearly be implemented
to run in polynomial time.

> A good implementation runs in O(||M|]).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 7/ 16

D3. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

» When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

» When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.

> Set h(s) to the cost of the generated relaxed plan.
» in general not well-defined:
different choices of o™ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 8 /16

D3. Delete Relaxation: Finding Relaxed Plans Greedy Algorithm

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

P Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

» However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 9 /16

D3. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

D3.2 Optimal Relaxed Plans

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 10 / 16

D3. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

Optimal Relaxation Heuristic

Definition (h™* heuristic)
Let M= (V,I,0,v) be a planning task in positive normal form
with states S.

The optimal delete relaxation heuristic h™ for I

is the function h: S — R{ U {oo}

where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for M} = (V,s, O, 7).

(can analogously define a heuristic for regression)

admissible /safe/goal-aware/consistent?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 11 /16

D3. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

The Set Cover Problem

Can we compute h™ efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {Cy,...,Cy}
with C; C U for all i € {1,...,n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,

a subcollection S = {S1,...,5m} C C

with SiU---US,=Uand m<K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)
The set cover problem is NP-complete.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 12 /16

D3. Delete Relaxation: Finding Relaxed Plans Optimal Relaxed Plans

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)
The BCPLANEX problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V/|
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 13 /16

D3. Delete Relaxation: Finding Relaxed Plans

Complexity of Optimal Relaxed Planning (2)

Proof (continued).
Given a set cover instance (U, C, K), we generate the following
relaxed planning task M+ = (V, 1,07, ~):

> V=U

» |={v—F|veV}

> 0T ={(T, Ave v, 1) | G € C}

> 7= AV
If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets

corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K.

Moreover, [T can be generated from the set cover instance

Optimal Relaxed Plans

D3. Delete Relaxation: Finding Relaxed Plans Summary

D3.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 15 / 16

in polynomial time, so this is a polynomial reduction. O
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 14 / 16
D3. Delete Relaxation: Finding Relaxed Plans Summary
Summary
» Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.
» However, the solution quality of this algorithm is poor.
» For an informative heuristic, we would ideally want to find
optimal relaxed plans.
» The solution cost of an optimal relaxed plan
is the estimate of the h™ heuristic.
» However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 16 / 16

Planning and Optimization
October 22, 2025 — D4. Delete Relaxation: AND/OR Graphs

Planning and Optimization D4.1 AND/OR Graphs
D4. Delete Relaxation: AND/OR Graphs '

D4.2 Forced Nodes

Malte Helmert and Gabriele Roger
D4.3 Most/Least Conservative Valuations

Universitat Basel

October 22, 2025 D4 .4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 1/ 30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 2 /30

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

Content of the Course

— Prelude

— Foundations

D4.1 AND/OR Graphs

— Approaches — Relaxed Tasks
- Abstraction

Relaxation
— Constraints Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 3 /30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 4 /30

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

» Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
~+ h* heuristic

» Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
~~ W™ heuristic, h*@Y heuristic, h-M-<Ut heuristic

> Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
~~ hFF heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 5 /30

D4. Delete Relaxation: AND/OR Graphs

AND/OR Graphs: Motivation

P> Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

» We now introduce AND/OR graphs and study
some of their major properties.

» In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025

AND/OR Graphs

6 / 30

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

AND/OR Graph Example

O =]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 7/ 30

D4. Delete Relaxation: AND/OR Graphs

AND/OR Graphs

Definition (AND/OR Graph)
An AND/OR graph (N, A, type) is a directed graph (N, A) with
a node label function type: N — {A,V} partitioning nodes into
» AND nodes (type(v) = A) and
» OR nodes (type(v) = V).
We write succ(n) for the successors of node n€ N, i.e.,
succ(n) ={n" € N | (n,n") € A}.

Note: We draw AND nodes as squares and OR nodes as circles.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025

AND/OR Graphs

8 / 30

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)
Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is an interpretation
a: N — {T,F}, treating the nodes as propositional variables.

We say that « is consistent if
> for all AND nodes n € N: a |= niff oo = A\ e guee(my 1
> forall OR nodes n € N: a = niff a =V yequeqm -

/

Note that A, con" =T and \/,yn' = L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 22, 2025 9 /30

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

Example: A Consistent Valuation

®_ ¢

October 22, 2025 10 / 30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

D4. Delete Relaxation: AND/OR Graphs

Example: Another Consistent Valuation

@ 7]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 11/

AND/OR Graphs

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

Example: An Inconsistent Valuation

®_ ¢

Planning and Optimization October 22, 2025 12 / 30

M. Helmert, G. Roger (Universitat Basel)

D4. Delete Relaxation: AND/OR Graphs AND/OR Graphs

How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

» Do consistent valuations exist for every AND/OR graph?
> Are they unique?
» If not, how are different consistent valuations related?

» Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no”.
In the rest of this chapter, we address the remaining questions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 13 / 30

D4. Delete Relaxation: AND/OR Graphs

D4.2 Forced Nodes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Forced Nodes

October 22, 2025

14 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Forced Nodes

Definition (Forced True/False Nodes)
Let G be an AND/OR graph.

A node n of G is called forced true
if a(n) = T for all consistent valuations « of G.

A node n of G is called forced false
if a(n) = F for all consistent valuations « of G.

How can we efficiently determine that nodes are forced true/false?

~> We begin by looking at some simple rules.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 15 / 30

D4. Delete Relaxation: AND/OR Graphs

Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)
Let n be a node in an AND/OR graph.

Rule T-(AN): If n is an AND node and all

of its successors are forced true, then n is forced true.

Rule T-(\/): If n is an OR node and at least one
of its successors is forced true, then n is forced true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Forced Nodes

October 22, 2025

16

/ 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)
Let n be a node in an AND/OR graph.

Rule F-(N): If n'is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(\): If n is an OR node and all
of its successors are forced false, then n is forced false.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 17 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Example: Applying the Rules for Forced Nodes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 18 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Completeness of Rules for Forced Nodes

Theorem

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(A) and Rule T-(V).

Theorem

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(A\) and Rule F-(V).

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 19 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (1)

Proof.
» Let « be a valuation where a(n) = T iff there exists
a sequence p, of applications of Rules T-(A)
and Rule T-(V) that derives that n is forced true.

» Because the rules are monotonic, there exists a sequence p
of rule applications that derives that n is forced true
for all n € on(a). (Just concatenate all p, to form p.)

» By the correctness of the rules, we know that all nodes
reached by p are forced true. It remains to show
that none of the nodes not reached by p is forced true.

» We prove this by showing that « is consistent,
and hence no nodes with a(n) = F can be forced true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 20 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).
Case 1: nodes n with a(n) =T
» In this case, p must have reached n in one of
the derivation steps. Consider this derivation step.

» If nis an AND node, p must have reached
all successors of n in previous steps,
and hence a(n') = T for all successors n'.

» If nis an OR node, p must have reached
at least one successor of n in a previous step,
and hence a(n') = T for at least one successor n'.

» |n both cases, « is consistent for node n.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 21 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).
Case 2: nodes n with a(n) =F

» In this case, by definition of @ no sequence of derivation steps
reaches n. In particular, p does not reach n.

» If nis an AND node, there must exist
some n’ € succ(n) which p does not reach.
Otherwise, p could be extended using Rule T-(A) to reach n.
Hence, a(n’) = F for some n’ € succ(n).
» If nis an OR node, there cannot exist
any n’ € succ(n) which p reaches.
Otherwise, p could be extended using Rule T-(V) to reach n.
Hence, a(n’) = F for all n’ € succ(n).
» In both cases, « is consistent for node n.
L]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 22 / 30

D4. Delete Relaxation: AND/OR Graphs Forced Nodes

Remarks on Forced Nodes

Notes:

» The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

» In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

» In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

» The proof of the theorem also shows that every
AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 23 / 30

D4. Delete Relaxation: AND/OR Graphs Most/Least Conservative Valuations

D4.3 Most/Least Conservative
Valuations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 24 /30

D4. Delete Relaxation: AND/OR Graphs Most/Least Conservative Valuations

Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)
Let G be an AND/OR graph with nodes N.
The most conservative valuation a8, : N — {T,F} and

the least conservative valuation o, : N — {T,F}
of G are defined as:

G (n) T if nis forced true
o n) =
mev F otherwise
F if nis forced false
ag,(n) = .
T otherwise

Note: af., is the valuation constructed in the previous proof.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 25 / 30

D4. Delete Relaxation: AND/OR Graphs Most/Least Conservative Valuations

Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)
Let G be an AND/OR graph. Then:
@ ab, is consistent.
Q alcc';v is consistent.
@ For all consistent valuations o of G,
on(ag.,) C on(a) C on(agl,).

mcv

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 26 / 30

D4. Delete Relaxation: AND/OR Graphs Most/Least Conservative Valuations

Properties of MCV/LCV: Proof

Proof.

Part 1. was shown in the preceding proof. We showed that

the valuation « considered in this proof is consistent

and satisfies a(n) = T iff n is forced true, which implies o = o, .

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, a&., and aZ,. O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 27 / 30

D4. Delete Relaxation: AND/OR Graphs Most/Least Conservative Valuations

Properties of MCV/LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

» Consistent valuations always exist
and can be efficiently computed.

> All consistent valuations lie between

the most and least conservative one.

» There is a unique consistent valuation iff &, = aﬁv,

or equivalently iff each node is forced true or forced false.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 28 / 30

D4. Delete Relaxation: AND/OR Graphs Summary D4. Delete Relaxation: AND/OR Graphs Summary

Summary

» AND/OR graphs are directed graphs
with AND nodes and OR nodes.

» We can assign truth values to AND/OR graph nodes.

D44 SU mmary » Such valuations are called consistent if they match
the intuitive meaning of "AND" and “OR".

» Consistent valuations always exist.

» Consistent valuations can be computed efficiently.
» All consistent valuations fall between two extremes:
» the most conservative valuation, where only nodes
that are forced to be true are true
» the least conservative valuation, where all nodes
that are not forced to be false are true

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 29 / 30 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 22, 2025 30 / 30

Planning and Optimization
October 27, 2025 — D5. Delete Relaxation: Relaxed Task Graphs

Planning and Optimization D5.1 Relaxed Task Graphs

D5. Delete Relaxation: Relaxed Task Graphs _
D5.2 Construction

Malte Helmert and Gabriele Roger D5 .3 Reachability Analysis

Universitat Basel

D5.4 Remarks
October 27, 2025

D5.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 1/31 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 2 /31

D5. Delete Relaxation: Relaxed Task Graphs Relaxed Task Graphs

Content of the Course

— Prelude

— Foundations

D5.1 Relaxed Task Graphs

— Approaches — Relaxed Tasks
- Abstraction

Relaxation
— Constraints Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 3 /31 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 4 /31

D5. Delete Relaxation: Relaxed Task Graphs

Relaxed Task Graphs

Relaxed Task Graphs

Let M be a relaxed planning task.
The relaxed task graph of M, in symbols RTG(MT),
is an AND/OR graph that encodes

» which state variables can become true
in an applicable operator sequence for M,

» which operators of T can be included
in an applicable operator sequence for T,

» if the goal of M can be reached,

» and how these things can be achieved.
We present its definition in stages.
Note: Throughout this chapter, we assume flat operators.
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization October 27, 2025 5 /31

D5. Delete Relaxation: Relaxed Task Graphs

Running Example

As a running example, consider the relaxed planning task
<V7 I7 {017 027 037 04}7 7> Wlth

V:{a7b7c7d7e7f7g7h}
I={a—»T,b—>T,c—F d—T,
e—~F,f—F g—F h—F}

or=(cV(anb),cA((cAnd)r>e)l)
op = (T,f,2)

o3 =(f,g,1)

o4 = (f,h1)

vy=eANA(gAh)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Relaxed Task Graphs

October 27, 2025 6 /31

D5. Delete Relaxation: Relaxed Task Graphs Construction

D5.2 Construction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 7 /31

D5. Delete Relaxation: Relaxed Task Graphs

Components of Relaxed Task Graphs

A relaxed task graph has four kinds of components:
P Variable nodes represent the state variables.
» The initial node represent the initial state.

» Operator subgraphs represent the preconditions
and effects of operators.

» The goal subgraph represents the goal.

The idea is to construct the graph in such a way that all nodes
representing reachable aspects of the task are forced true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

Construction

8 /31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Variable Nodes

Let MT = (V,1,0%",7) be a relaxed planning task.

» For each v € V, RTG(IM") contains an OR node n,.
These nodes are called variable nodes.

D5. Delete Relaxation: Relaxed Task Graphs Construction

Variable Nodes: Example

V ={a,b,c,d, e f, g, h}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 10 / 31

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 9 /31
D5. Delete Relaxation: Relaxed Task Graphs Construction
Initial Node

Let Mt = (V,/,07",v) be a relaxed planning task.
» RTG(M™) contains an AND node n;.
This node is called the initial node.

» For all v € V with I(v) = T, RTG(M") has an arc
from n, to n;. These arcs are called initial state arcs.

» The initial node has no successor nodes.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 11 /31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Initial Node and Initial State Arcs: Example

I={a—»T,b—»T,c—»F d—Te—F f—F g—F h—F}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 12 / 31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Operator Subgraphs

Let M = (V,/,0",v) be a relaxed planning task.
For each operator o™ € O, RTG(N™) contains
an operator subgraph with the following parts:

» for each formula ¢ that occurs as a subformula
of the precondition or of some effect condition of o™,
a formula node ny, (details follow)

» for each conditional effect (x > v) that occurs
in the effect of o, an effect node n}, (details follow);
unconditional effects are treated as (T > v)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 13 /31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Formula Nodes

Formula nodes n,, are defined as follows:

» If ¢ = v for some state variable v, n, is the variable node n,
(so no new node is introduced).

» If ¢ =T, n, is an AND node without outgoing arcs.
» If ¢ = L, n, is an OR node without outgoing arcs.
> If o = (p1 A p2), n, is an AND node

with outgoing arcs to ny,, and n,.
> If o = (p1V ¥2), n, is an OR node

with outgoing arcs to n,, and n,.

Note: identically named nodes are identical,
so if the same formula occurs multiple times in the task,
the same node is reused.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 14 / 31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Effect Nodes

Effect nodes n§+ are defined as follows:
> nY, is an AND node

> It has an outgoing arc to the formula nodes npe(o+)
(precondition arcs) and n, (effect condition arcs).
» Exception: if Yy = T, there is no effect condition arc.
(This makes our pictures cleaner.)
» For every conditional effect (x > v) in the operator,
there is an arc from variable node n, to nX, (effect arcs).
Note: identically named nodes are identical,
so if the same effect condition occurs multiple times
in the same operator, this only induces one node.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 15 / 31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Operator Subgraphs: Example

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 16 / 31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Operator Subgraphs: Example

o =(T,f,2)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 17 / 31

D5. Delete Relaxation: Relaxed Task Graphs

Operator Subgraphs: Example

03 = <faga 1>

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

18 /

Construction

D5. Delete Relaxation: Relaxed Task Graphs Construction

Operator Subgraphs: Example

04:<f7h71>

D5. Delete Relaxation: Relaxed Task Graphs

Goal Subgraph

Let Mt = (V,/,0",v) be a relaxed planning task.

RTG(MN™) contains a goal subgraph, consisting of formula nodes
for the goal v and its subformulas, constructed in the same way
as formula nodes for preconditions and effect conditions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

19 / 31

October 27, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Construction

20 /

31

D5. Delete Relaxation: Relaxed Task Graphs Construction

Goal Subgraph and Final Relaxed Task Graph: Example

y=eN(gNh)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 21 /31

D5. Delete Relaxation: Relaxed Task Graphs Reachability Analysis

D5.3 Reachability Analysis

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 22 /31

D5. Delete Relaxation: Relaxed Task Graphs Reachability Analysis

How Can We Use Relaxed Task Graphs?

» We are now done with the definition of relaxed task graphs.

> Now we want to use them to derive information
about planning tasks.

» In the following chapter, we will use them
to compute heuristics for delete-relaxed planning tasks.

P> Here, we start with something simpler: reachability analysis.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 23 /31

D5. Delete Relaxation: Relaxed Task Graphs Reachability Analysis

Forced True Nodes and Reachability

Theorem (Forced True Nodes vs. Reachability)

Let Mt = (V, I,07", v) be a relaxed planning task,
and let Nt be the forced true nodes of RTG(IM™).

For all formulas over state variables ¢
that occur in the definition of M :

© is true in some reachable state of M iff n, € Nr.

(We omit the proof.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 24 / 31

D5. Delete Relaxation: Relaxed Task Graphs Reachability Analysis

Forced True Nodes and Reachability: Consequences

Corollary

Let Mt = (V I,0", ~) be a relaxed planning task,
and let Nt be the forced true nodes of RTG(M"). Then:

> A state variable v € V is true in at least one
reachable state iff n, € Nt.

» An operator ot € O is part of at least one
applicable operator sequence iff npe(o+) € Nr.

» The relaxed task is solvable iff n, € Nt.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 25 / 31

D5. Delete Relaxation: Relaxed Task Graphs

Reachability Analysis:

Example

Reachability Analysis

D5. Delete Relaxation: Relaxed Task Graphs Reachability Analysis

Reachability Analysis: Example with Different Initial State

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 27 / 31

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 26 / 31
D5. Delete Relaxation: Relaxed Task Graphs Remarks
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 28 / 31

D5. Delete Relaxation: Relaxed Task Graphs Remarks

Relaxed Task Graphs in the Literature

Some remarks on the planning literature:
» Usually, only the STRIPS case is studied.

~ definitions simpler: only variable nodes and operator nodes,
no formula nodes or effect nodes

» Usually, so-called relaxed planning graphs (RPGs)
are studied instead of RTGs.

» These are temporally unrolled versions of RTGs,
i.e., they have multiple layers (“time steps”) and are acyclic.

~» Foundations of Artificial Intelligence course FS 2025, Ch. F3-F4

D5. Delete Relaxation: Relaxed Task Graphs

D5.5 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 27, 2025

Summary

30 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 29 / 31
D5. Delete Relaxation: Relaxed Task Graphs Summary
Summary

> Relaxed task graphs (RTGs) represent (most of) the
information of a relaxed planning task as an AND/OR graph.
» They consist of:
» variable nodes
» an initial node
» operator subgraphs including formula nodes and effect nodes
» a goal subgraph including formula nodes
> RTGs can be used to analyze reachability in relaxed tasks:
forced true nodes mean ‘“reachable”,
other nodes mean “unreachable”.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 31 /31

Planning and Optimization
D6. Delete Relaxation: h™® and A4

Malte Helmert and Gabriele Roger

Universitat Basel

October 27, 2025

Planning and Optimization

October 27, 2025 — D6. Delete Relaxation: h™* and k%

D6.1 Introduction
D6.2 h™> and h2dd
D6.3 Properties of ™2 and A2

D6.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 27, 2025

2 /26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 1/26
Content of the Course
— Prelude
— Foundations
— Approaches — Relaxed Tasks
Graphs
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 3/26

D6. Delete Relaxation: h™®* and h?d9

D6.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 27, 2025

Introduction

4/ 26

D6. Delete Relaxation: h™®* and h*dd

Delete Relaxation Heuristics

» In this chapter, we introduce heuristics

based on delete relaxation.
» Their basic idea is to propagate information

in relaxed task graphs, similar to the previous chapter.
» Unlike the previous chapter, we do not just propagate

information about whether a given node is reachable,
but estimates how expensive it is to reach the node.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

D6. Delete Relaxation: h™#* and h*dd Introduction

Reminder: Running Example

We will use the same running example as in the previous chapter:
N =(V,l,{o1,02,03,04},7) with

V ={ab,c,d.e,f,g h}
I={a—=T b T cFd-T,
e F,f—F, g F h— F}

D6. Delete Relaxation: h™** and h?d9

Algorithm for Reachability Analysis (Reminder)

> reachability analysis in RTGs = computing all forced true

nodes = computing the most conservative assignment

» Here is an algorithm that achieves this:

Reachability Analysis
Associate a reachable attribute with each node.
for all nodes n:
n.reachable := false
while no fixed point is reached:
Choose a node n.
if nis an AND node:
n.reachable := \
if nis an OR node:
n.reachable :=\/

wesuce(n) M -reachable

/
n’ €succ(n) n’.reachable

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

or=(cV(anb),cA((crnd)>e)1)

o =(T,f,2)

03 = <f7 8, 1>

04 = <f, h, 1)

vy=-eA(gAh)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 6 /26
D6. Delete Relaxation: h™®* and h?d9 Introduction

Reachability Analysis: Example (Reminder)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 8 /26

D6. Delete Relaxation: h™®* and h*dd A3 and h?dd

D6.2 h™a* and H2dd

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 9 /26

D6. Delete Relaxation: h™#* and h*dd A3 and h?4d

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
» To apply an operator, we must pay its cost.

» To make an OR node true, it is sufficient
to make one of its successors true.
~~ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

» To make an AND node true, all its successors
must be made true first.
~> We can be optimistic and estimate the cost
as the maximum of the successor node costs.
~> Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.
~+ We will prove later that this is indeed optimistic/pessimistic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 10 / 26

D6. Delete Relaxation: h™** and h?d9 A3 and h299

h™®* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™®* Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt := MaXy coycc(n) N -COSE
if nis an effect node for operator o:
n.cost := cost(0) + MaXcsucc(n) - cost
if nis an OR node:

N.Cost := Min ¢ gycc(n) N COSt
The overall heuristic value is the cost of the goal node, n,.cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 11 /26

D6. Delete Relaxation: h™®* and h?d9 A3 and H299

h™: Example

- hmX(]) = 3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 12 / 26

D6. Delete Relaxation: h™®* and h*dd A3 and h?dd

h?4d Algorithm

(Differences to h™2* algorithm highlighted.)

Computing h?4 Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.cost =) cquec(m N-COSE
if nis an effect node for operator o:
n.cost := cost(o) + (m 1-cOSt
if nis an OR node:
n.cost 1= Min ¢ gycc(n) N -COSE

n’ Esucc

The overall heuristic value is the cost of the goal node, n,.cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 13 /26

D6. Delete Relaxation: h™#* and h*dd A3 and h?4d

h?4d: Example

~ hPd9(]) =8

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 14 / 26

D6. Delete Relaxation: h™** and h?d9 A3 and h299

h™2* and h29d: Definition

We can now define our first non-trivial efficient planning heuristics:

h™2% and k294 Heuristics
Let M= (V,I,0,~) be a propositional planning task
in positive normal form.

The h™®* heuristic value of a state s, written h™®*(s), is obtained
by constructing the RTG for N = (V,s, O",~) and then
computing ny.cost using the h™** value algorithm for RTGs.

The h*d heuristic value of a state s, written h2%9(s), is computed
in the same way using the hd value algorithm for RTGs.

Notation: we will use the same notation h™2*(n) and h23d(n)
for the h™®/h34d values of RTG nodes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 15 / 26

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

D6.3 Properties of h™?* and h?4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 16 / 26

D6. Delete Relaxation: h™®* and h*dd Properties of "M% and h*dd

Understanding h™ and h*%

We want to understand h™®* and h?dd better:
> Are they well-defined?
» How can they be efficiently computed?
> Are they safe?
» Are they admissible?

>

How do they compare to the optimal solution cost
for a delete-relaxed task (h™)?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

D6. Delete Relaxation: h™#* and h*dd Properties of h™** and h*dd

Well-Definedness of h™® and h*¥ (1)

Are h™2* and h2dd well-defined?

» The algorithms for computing h"™®* and A4 values do not
specify in which order the RTG nodes should be selected.

> It turns out that the order does not affect the final result.
~ The h™2* and h?9d values are well-defined.

» To show this, we must show

> that their computation always terminates, and
> that all executions terminate with the same result.

» For time reasons, we only provide a proof sketch.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 18 / 26

D6. Delete Relaxation: h™® and h?9d Properties of h"™®* and h

Well-Definedness of h™® and h*¥ (2)

Theorem

The fixed point algorithms for computing h™* and h?@ values
produce a well-defined result.

Proof Sketch.
Let Vo, Vi, Vo, ... be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that V; > V4 for all i.

It is not hard to prove that each node value can only decrease
a finite number of times: first from oo to some finite value,
and then a finite number of additional times.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

Well-Definedness of h™® and h*¥ (3)

Proof Sketch (continued).
Uniqueness of result: Let Vg > Vi > Vo > -+ >V, be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.
> View the consistency conditions of all nodes
(e.g., n.cost = min,cgce(n) N'-cost for all OR nodes n)
as a system of equations E.

» V), must be a solution to E (otherwise no fixed point
is reached with V).

» For all i € {0,..., n}, show by induction over i
that V; > S for all solutions S to E.

> It follows that V/,, is the unique maximum solution to E
and hence well-defined.

OJ

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 20 / 26

D6. Delete Relaxation: h™® and h?dd Properties of "M% and h299

Efficient Computation of "™ and A

> If nodes are poorly chosen, the h™®*/h2d4 algorithm
can update the same node many times
until it reaches its final value.

> However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

> With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

» Using a suitable priority queue data structure,
this allows computing the h™2*/h2d values of an RTG
with nodes N and arcs A in time O(|N|log|N|+ |A]).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 21 / 26

pmax

D6. Delete Relaxation: h™® and h?d Properties of and h?dd

h™2*: Example of Efficient Computation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 22 /26

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

Efficient Computation of ™ and h?d4: Remarks

» In the following chapters, we will always assume that we are
using this efficient version of the h™®* and h244 algorithm.

» In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 23 / 26

D6. Delete Relaxation: h™® and h?d Properties of "M% and h299

Heuristic Quality of "™ and h2

This leaves us with the questions about the heuristic quality
of ™ and h2dd:

» Are they safe?
> Are they admissible?
» How do they compare to the optimal solution cost
for a delete-relaxed task?
It is easy to see that h™®* and h?d4 are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to
underestimation and A4 is prone to overestimation.

We will study this further in the next chapter.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 24 /26

D6. Delete Relaxation: h™®* and h*dd

D6.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 27, 2025

Summary

25 /

D6. Delete Relaxation: h™® and h?d Summary

Summary

> h™2% and h?99 values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
» They are computed by propagating cost information
in relaxed task graphs:

» At OR nodes, choose the cheapest alternative.
» At AND nodes, maximize or sum the successor costs.
» At effect nodes, also add the operator cost.

» hMa% and h?99 values can serve as heuristics.

» They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 27, 2025 26 /

Planning and Optimization
D7. Delete Relaxation: Analysis of "™ and h2dd

Malte Helmert and Gabriele Roger

Universitat Basel

October 29, 2025

Planning and Optimization

October 29, 2025 — D7. Delete Relaxation: Analysis of ™™ and h**

D7.1 Choice Functions

D7.2 Best Achievers

D7.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025

2/18

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 1/18
Content of the Course
— Prelude
— Foundations
— Approaches — Relaxed Tasks
Graphs
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 3/18

D7. Delete Relaxation: Analysis of h™® and h?dd

D7.1 Choice Functions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Choice Functions

October 29, 2025

4/18

D7. Delete Relaxation: Analysis of h™® and h?dd Choice Functions

Motivation

» In this chapter, we analyze the behaviour
of h™2* and h*94 more deeply.
» Our goal is to understand their shortcomings.
» In the next chapter we then used this understanding
to devise an improved heuristic.
P As a preparation for our analysis, we need some further
definitions that concern choices in AND/OR graphs.

» The key observation is that if we want to establish the value of
a certain node n, we can to some extent choose how we want
to achieve the OR nodes that are relevant to achieving n.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 5/ 18

max add

D7. Delete Relaxation: Analysis of h' and h°

Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node,
but node values may not change.

+1 +1
o1, T o1, cAd

42
o, T

+1

Choice Functions

+1

o3, T

oy, T

~
8

(precondition of o; modified to ¢ V (a V b))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025

6/

18

D7. Delete Relaxation: Analysis of h™® and h?dd Choice Functions

Choice Functions

Definition (Choice Function)
Let G be an AND/OR graph with nodes N and OR nodes N, .

A choice function for G is a function f : N’ — N defined on
some set N/ C Ny such that f(n) € succ(n) for all n € N'.

» In words, choice functions select (at most)
one successor for each OR node of G.
» Intuitively, f(n) selects by which disjunct n is achieved.

» If f(n) is undefined for a given n, the intuition is
that n is not achieved.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 7 /18

add

max

D7. Delete Relaxation: Analysis of h' and h

Reduced Graphs

Once we have decided how to achieve an OR node,
we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function
for G defined on nodes N'.

The reduced graph for f is the subgraph of G

where all outgoing arcs of OR nodes are removed

except for the chosen arcs (n, f(n)) with n € N'.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Choice Functions

October 29, 2025

8 /

D7. Delete Relaxation: Analysis of h™® and h?dd

D7.2 Best Achievers

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Best Achievers

October 29, 2025

9/

18

D7. Delete Relaxation: Analysis of h™® and h*dd Best Achievers

Choice Functions Induced by h™® and h2

Which choices do h™2* and h29d make?

> At every OR node n, we set the cost of n
to the minimum of the costs of the successors of n.

» The motivation for this is to achieve n via the successor that
can be achieved most cheaply according to our cost estimates.

~+ This corresponds to defining a choice function f
with f(n) € argminycpr n'.cost for all reached OR nodes n,
where N C succ(n) are all successors of n processed before n.

» The successors chosen by this cost function are called
best achievers (according to h™® or h2dd),

> Note that the best achiever function f is in general
not well-defined because there can be multiple minimizers.
We assume that ties are broken arbitrarily.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 10 / 18

D7. Delete Relaxation: Analysis of h™® and h?dd

Example: Best Achievers (1)

best achievers for h2dd
+1 +1
o1, T o, cNd

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Best Achievers

October 29, 2025

11/

D7. Delete Relaxation: Analysis of h™® and h?dd Best Achievers

Example: Best Achievers (2)

best achievers for h*@; modified goal e V (g A h)

+1 +1
o1, T o, cANd
1 2

M. Helmert, G. Roger (Universitat Basel) October 29, 2025 12 /18

Planning and Optimization

D7. Delete Relaxation: Analysis of h™® and h?dd

Best Achiever Graphs

> Observation: The hM2*/h2d4d costs of nodes remain the same
if we replace the RTG by the reduced graph for the respective
best achiever function.

» The AND/OR graph that is obtained by removing

all nodes with infinite cost from this reduced graph
is called the best achiever graph for h™2</h2dd,

> We write G™* and G299 for the best achiever graphs.
> GM (G294) is always acyclic: for all arcs (n, n') it contains,
n is processed by h™2* (by h2dd) after n'.

October 29, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

13/

Best Achievers

max

D7. Delete Relaxation: Analysis of h' and h°

Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.

Let Ngs be the set of effect nodes of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs
of all effect nodes on the path.

The following properties can be shown by induction:
» h™M@(n) is the maximum cost of all paths originating from n in
G™®*. A path achieving this maximum is called a critical path.
> hadd(n) is the sum, over all effect nodes n’, of the cost of n’
multiplied by the number of paths from n to n’ in G249,
In particular, these properties hold for the goal node n,
if it is reachable.

add Best Achievers

D7. Delete Relaxation: Analysis of "™ and h

Example: Undercounting in h™®

G™®*: undercounting in h™M3

+1 +1
o1, T oj,cANd

~ 01 and o4 not counted because they are off the critical path

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025

15 /

add Best Achievers

18

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 14 / 18
D7. Delete Relaxation: Analysis of h™® and h?dd Best Achievers
. : ; add
Example: Overcounting in h
G29d: overcounting in h?9d
+1 +1
o1, T oj,cANd

~~ 0p counted twice because there are two paths to n;

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025 16 /

18

D7. Delete Relaxation: Analysis of h™® and h?dd

D7.3 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

October 29, 2025

Summary

17/

D7. Delete Relaxation: Analysis of h™® and h*dd

Summary

> h™ and h?4d can be used to decide how to achieve
OR nodes in a relaxed task graph
~> best achievers
» Best achiever graphs help identify shortcomings of h™M#* and
h?9d compared to the perfect delete relaxation heuristic h.
» hMa ynderestimates h' because it only considers
the cost of a critical path for the relaxed planning task.
> h?9d overestimates hT because it double-counts operators
occurring on multiple paths in the best achiever graph.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025 18 /

Summary

18

Planning and Optimization

D8. Delete Relaxation: h™F and Comparison of Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

October 29, 2025

Planning and Optimization

October 29, 2025 — D8. Delete Relaxation: A" and Comparison of Heuristics

D8.1 The FF Heuristic

D8.2 hma* ys. h2dd ys. AFF vs. At

D8.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025 2 /16

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 1/16
Content of the Course
— Prelude
— Foundations
— Approaches — Relaxed Tasks
Graphs
— Abstraction
— Constraints
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 3/16

D8. Delete Relaxation: A" and Comparison of Heuristics

D8.1 The FF Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The FF Heuristic

October 29, 2025 4 /16

D8. Delete Relaxation: hFF and Comparison of Heuristics The FF Heuristic

Inaccuracies in ™ and h?4d

> h™M3 s often inaccurate because it undercounts:
the heuristic estimate only reflects the cost of a critical path,
which is often only a small fraction of the overall plan.

> h?dd is often inaccurate because it overcounts:
if the same subproblem is reached in many ways, it will be
counted many times although it only needs to be solved once.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 5/ 16

D8. Delete Relaxation: hFF and Comparison of Heuristics

The FF Heuristic

With best achiever graphs, there is a simple solution
to the overcounting of h?49: count all effect nodes
that h?99 would count, but only count each of them once.

Definition (FF Heuristic)
Let M= (V,I,0,~) be a propositional planning task
in positive normal form. The FF heuristic for a state s of I1,
written h7(s), is computed as follows:
» Construct the RTG for the task (V,s, 0", ~)
» Construct the best achiever graph G249,

» Compute the set of effect nodes {n3},..., n5<}
reachable from ny in Gadd,

> Return hFF(s) = Zf-‘zl cost(0;).

Note: hFF is not well-defined; different tie-breaking policies
for best achievers can lead to different heuristic values

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025 6/

The FF Heuristic

16

D8. Delete Relaxation: h'" and Comparison of Heuristics

Example: FF Heuristic (1)

The FF Heuristic

FF heuristic computation

AFF(s)=1+1+2+1+1=6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 7/ 16

D8. Delete Relaxation: h'" and Comparison of Heuristics

Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)

hFF(s)=1+1=2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

October 29, 2025 8/

The FF Heuristic

d

D8. Delete Relaxation: h'" and Comparison of Heuristics hmax ys, padd ys pFF ys pt

D8.2 hma* ys. Kp2dd ys. AFF vs. AT

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 9 /16

D8. Delete Relaxation: h'F and Comparison of Heuristics

Reminder: Optimal Delete Relaxation Heuristic

Definition (h™ Heuristic)
Let I1 be a propositional planning task in positive normal form,
and let s be a state of I1.

The optimal delete relaxation heuristic for s, written h™(s),
is the perfect heuristic value h*(s) of state s
in the delete-relaxed task M*.

» Reminder: We proved that h*(s) is hard to compute.
(BCPLANEX is NP-complete for delete-relaxed tasks.)

» The optimal delete relaxation heuristic is often used
as a reference point for comparison.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025

FLE hadd vs. hF

Fus. bt

10 / 16

D8. Delete Relaxation: h"" and Comparison of Heuristics M ys p29d s pFF ys pt

Relationships between Delete Relaxation Heuristics (1)

Theorem
Let 1 be a propositional planning task in positive normal form,
and let s be a state of T1.

Then:
Q@ h™(s) < ht(s) < hFF(s) < h?9d(s)
@ h™X(s) = oo iff h*(s) = oo iff hFF(s) = oo iff h?99(s) = oo
© h™3 and h™ are admissible and consistent.
O hF and h399 are neither admissible nor consistent.

© AIl four heuristics are safe and goal-aware.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 11 /16

D8. Delete Relaxation: h'" and Comparison of Heuristics

Relationships between Delete Relaxation Heuristics (2)

Proof Sketch.
for 1:

» To show h™2*(s) < h™(s), show that critical path costs can
be defined for arbitrary relaxed plans and that the critical path
cost of a plan is never larger than the cost of the plan.

Then show that h™#*(s) computes the minimal critical path
cost over all delete-relaxed plans.

» To show ht(s) < hFF(s), prove that the operators belonging
to the effect nodes counted by hFF form a relaxed plan.
No relaxed plan is cheaper than h™ by definition of h™.

» hFF(s) < h29d(s) is obvious from the description of hFF:
both heuristics count the same operators,
but 244 may count some of them multiple times.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025

M ys 29 ys pFF vs pT

12 /16

max d
h

D8. Delete Relaxation: h'F and Comparison of Heuristics vs. i vs. AP vs. AT

Relationships between Delete Relaxation Heuristics (3)

Proof Sketch (continued).
for 2: all heuristics are infinite iff the task has no relaxed solution

for 3: admissibility follows from hM#(s) < h'(s)
because we already know that h™ is admissible;
we omit the argument for consistency

for 4: construct a counterexample to admissibility for hFF

for b: goal-awareness is easy to show; safety follows from 2.4+-3. [

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 13 /16

D8. Delete Relaxation: h'" and Comparison of Heuristics Summary

Summary

» The FF heuristic repairs the double-counting of h2dd
and therefore approximates h™ more closely.

> The key idea is to mark all effect nodes “used” for the h2dd
value of the goal and count each of them once.

> In general, h™3(s) < h*(s) < AFF(s) < hadd(s).

» hMa and ht are admissible; AFF and A?99 are not.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 15 / 16

D8. Delete Relaxation: hFF and Comparison of Heuristics Summary
D8.3 Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 14 / 16
D8. Delete Relaxation: A" and Comparison of Heuristics Summary
Literature Pointers
(Some) delete-relaxation heuristics in the planning literature:
> additive heuristic h*4 (Bonet, Loerincs & Geffner, 1997)
» maximum heuristic h"™** (Bonet & Geffner, 1999)
» (original) FF heuristic (Hoffmann & Nebel, 2001)
» cost-sharing heuristic h® (Mirkis & Domshlak, 2007)
> set-additive heuristics h%® (Keyder & Geffner, 2008)
» FF/additive heuristic hiFF (Keyder & Geffner, 2008)
> local Steiner tree heuristic h'st (Keyder & Geffner, 2009)
~> also hybrids such as semi-relaxed heuristics
and delete-relaxation landmark heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization October 29, 2025 16 / 16

Planning and Optimization

E1l. Planning Tasks in Finite-Domain Representation

Malte Helmert and Gabriele Roger

Universitat Basel

November 3, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

1/

28

Planning and Optimization
November 3, 2025 — E1. Planning Tasks in Finite-Domain Representation

E1.1 Finite-Domain Representation

E1.2 Equivalence and Normal Forms

E1.3 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 3, 2025

2 /28

How We Continue

» The next class of heuristics we will consider
are abstraction heuristics.

Prelude
Foundations
Approaches

Delete Relaxation

Constraints

» However, this requires some preparations.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

3/

28

Back to Foundations: Finite-Domain Representation

» Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

» To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

~ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

~ not specific to abstraction heuristics, but general foundations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

4 /28

Content of the Course

Transition
— Prelude Systems

— Delete Relaxation Computational
Complexity

— Abstraction

— Constraints

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 5 /28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

E1.1 Finite-Domain Representation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 6 /28

E1l. Planning Tasks in Finite-Domain Representation

Finite-Domain State Variables

Finite-Domain Representation

> So far, we used propositional (Boolean) state variables.
~~ possible values T and F

> We now consider finite-domain variables.
~> every variable has a finite set of possible values

> A state is still an assignment to the state variables.

Example: O(n?) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 7 /28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Blocks World State with Propositional Variables

Example
s(A-on-B) =
s(A-on-C) =

s(A-on-table)
)

F
F
T
T
s(B-on-C) =F
F
F
F
T

~ 29 = 512 states
Note: it may be useful to add auxiliary state variables like A-clear.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 8 /28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Blocks World State with Finite-Domain Variables

Example
Use three finite-domain state variables:

» below-a: {b,c,table}
» below-b: {a,c,table}
» below-c: {a,b,table}

s(below-a) = table
s(below-b) = a
s(below-c) = table

~ 33 = 27 states

Note: it may be useful to add auxiliary state variables like above-a.
November 3, 2025 9 /28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E1l. Planning Tasks in Finite-Domain Representation

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?
» There are 13 physically possible states with three blocks:

» all blocks on table: 1 state
» all blocks in one stack: 3! = 6 states
» two block stacked, the other separate: (3)2! =6

» With propositional variables, 29 — 13 = 499 states are useless.

» With finite-domain variables, only 27 — 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Finite-Domain Representation

10 / 28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Finite-Domain State Variables

Definition (Finite-Domain State Variable)
A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V' — (J .\, dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s = v = d iff s(v) = d.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 11 /28

E1l. Planning Tasks in Finite-Domain Representation

Example: Finite-Domain State Variables

Example

Consider finite-domain variables \/ = {/ocation, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {/ocation + at-home, bike — locked }.

Does s |= (location = at-home A —bike = stolen) hold?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Finite-Domain Representation

12 / 28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Reminder: Syntax of Operators

Definition (Operator)
An operator o over state variables V is an object
with three properties:

» a precondition pre(o), a formula over V
> an effect effo) over V
> a cost cost(o) € R}

Only necessary adaptation: What is an effect?

Example
(location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 13 /28

E1l. Planning Tasks in Finite-Domain Representation

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)
Effects over finite-domain state variables V
are inductively defined as follows:

> T is an effect (empty effect).

» If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

> If e and € are effects, then (e A €') is an effect
(conjunctive effect).

» If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Finite-Domain Representation

14 / 28

E1l. Planning Tasks in Finite-Domain Representation

Semantics of Effects: Effect Conditions

Finite-Domain Representation

Definition (Effect Condition with Finite-Domain Representation)
Let v := d be an atomic effect, and let e be an effect.
The effect condition effcond(v := d, e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

» effcond(v :=d, T)=1

» effcond(v .=d,v:=d)=T

» effcond(v :=d,v :=d')= L

for atomic effects with v/ # v or d' # d
> effcond(v :=d,(e N €')) =
(effcond(v := d, e) V effcond(v := d, €))
» effcond(v :=d,(x > €)) = (x A effcond(v := d, e))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 15 / 28

E1l. Planning Tasks in Finite-Domain Representation

Conflicting Effects and Consistency Condition

» What should an effect of the form v:=a A v:= b mean?

» For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)
Let e be an effect over finite-domain state variables V.

The consistency condition for e, consist(e) is defined as

AN

veV d,d’edom(v),d#d’

How did we handle conflicting effects
in propositional planning tasks?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

—(effcond(v := d, e) A effcond(v := d', e)).

Finite-Domain Representation

16 / 28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables

and e be an effect over V.

If s |= consist(e), the resulting state of applying e in s,
written s[e], is the state s’ defined as follows for all v € V:

s'(v) =

d if s |= effcond(v := d, e) for some d € dom(v)
s(v) otherwise

Let o be an operator over V.

Operator o is applicable in s if s |= pre(o) A consist(eff(0)).
If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff0)].

November 3, 2025 17 / 28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E1l. Planning Tasks in Finite-Domain Representation

Applying Operators: Example

Example

V' = {location, bike} with

dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {location — in-front-of-uni, bike — unlocked}
o = (location = in-front-of-uni, location := at-home, 1)

o' = (location = in-front-of-uni,

location := in-lecture A (bike = unlocked > bike := stolen), 1)

What is s[o]? What is s[o’]?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Finite-Domain Representation

18 / 28

E1l. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

FDR Planning Tasks

Definition (Planning Task)
An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple N = (V,/, O,) where

» V is a finite set of finite-domain state variables,

» [is an assignment for V called the initial state,

» QO is a finite set of operators over V, and

» ~ is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 19 / 28

E1l. Planning Tasks in Finite-Domain Representation

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)
The FDR planning task M = (V, I, O,~) induces
the transition system 7 (M) = (S, L, ¢, T, sy, Sx), where

> S is the set of all states over V/,

» [is the set of operators O,

» c(o0) = cost(o) for all operators o € O,

> T ={(s,0,5') |s€S, oapplicable in's, s’ = s[o]},

» s5=1, and

> S,={seS|skE=}
Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Finite-Domain Representation

20 / 28

E1l. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

E1.2 Equivalence and Normal Forms

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 21 / 28

E1l. Planning Tasks in Finite-Domain Representation

Equivalence and Flat Operators

» The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

» The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Equivalence and Normal Forms

22 /28

E1l. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V/

is called conflict-free if effcond(v := d, e) A effcond(v := d’, e)
is unsatisfiable for all v € V and d,d’ € dom(v) with d # d'.

An operator o is called conflict-free if eff0) is conflict-free.

Note: consist(e) = T for conflict-free e.

Algorithm to make given operator o conflict-free:
» replace pre(o) with pre(o) A consist(eff0))
> replace all atomic effects v := d by (consist(eff(0)) > v := d)

The resulting operator o’ is conflict-free and o = 0'.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 23 /28

E1l. Planning Tasks in Finite-Domain Representation

SAS™ Operators and Planning Tasks

Definition (SAS™ Operator)

An operator o of an FDR planning task is a SAS™ operator if
> pre(o) is a satisfiable conjunction of atoms, and
> eff{0) is a conflict-free conjunction of atomic effects.

Definition (SAS™ Planning Task)

An FDR planning task (V, O, /,v) is a SAS™ planning task
if all operators o € O are SAS™ operators
and «y is a satisfiable conjunction of atoms.

Note: SAS™ operators are conflict-free and flat.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Equivalence and Normal Forms

24 /28

E1l. Planning Tasks in Finite-Domain Representation

SAS" Operators: Remarks

» Every SAS™ operator is of the form

(i=di A Avp=dp, Vj:=djA---

Equivalence and Normal Forms

where all v; are distinct and all va are distinct.

» Often, SAS™ operators o are described
via two sets of partial assignments:

» the preconditions {vy — dy,..., v, — dp}
> the effects {v{ — d],..., v, — d.}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 3, 2025

25 /

28

E1l. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

SAST vs. STRIPS

» SAST is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

> Apart from this difference, all comments for STRIPS
apply analogously.

» If all variable domains are binary, SAS™ is essentially
STRIPS with negation.

SAS™
Derives from SAS = Simplified Action Structures
(Backstrom & Klein, 1991)

E1l. Planning Tasks in Finite-Domain Representation

E1.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 3, 2025

Summary

27 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 26 / 28
E1l. Planning Tasks in Finite-Domain Representation Summary
Summary
» Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.
> FDR tasks are often more compact (have fewer states).
» This makes many planning algorithms more efficient
when working with a finite-domain representation.
» SAS™ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.
No conditional effects are allowed.
28 / 28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Planning and Optimization

E2. Invariants and Mutexes

Malte Helmert and Gabriele Roger

Universitat Basel

November 3, 2025

Planning and Optimization
November 3, 2025 — E2. Invariants and Mutexes

E2.1 Invariants

E2.2 Computing Invariants
E2.3 Mutexes

E2.4 Reformulation

E2.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 1/26
Content of the Course
Transition # Equivalence
Prelude Systems
| | Conflict-free
Operators
{ Approaches ‘ Normal Forms }»{ Flat Operators ‘
{ Delete Relaxation Computational || | Positive Normal
Complexity Form
Abstraction
STRIPS
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 3 /26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 2 /26
E2. Invariants and Mutexes Invariants
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 4 /26

E2. Invariants and Mutexes Invariants

Invariants

» When we as humans reason about planning tasks,
we implicitly make use of “obvious” properties of these tasks.

» Example: we are never in two places at the same time

> We can represent such properties as logical formulas ¢
that are true in all reachable states.

» Example: ¢ = —(at-uni A at-home)

» Such formulas are called invariants of the task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 5 /26

E2. Invariants and Mutexes Invariants

Invariants: Definition

Definition (Invariant)

An invariant of a planning task I1 with state variables V
is a logical formula ¢ over V such that s = ¢

for all reachable states s of 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 6 /26

E2. Invariants and Mutexes Computing Invariants

E2.2 Computing Invariants

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 7 /26

E2. Invariants and Mutexes Computing Invariants

Computing Invariants

How does an automated planner come up with invariants?

» Theoretically, testing if a formula ¢ is an invariant
is as hard as planning itself.
~» proof idea: a planning task is unsolvable iff
the negation of its goal is an invariant

» Still, many practical invariant synthesis algorithms exist.

» To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
~~ sound, but not complete

» Empirically, they tend to at least find the “obvious”
invariants of a planning task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 8 /26

E2. Invariants and Mutexes Computing Invariants

Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on
the generate-test-repair approach:

> Generate: Suggest some invariant candidates, e.g.,
by enumerating all possible formulas ¢ of a certain size.
P> Test: Try to prove that ¢ is indeed an invariant.
Usually done inductively:
@ Test that initial state satisfies .
@ Test that if ¢ is true in the current state,
it remains true after applying a single operator.
P Repair: If invariant test fails, replace candidate ¢
by a weaker formula, ideally exploiting why the proof failed.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 9 /26

E2. Invariants and Mutexes Computing Invariants

Invariant Synthesis: References

We will not cover invariant synthesis algorithms in this course.

Literature on invariant synthesis:
» DISCOPLAN (Gerevini & Schubert, 1998)
» TIM (Fox & Long, 1998)
» Edelkamp & Helmert's algorithm (1999)
> Bonet & Geffner's algorithm (2001)
» Rintanen'’s algorithm (2008)
>

Rintanen’s algorithm for schematic invariants (2017)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 10 / 26

E2. Invariants and Mutexes Computing Invariants

Exploiting Invariants

Invariants have many uses in planning:

» Regression search (C3-C4):
Prune subgoals that violate (are inconsistent with) invariants.
» Planning as satisfiability (C5-C6):
Add invariants to a SAT encoding of a planning task
to get tighter constraints.
» Proving unsolvability:
If ¢ is an invariant such that ¢ A v is unsatisfiable,
the planning task with goal «y is unsolvable.
» Finite-Domain Reformulation:
Derive a more compact FDR representation (equivalent, but
with fewer states) from a given propositional planning task.
We now discuss the last point because it connects
to our discussion of propositional vs. FDR planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 11 /26

E2. Invariants and Mutexes Mutexes

E2.3 Mutexes

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 12 / 26

E2. Invariants and Mutexes Mutexes

Reminder: Blocks World (Propositional Variables)

Example

~ 29 = 512 states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 13 /26

E2. Invariants and Mutexes

Reminder: Blocks World (Finite-Domain Variables)

Example
Use three finite-domain state variables:

» below-a: {b,c,table}
> below-b: {a,c,table}
» below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table
~~ 33 = 27 states
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 3, 2025

Mutexes

14 / 26

E2. Invariants and Mutexes Mutexes

Task Reformulation

» Common modeling languages (like PDDL)
often give us propositional tasks.

» More compact FDR tasks are often desirable.

» Can we do an automatic reformulation?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 15 / 26

E2. Invariants and Mutexes

Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments
cannot be simultaneously true (are mutually exclusive).

Example (Blocks World)
The invariant —A-on-B V —A-on-C states that
A-on-B and A-on-C are mutex.

We say that a set of literals is a mutex group
if every subset of two literals is a mutex.
Example (Blocks World)

{A-on-B, A-on-C, A-on-table} is a mutex group.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Mutexes

16 / 26

E2. Invariants and Mutexes

Encoding Mutex Groups as Finite-Domain Variables

Let G = {¢1,...,£,} be a mutex group over n different
propositional state variables Vg = {vi,...,v,}.

Then a single finite-domain state variable vg with
dom(vg) = {¢1,...,¢n,none} can replace the n variables V:
> s(vg) = ¢; represents situations where (exactly) ¢; is true

» s(vg) = none represents situations where all ¢; are false

Note: We can omit the “none” value if /1 V ---V ¢, is an invariant.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Mutexes

17/

E2. Invariants and Mutexes Mutexes

Mutex Covers

Definition (Mutex Cover)

A mutex cover for a propositional planning task [1

is a set of mutex groups {Gi, ..., G,} where each variable of [1
occurs in exactly one group G;.

A mutex cover is positive if all literals in all groups are positive.

Note: always exists (use trivial group {v} if v otherwise uncovered)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 18 / 26

E2. Invariants and Mutexes

Positive Mutex Covers

In the following, we stick to positive mutex covers for simplicity.

If we have =v in G for some group G in the cover, we can
reformulate the task to use an “opposite” variable V instead,
as in the conversion to positive normal form (Chapter B5).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Mutexes

19 /

E2. Invariants and Mutexes Reformulation

E2.4 Reformulation

Planning and Optimization November 3, 2025 20 / 26

26

M. Helmert, G. Roger (Universitat Basel)

E2. Invariants and Mutexes Reformulation E2. Invariants and Mutexes Reformulation

Mutex-Based Reformulation of Propositional Tasks And Back?

Given a conflict-free propositional planning task 1
with positive mutex cover {Gy, ..., Gu}:

» |n all conditions where variable v € G; occurs,

. » |t can also be useful to reformulate an FDR task
replace v with vg, = v.

. into a propositional task.
» |n all effects e where variable v € G; occurs,

> Replace all atomic add effects v with vg, = v » For example, we might want positive normal form,
> Replace all atomic delete effects —v with which requires a propositional task.
(ve, = v A=V, eg vy effcond(V', €)) > vg := none » Key idea: each variable/value combination v = d

. . . , .) becomes a separate propositional state variable (v, d)
This results in an FDR planning task I’ that is equivalent to I1

(without proof).

Note: the conditional effects encoding delete effects
can often be simplified away to an unconditional or empty effect.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 21 / 26 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 22 /26

E2. Invariants and Mutexes Reformulation E2. Invariants and Mutexes

Converting FDR Tasks into Propositional Tasks

Summary

Definition (Induced Propositional Planning Task)

Let M= (V,I,0,) be a conflict-free FDR planning task.

The induced propositional planning task M’

is the propositional planning task " = (V' I, O’,~), where
> V'={(v,d)| v V,d e dom(v)} E2.5 Summary
> I'({v,d))=Tiff I(v)=d
» O’ and 4 are obtained from O and ~ by

> replacing each atomic formula v = d by the proposition (v, d)
> replacing each atomic effect v := d by the effect

(v d) A Narcdom(u (ay (V> d')-
Notes:

» Again, simplifications are often possible
to avoid introducing so many delete effects.

» SAST tasks induce STRIPS tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 23 / 26 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025 24 /26

E2. Invariants and Mutexes

Summary (1)

» Invariants are common properties of all reachable states,
expressed as formulas.

» A number of algorithms for computing invariants exist.

» These algorithms will not find all useful invariants
(which is too hard), but try to find some useful subset
with reasonable (polynomial) computational effort.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Summary

25

E2. Invariants and Mutexes

Summary (2)

> Mutexes are invariants that express
that certain literals are mutually exclusive.

> Mutex covers provide a way to convert a set of propositional
state variables into a potentially much smaller set
of finite-domain state variables.

» Using mutex covers, we can reformulate propositional tasks
as more compact FDR tasks.

» Conversely, we can reformulate FDR tasks as propositional

tasks by introducing propositions for each variable/value pair.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 3, 2025

Summary

26 /

Planning and Optimization
November 5, 2025 — E3. Abstractions: Introduction

Planning and Optimization E3.1 Introduction

E3. Abstractions: Introduction))
E3.2 Practical Requirements

Malte Helmert and Gabriele Roger E3.3 I\/Iultiple Abstractions

Universitat Basel

E3.4 Outlook
November 5, 2025

E3.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 1/25 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 2 /25

E3. Abstractions: Introduction Introduction

Content of the Course

— Prelude

— Foundations

[Aomodes - E3.1 Introduction
Planning -

— Delete Relaxation

— Constraints Cartesian
Abstractions

Pattern Databases

[

|

Merge & Shrink

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 3 /25 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 4 /25

E3. Abstractions: Introduction Introduction

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:
> delete relaxation

abstraction

critical paths

landmarks

vvyyy

network flows

> potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 5 /25

E3. Abstractions: Introduction Introduction

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour
as much as possible.

» An abstraction of a transition system 7 is defined by
an abstraction mapping « that defines which states of T
should be distinguished and which ones should not.

» From 7 and «, we compute an abstract transition system 7
which is similar to 7, but smaller.

» The abstract goal distances (goal distances in 7<)
are used as heuristic estimates for goal distances in 7.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 6 /25

E3. Abstractions: Introduction Introduction

Abstracting a Transition System: Example

example from domain-specific heuristic search:

Example (15-Puzzle)

A 15-puzzle state is given by a permutation (b, t1,. .., tis)

of {1,...,16}, where b denotes the blank position

and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1-7:

Oé((b, t1,..., t15>) = (b, t1,..., t7>

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 7 /25

E3. Abstractions: Introduction Introduction

Abstraction Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

o0 B

real state space:
> 16! = 20922789888000 ~ 2 - 1013 states
> 18! — 10461394944000 ~ 10*3 reachable states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 8 /25

E3. Abstractions: Introduction Introduction

Abstraction Example: 15-Puzzle

2 6 1 2 3 4
5 7 5 6 7
3 4 1

abstract state space:

» 16-15-...-9 = 518918400 ~ 5 - 108 states
> 16-15-...-9 = 518918400 ~ 5 - 108 reachable states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 9 /25

E3. Abstractions: Introduction

Computing the Abstract Transition System

Given T and «, how do we compute 77

Requirement
We want to obtain an admissible heuristic.

Hence, h*(a(s)) (in the abstract state space 7¢) should never

overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in 7

are also present in 7

> If s is a goal state in T, then a(s) is a goal state in 7.

» If 7 has a transition from s to t, then 7

has a transition from a(s) to a(t) with the same cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 5, 2025

Introduction

10 /

25

E3. Abstractions: Introduction Introduction

Computing the Abstract Transition System: Example

Example (15-Puzzle)
In the running example:
» T has the unique goal state (16,1,2,...,15).
~ T has the unique goal state (16,1,2,...,7).
P> Let x and y be neighbouring positions in the 4 x 4 grid.
T has a transition from (x, t1,...,ti_1,¥, tit1,..., t15)
to (y,t1,...,ti—1,X, titx1,..., t15) forall i € {1,...,15}.
~» T has a transition from (x,t1,...,ti—1,¥, tit1,..., t7)
to (y, t1,..., tic1, X, tig1,. .., t7) forall i e {1,...,7}.
~+ Moreover, T® has a transition from (x,t,..., t7)
to (y,t1,...,t7) if y & {t1,...,tz}.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 11 /25

E3. Abstractions: Introduction

E3.2 Practical Requirements

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Practical Requirements

November 5, 2025

12/

E3. Abstractions: Introduction Practical Requirements

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be
efficiently computable. This gives us two requirements for a:

» For a given state s, the abstract state «a(s)
must be efficiently computable.

» For a given abstract state «(s), the abstract goal distance
h*(a(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:
> pattern database heuristics (Culberson & Schaeffer, 1996)
» domain abstractions (Hernadvolgyi and Holte, 2000)

» merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

» Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
» structural patterns (Katz & Domshlak, 2008)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 13 /25

E3. Abstractions: Introduction Practical Requirements

Practical Requirements for Abstractions: Example

Example (15-Puzzle)
In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ~ 495 MiB RAM).

During search, computing h*(«(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 14 / 25

E3. Abstractions: Introduction Multiple Abstractions

E3.3 Multiple Abstractions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 15 / 25

E3. Abstractions: Introduction Multiple Abstractions

Multiple Abstractions

» One important practical question is how to come up
with a suitable abstraction mapping «.

» Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

» However, it is generally not necessary to commit
to a single abstraction.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 16 / 25

E3. Abstractions: Introduction Multiple Abstractions

Combining Multiple Abstractions

Maximizing several abstractions:
» Each abstraction mapping gives rise to an admissible heuristic.
» By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

» Thus, we can always compute several abstractions
and maximize over the individual abstract goal distances.

Adding several abstractions:

» In some cases, we can even compute the sum
of individual estimates and still stay admissible.

» Summation often leads to much higher estimates

than maximization, so it is important to understand

under which conditions summation of heuristics is admissible.
November 5, 2025 17 / 25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E3. Abstractions: Introduction

Maximizing Several Abstractions: Example

Example (15-Puzzle)
» mapping to tiles 1-7 was arbitrary
~> can use any subset of tiles
» with the same amount of memory required for the tables
for the mapping to tiles 1-7, we could store the tables
for nine different abstractions to six tiles and the blank

» use maximum of individual estimates

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Multiple Abstractions

18 / 25

E3. Abstractions: Introduction Multiple Abstractions

Adding Several Abstractions: Example

9 2 12 6 9 2 12 6
5 7 14 | 13 5 7 14 | 13
3 4 1 11 3 4 1 11

15 | 10 | 8 . 15 | 10 | 8 .

> 1st abstraction: ignore precise location of 8-15

» 2nd abstraction: ignore precise location of 1-7

~~ |s the sum of the abstraction heuristics admissible?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 19 / 25

E3. Abstractions: Introduction

Adding Several Abstractions: Example

2 6 9 12
5 7 14 | 13
3 4 1 11

“ERnD

> 1st abstraction: ignore precise location of 8-15

» 2nd abstraction: ignore precise location of 1-7

~+ The sum of the abstraction heuristics is not admissible.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Multiple Abstractions

20 / 25

E3. Abstractions: Introduction Multiple Abstractions

Adding Several Abstractions: Example

P 1st abstraction: ignore precise location of 8-15 and blank
» 2nd abstraction: ignore precise location of 1-7 and blank

~» The sum of the abstraction heuristics is admissible.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 21 /25

E3. Abstractions: Introduction

E3.4 Outlook

Outlook

E3. Abstractions: Introduction Outlook

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In the next two chapters, we formally introduce abstractions
and abstraction heuristics and study some of their
most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

» pattern database heuristics,
P> merge-and-shrink abstractions and

» Cartesian abstractions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 23 /25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 22 /25
E3. Abstractions: Introduction Summary
Planning and Optimization November 5, 2025 24 /25

M. Helmert, G. Roger (Universitat Basel)

E3. Abstractions: Introduction Summary

Summary

P Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

» The key idea is to map states to a smaller abstract transition
system 7 by means of an abstraction function a.

» Goal distances in 7% are then used as admissible estimates
for goal distances in the original transition system.

P> To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

» Often, multiple abstractions are used.
They can always be maximized admissibly.

P> Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 25 / 25

Planning and Optimization

E4. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

November 5, 2025

Planning and Optimization
November 5, 2025 — E4. Abstractions: Formal Definition and Heuristics

E4.1 Reminder: Transition Systems
E4.2 Abstractions

E4.3 Abstraction Heuristics

E4.4 Coarsenings and Refinements

E4.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 2 /33

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 1/33
Content of the Course
— Prelude
— Foundations
— Delete Relaxation | (H Pattern Databases
| Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 3/33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

E4.1 Reminder: Transition Systems

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 4 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition Systems

Reminder from Chapter B1:

Definition (Transition System)
A transition system is a 6-tuple 7 = (S, L, c, T, sy, Sx) where
> S is a finite set of states,
> L is a finite set of (transition) labels,
> c:L— R(J{ is a label cost function,
> T C S x L xS isthe transition relation,
> 5o € S is the initial state, and
> S, C S is the set of goal states.
We say that 7 has the transition (s, ¢,s') if (s,¢,s') € T.
We also write this as s £> s’ or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 5 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 6 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Mapping Planning Tasks to Transition Systems

Reminder from Chapters B3 and E1:

Definition (Transition System Induced by a Planning Task)
The planning task 1= (VI O,~) induces
the transition system 7 (M) = (S, L, ¢, T, sy, S&), where
> S is the set of all states over state variables V,
L is the set of operators O,

c(0) = cost(o) for all operators o € O,

so=1, and
S,={seS|sE~}

(same definition for propositional and finite-domain representation)

>
>
> T ={(s,0,5') |s€S, oapplicable in s, s’ = s[o]},
>
>

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 7 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Tasks in Finite-Domain Representation

Notes:

» We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.
> All concepts apply equally to propositional planning tasks.

» However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

P Useless states can hurt the efficiency of abstraction-based
algorithms.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 8 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)
Consider the following FDR planning task (V, I, O,~):
> V ={p, ta, tg} with
» dom(p) = {L,R,A,B}
» dom(ta) = dom(tg) = {L,R}
> /={pi—> L, ta — R,tB'—>R}
> 0= {plckup,d ‘ i€ {A7 B}7./ € {L7 R}}
U {dropi,j | i€ {Av B}a.’ € {La R}}
U {move;JJr | i€ {A, B},j,j/ € {L,R},j ;ﬁj’}, where
> pickup;; = (ti=jAp=j,p:=i1l)
» drop,; =(ti=jAp=ip:=j1)
> move; ;i = <t,' =, ti:=/, 1>

> v=(p=R)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 9 /33

E4. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition System of Example Task

)
@

> State {p > i, tpn — Jj, tg — k} is depicted as jjk.
P Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 10 / 33

E4. Abstractions: Formal Definition and Heuristics Abstractions

E4.2 Abstractions

E4. Abstractions: Formal Definition and Heuristics Abstractions

Abstractions

Definition (Abstraction)

Let T =(S,L,c, T,so,Ss) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function o : § — S defined on the states of T,
where S is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: « maps the states of 7 to another (usually smaller)
abstract state space.

November 5, 2025 11 /33

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 12 / 33

E4. Abstractions: Formal Definition and Heuristics Abstractions

Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,so,Ss) be a transition system,
and let « : S — S® be an abstraction of 7.
The abstract transition system induced by «, in symbols 7%,
is the transition system 7 = (5%, L,c, T%,sg, S¢) defined by:
> T = {{afs),l,a(t)) | (s,,t) € T}
> s = o(s0)
> 5r={a(s) s €S}

November 5, 2025 13 /33

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E4. Abstractions: Formal Definition and Heuristics

Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
» T is called the concrete transition system.
> T%is called the abstract transition system.

» Similarly: concrete/abstract state space,
concrete/abstract transition, etc.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Abstractions

14 / 33

E4. Abstractions: Formal Definition and Heuristics Abstractions

Abstraction: Example

concrete transition system

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 15 / 33

E4. Abstractions: Formal Definition and Heuristics

Abstraction: Example

abstract transition system

()
A w6y
LLR RRL
NETECy N
—> LLL RRR
\/ ®
@
LRL RLR

Note: Most arcs represent many parallel transitions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Abstractions

16 / 33

E4. Abstractions: Formal Definition and Heuristics Abstractions

Strict Homomorphisms

» The abstraction mapping « that transforms 7 to 7¢
is also called a strict homomorphism from 7 to T¢.

» Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

» A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by «.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 17 / 33

E4. Abstractions: Formal Definition and Heuristics

E4.3 Abstraction Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Abstraction Heuristics

November 5, 2025

18 / 33

E4. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics

Definition (Abstraction Heuristic)
Let @ : S — S be an abstraction of a transition system 7.

The abstraction heuristic induced by «, written h®,
is the heuristic function h* : S — R U {oc} defined as

h*(s) = hra(a(s)) forallse S,
where h7-. denotes the goal distance function in 7.

Notes:
> h%(s) = oo if no goal state of T is reachable from «a(s)

> We also apply abstraction terminology to planning tasks 1,
which stand for their induced transition systems.
For example, an abstraction of I1 is an abstraction of 7 (I1).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 19 / 33

E4. Abstractions: Formal Definition and Heuristics

Abstraction Heuristics: Example

LLR RRL

@

LRL

()
@ BRRj«—
o @
ha({p — L ta— R, tg — R}) =3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Abstraction Heuristics

November 5, 2025

20 / 33

E4. Abstractions: Formal Definition and Heuristics

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let 7 =(S,L,c, T,s0,5).

Let 7% =(S* L,c, T, s§,S2).

Goal-awareness: We need to show that h*(s) = 0 for all s € S,,
solet s € S,. Then a(s) € S by the definition of abstract
transition systems, and hence h%(s) = h3.(a(s)) = 0.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Abstraction Heuristics

21 /33

E4. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s 5t of T.
We need to show h*(s) < c(¥) + h“(t).

By the definition of 7, we get a(s) EN a(t) e T

Hence, a(t) is a successor of a(s) in T via the label .

We get:
h*(s) = hra(a(s))

c(0) + hia(a(t))

c(€) + h*(t),

where the inequality holds because perfect goal distances hi-.

are consistent in 7.

(The shortest path from a(s) to the goal in 7% cannot be longer

than the shortest path from «(s) to the goal via «(t).) O

IA

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 22 / 33

E4. Abstractions: Formal Definition and Heuristics

E4.4 Coarsenings and Refinements

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

Coarsenings and Refinements

23 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

» Using a first abstraction a: S — S’, map 7 to 7.
> Using a second abstraction 8 : S’ — S”, map 7% to (T%)".

The result is the same as directly using the abstraction (5 o «):
> Let v:S — S” be defined as y(s) = (8 o a)(s) = B(a(s)).
> Then 77 = (T)5.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 24 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (1)

transition system T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 25 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (2)

Transition system 7" as an abstraction of T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 26 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (3)

N PR ER) o
LLR ~ RRL
@ LLL N RRR @

LRL RLR

Transition system 7" as an abstraction of T’

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 27 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (3)

()
R o
RRL

@ LLL) RRR @
@

LRL RLR

Transition system 7" as an abstraction of T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 28 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Coarsenings and Refinements

Definition (Coarsening and Refinement)
Let « and ~y be abstractions of the same transition system
such that v = 5 o a for some function 5.

Then ~ is called a coarsening of «
and « is called a refinement of ~.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)
Let o and ~y be abstractions of the same transition system
such that « is a refinement of .

Then h® dominates h”.

In other words, h7(s) < h%(s) < h*(s) for all states s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 30 / 33

E4. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Heuristic Quality of Refinements: Proof

Proof.
Since « is a refinement of ~,
there exists a function 8 with v = S o a.

For all states s of 1, we get:

W (s) = hir (1(5))
— b (B(a(s)))
— h.(a(s))
< ya(a(s))
= H(s),

where the inequality holds because h?ra is an admissible heuristic
in the transition system 7. O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025

E4. Abstractions: Formal Definition and Heuristics Summary

E4.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 5, 2025 32 /33

E4. Abstractions: Formal Definition and Heuristics

Summary

Summary

» An abstraction is a function « that maps the states S
of a transition system to another (usually smaller) set S*.

» This induces an abstract transition system 7%, which behaves
like the original transition system 7 except that states
mapped to the same abstract state cannot be distinguished.

> Abstractions « induce abstraction heuristics h*: h*(s)
is the goal distance of «(s) in the abstract transition system.

» Abstraction heuristics are safe, goal-aware, admissible

and consistent.

P Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those

for coarser ones.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 5, 2025 33

Planning and Optimization
November 10, 2025 — E5. Abstractions: Additive Abstractions

Planning and Optimization

E5. Abstractions: Additive Abstractions E5.1 Additivity
Malte Helmert and Gabriele Roger E5.2 Outlook
Universitat Basel
November 10, 2025 E5.3 Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 1/23 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 2 /23
E5. Abstractions: Additive Abstractions Additivity

Content of the Course

— Prelude

— Foundations

e - E5.1 Additivity
EEE-

— Delete Relaxation

— Constraints Cartesian
Abstractions

[

Pattern Databases

|

Merge & Shrink

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 3 /23 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 4 /23

E5. Abstractions: Additive Abstractions Additivity

Affecting Transition Labels

Definition (Affecting Transition Labels)
Let 7 be a transition system, and let ¢ be one of its labels.

We say that ¢ affects 7 if T has a transition s L twith s #t.

Theorem (Affecting Labels vs. Orthogonality)
Let a1 and ay be abstractions of transition system T .

If no label of T affects both T and T2,
then oy and o are orthogonal.

(Easy proof omitted.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 6 /23

E5. Abstractions: Additive Abstractions Additivity
Orthogonality of Abstractions
Definition (Orthogonal)
Let a3 and ap be abstractions of transition system 7.
We say that a; and asp are orthogonal if for all transitions s Ly
of T, we have a1(s) = ai(t) or as(s) = a(t).
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 5/23
E5. Abstractions: Additive Abstractions Additivity
Orthogonal Abstractions: Example
2 6 9 12
5 7 14 | 13
3 4 1 11
Are the abstractions orthogonal?
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 7 /23

E5. Abstractions: Additive Abstractions Additivity

Orthogonal Abstractions: Example

Are the abstractions orthogonal?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 8 /23

E5. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let h*t, ..., h®" be abstraction heuristics of the same transition
system such that a; and o are orthogonal for all i # j.

Then 37, h™i is a safe, goal-aware, admissible and consistent
heuristic for I1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 9 /23

E5. Abstractions: Additive Abstractions

E5. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity: Example

Additivity
Orthogonality and Additivity: Example
transition system T
state variables: first package, second package, truck
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 10 / 23
E5. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity: Example

abstraction oy
abstraction: only consider value of first package

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 11 /23

abstraction ay (orthogonal to 1)
abstraction: only consider value of second package

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

12 /23

E5. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity: Proof (1)

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.

Let 7 =(S,L,c, T,so,Ss) be the concrete transition system.
Let h=)"", h%.

Goal-awareness: For goal states s € S,

h(s) =71 h%(s) =i, 0 =0 because all individual
abstraction heuristics are goal-aware.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 13 /23

E5. Abstractions: Additive Abstractions

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let s % t € T. We must prove h(s) < c(o) + h(t).

Because the abstractions are orthogonal, «;(s) # «;(t)
for at most one i € {1,...,n}.

Case 1: aj(s) = «(t) for all i € {1,...,n}.
Then h(s) =>_7_; h%i(s)

= 2oit1 hai(@i(s))

= 2im1 e (ai(2))

=21 hi(t)

= h(t) < c(o) + h(t).

Additivity

E5. Abstractions: Additive Abstractions Additivity

Orthogonality and Additivity: Proof (3)

Proof (continued).
Case 2: «j(s) # «aj(t) for exactly one i € {1,...,n}.
Let k € {1,...,n} such that a(s) # a(t).
Then h(s) =>"7_; h%i(s)
= 2ieft,.np\ky rei(ai(s)) + h%(s)
>ic(t,n\fky Mrei (i(t)) 4 c(o) + h*(t)
c(0) + Xoiy h*i(t)
= c(0) + h(1),
where the inequality holds because «(s) = «;(t) for all i # k
and h“ is consistent. 0l

IN

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 15 / 23

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 14 / 23
E5. Abstractions: Additive Abstractions Outlook
Planning and Optimization November 10, 2025 16 / 23

M. Helmert, G. Roger (Universitat Basel)

E5. Abstractions: Additive Abstractions Outlook

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:
> we want to obtain an informative heuristic, but

> want to keep its representation small.

Abstractions have small representations if
> there are few abstract states and

> there is a succinct encoding for a.

M. Helmert, G. Réger (Universitat Basel) Planning and Optimization November 10, 2025 17 / 23

E5. Abstractions: Additive Abstractions Outlook

Counterexample: One-State Abstraction

One-state abstraction: «(s) := const.
+ very few abstract states and succinct encoding for «
— completely uninformative heuristic

M. Helmert, G. Réger (Universitat Basel) Planning and Optimization November 10, 2025 18 / 23

E5. Abstractions: Additive Abstractions Outlook

Counterexample: ldentity Abstraction

Identity abstraction: a(s) :=s.
+ perfect heuristic and succinct encoding for «

— too many abstract states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 19 / 23

E5. Abstractions: Additive Abstractions Outlook

Counterexample: Perfect Abstraction

oD

& (? (E
® ¢ C

® G

) Gp
5D

INEINE

Perfect abstraction: «a(s) := h*(s).
+ perfect heuristic and usually few abstract states
— usually no succinct encoding for «

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 20 / 23

E5. Abstractions: Additive Abstractions Outlook E5. Abstractions: Additive Abstractions

Automatically Deriving Good Abstraction Heuristics

Summary

Abstraction Heuristics for Planning: Main Research Problem E5 3 S
Automatically derive effective abstraction heuristics . um mary

for planning tasks.

~ we will study three state-of-the-art approaches
in the following chapters

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 21 /23 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 22 /23

E5. Abstractions: Additive Abstractions Summary

Summary

» Abstraction heuristics from orthogonal abstractions
can be added without losing admissibility or consistency.

» One sufficient condition for orthogonality is that all
abstractions are affected by disjoint sets of labels.

» Practically useful abstractions are those which give
informative heuristics, yet have a small representation.

» Coming up with good abstractions automatically
is the main research challenge when applying
abstraction heuristics in planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 23 /23

Planning and Optimization

E6. Pattern Databases: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 10, 2025

Planning and Optimization
November 10, 2025 — E6. Pattern Databases: Introduction

E6.1 Projections and Pattern Database Heuristics
E6.2 Implementing PDBs: Precomputation
E6.3 Implementing PDBs: Lookup

E6.4 Summary
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 10, 2025 2 /31

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 1/31
Content of the Course
Abstraction in Syntactic
{ Approaches General Projection
Delete Relaxation
-{ Merge & Shrink Pattern
Collections
{ Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 3/31

E6. Pattern Databases: Introduction Projections and Pattern Database Heuristics

E6.1 Projections and Pattern
Database Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 4 /31

E6. Pattern Databases: Introduction Projections and Pattern Database Heuristics

Pattern Database Heuristics

» The oldest commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

» PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

» The first use for domain-independent planning
is due to Edelkamp (2001).

» Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

P Pattern databases are a research area both in planning and in
(domain-specific) heuristic search.

» For many search problems, pattern databases are
the most effective admissible heuristics currently known.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 10, 2025 5 /31

E6. Pattern Databases: Introduction

Pattern Database Heuristics Informally

Pattern Databases: Informally
A pattern database heuristic for a planning task
is an abstraction heuristic where

> some aspects of the task are represented in the abstraction
with perfect precision, while

> all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

Example (15-Puzzle)
» Choose a subset T of tiles (the pattern).
» Faithfully represent the locations of T in the abstraction.

> Assume that all other tiles and the blank can be anywhere
in the abstraction.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

Projections and Pattern Database Heuristics

6 /31

E6. Pattern Databases: Introduction Projections and Pattern Database Heuristics

Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)

Let I be an FDR planning task with variables V' and states S.
Let P C V, and let S’ be the set of states over P.

The projection p : S — S’ is defined as 7p(s) := s|p,

(where s|p(v) :=s(v) for all v € P).

We call P the pattern of the projection 7p.

In other words, mp maps two states s; and s, to the same
abstract state iff they agree on all variables in P.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 7 /31

E6. Pattern Databases: Introduction

Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by 7p is called
a pattern database heuristic or PDB heuristic.
We write h”" as a shorthand for h™.

Why are they called pattern database heuristics?

» Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

» The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

Projections and Pattern Database Heuristics

8 /31

E6. Pattern Databases: Introduction Projections and Pattern Database Heuristics

Example: Transition System

Logistics problem with one package, two trucks, two locations:
> state variable package: {L, R, A, B}
> state variable truck A: {L, R}
> state variable truck B: {L, R}

M. Helmert, G. Roger (Universitat Basel) November 10, 2025 9 /31

Planning and Optimization

E6. Pattern Databases: Introduction

Example: Projection (1)

Abstraction induced by 7(,ackage}

@& @ ¢
@ @

hiPackaee} (L RR) = 2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 10, 2025 10 /

Projections and Pattern Database Heuristics

31

E6. Pattern Databases: Introduction Projections and Pattern Database Heuristics

Example: Projection (2)

Abstraction induced by T(package,truck A}:

h{package,truck A}(LRR) -9

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 11 /31

E6. Pattern Databases: Introduction

Pattern Databases: Chapter Overview

In the following, we will discuss:
» how to implement PDB heuristics
~> this chapter
> how to effectively make use of multiple PDB heuristics
~~ Chapter E7
» how to find good patterns for PDB heuristics
~~ Chapter E8

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 10, 2025 12/

Projections and Pattern Database Heuristics

31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

E6.2 Implementing PDB:s:

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Content of the Course

Prelude

Foundations

| Abstraction in
Approaches General

Delete Relaxation

Pattern
Collections

{ Merge & Shrink

Constraints || Cartesian
Abstractions

il

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

14 / 31

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 13 /31
E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Pattern Database Implementation

Assume we are given a pattern P for a planning task [1.
How do we implement hP?
© In a precomputation step, we compute a graph representation
for the abstraction 7 ()™ and compute the abstract goal
distance for each abstract state.
© During search, we use the precomputed abstract goal
distances in a lookup step.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

15 /

31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Precomputation Step

Let I1 be a planning task and P a pattern.
Let 7 =7T(N)and 7' =T7P.
» We want to compute a graph representation of 7.
» T is defined through an abstraction of 7.
» For example, each concrete transition induces
an abstract transition.
» However, we cannot compute 7" by iterating
over all transitions of 7.
» This would take time Q(|| 7).
> This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).
» Hence, we need a way of computing 77 in time
which is polynomial only in ||| and ||77].

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

16 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Syntactic Projections

Definition (Syntactic Projection)
Let M= (V,/,0,v) be an FDR planning task,
and let P C V be a subset of its variables.
The syntactic projection I|p of 1 to P is the FDR planning task
(P,1lp,{o|lp | 0 € O},7|p), where
» o|p for formula ¢ is defined as the formula obtained from ¢
by replacing all atoms (v = d) with v ¢ P by T, and
» o|p for operator o is defined by replacing all formulas ¢
occurring in the precondition or effect conditions of o with
¢|p and all atomic effects (v := d) with v ¢ P with the
empty effect T.

Put simply, M|p throws away all information not pertaining
to variables in P.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 17 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Idea

n induced TS T(n)

J abstract TS
T(n)re

induced TS relationship?

T(Nlp)

syntactic projection
Mlp

» [1|p can be computed in linear time in |||

» If T(M|p) was "equivalent” to 7 ()™ this would give us an
efficient way to compute 7 ()"7.

» What do we mean with “equivalent”?

» Is this actually the case?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 18 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Isomorphic Transition Systems

Isomorphic = equivalent up to renaming

Definition (Isomorphic Transition Systems)

Let T =(S,L,c,T,5,S) and 7' = (S, L', ', T, s}, S.)

be transition systems.

We say that 7 is isomorphic to 77, in symbols 7 ~ T, if there
exist bijective functions ¢ : S — S" and A : L — L’ such that:

> s b e Tiffo(s) 2 o(t) e T,

> (A(0)) = c(¢) forall £ € L,
> ©(sp) = s, and
> se S, iff o(s) € S..

(~) is a an equivalence relation. Two isomorphic transition
systems are interchangeable for all practical intents and purposes.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 19 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Precomputation

Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let M be a SAS™ task, and let P be a pattern for 1.
Then T(N)™ ~ T(M|p).

Proof.
~~> exercises L]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 20 / 31

E6. Pattern Databases: Introduction

PDB Computation

Implementing PDBs: Precomputation

Using the equivalence theorem, we can compute pattern databases
for SAS™ tasks M and patterns P:

Computing Pattern Databases

def compute-PDB(IM, P):
Compute " := MN|p.
Compute 77 := T(IT).
Perform a backward uniform-cost search from the goal

states of 7’ to compute all abstract goal distances.

PDB := a table containing all goal distances in T’
return PDB

The algorithm runs in polynomial time and space
in terms of ||M|| + |PDB.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 21 /31

E6. Pattern Databases: Introduction

Generalizations of the Equivalence Theorem

» The restriction to SAS™ tasks is necessary.

» We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.
> In that case, the weighted graph of 7 ()™ is isomorphic
to a subgraph of the weighted graph of T(M|p).
» This means that we can use T(I1|p) to derive
an admissible estimate of h”.

» With negations in conditions or with conditional effects,
not even this weaker result holds.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

Implementing PDBs: Precomputation

22 /31

E6. Pattern Databases: Introduction

Going Beyond SAS™ Tasks

Implementing PDBs: Precomputation

» Most practical implementations of PDB heuristics
are limited to SAS™ tasks (or modest generalizations).

» One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS™ tasks.

» However, most direct conversions can exponentially increase
the task size in the worst case.

~ We will only consider SAS™ tasks in the chapters
dealing with pattern databases.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 23 /31

E6. Pattern Databases: Introduction

E6.3 Implementing PDBs: Lookup

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025

Implementing PDBs: Lookup

24 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Lookup

Content of the Course

Prelude
Foundations

Approaches

| Abstraction in Syntactic
Delete Relaxation General Projection

Jiiii

{ Constraints

Merge & Shrink Pattern
Collections

Cartesian
Abstractions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 25 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Lookup

Lookup Step: Overview

» During search, the PDB is the only piece of information
necessary to represent h”. (It is not necessary to store
the abstract transition system itself at this point.)

» Hence, the space requirements for PDBs during search
are linear in the number of abstract states S':
there is one table entry for each abstract state.

» During search, h”(s) is computed by mapping
7p(s) to a natural number in the range {0,...,|S'| — 1}
using a perfect hash function, then looking up
the table entry for this number.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 26 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Lookup

Lookup Step: Algorithm

Let P = {w1,..., vk} be the pattern.
> We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0,1,...,|dom(v)| — 1}.

» Forall i € {1,..., k}, we precompute N; := HJ’;% |dom(v;)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics
def PDB-heuristic(s):

index := Z,’-‘Zl Nis(v;)

return PDBJindex|

» This is a very fast operation: it can be performed in O(k).

» For comparison, most relaxation heuristics need time O(||||)
per state.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 27 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Lookup

Lookup Step: Example (1)

Abstraction induced by T(package,truck A}:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 28 / 31

E6. Pattern Databases: Introduction Implementing PDBs: Lookup

Lookup Step: Example (2)

» P ={v;, v} with v = package, v» = truck A.

» dom(vi) = {L,R,A,B} ~ {0,1,2,3}

» dom(vp) = {L,R} =~ {0,1}

w Ny =[]} [dom(v))| = 1, Ny = [T, |[dom(v;)| = 4
~ index(s) = 1 - s(package) + 4 - s(truck A)

Pattern database:
abstract state | LL RL AL BL LR RR AR BR

E6. Pattern Databases: Introduction

E6.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

November 10, 2025

Summary

30 /31

index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 29 / 31
E6. Pattern Databases: Introduction Summary
Summary

» Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.

» For SAS™ tasks, they can easily be implemented
via syntactic projections of the task representation.

» PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.

» PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 10, 2025 31 /31

Planning and Optimization

E7. Pattern Databases: Multiple Patterns

Malte Helmert and Gabriele Roger

Universitat Basel

November 12, 2025

Planning and Optimization
November 12, 2025 — E7. Pattern Databases: Multiple Patterns

E7.1 Additivity & the Canonical Heuristic
E7.2 Dominated Additive Sets
E7.3 Redundant Patterns

E7.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

2/ 30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 1/30
Content of the Course
Prelude
Foundations
Abstraction in Syntactic
{ Approaches General Projection
Delete Relaxation
{ Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 3 /30

E7. Pattern Databases: Multiple Patterns

E7.1 Additivity & the Canonical
Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Additivity & the Canonical Heuristic

4/ 30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

Pattern Collections

» The space requirements for a pattern database
grow exponentially with the number of state variables
in the pattern.

» This places severe limits on the usefulness
of single PDB heuristics h” for larger planning task.

» To overcome this limitation, planners using pattern databases
work with collections of multiple patterns.

» When using two patterns P; and P5, it is always possible
to use the maximum of h"* and h™2 as an admissible
and consistent heuristic estimate.

» However, when possible, it is much preferable
to use the sum of ™ and h™2 as a heuristic estimate,
since h1 + W2 > max{hF1, hP2}.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 5 /30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let Py,..., Py be disjoint patterns for an FDR planning task T1.
If there exists no operator that has an effect

on a variable v; € P; and on a variable v; € P; for some i # |,
then S, hPi is an admissible and consistent heuristic for 1.

Proof.

If there exists no such operator, then no label of 7(IM) affects both
T(M)™i and T(M)™ for i # j. By the theorem on affecting
transition labels, this means that any two projections 7p, and 7p,
are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions. O

A pattern set {P1,..., P} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 6 / 30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

Finding Additive Pattern Sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:
@ Build the compatibility graph for C.

» Vertices correspond to patterns P € C.
» There is an edge between two vertices iff
no operator affects both incident patterns.

@ Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.
» Computing large cliques is an NP-hard problem,
and a graph can have exponentially many maximal cliques.
» However, there are output-polynomial algorithms for finding
all maximal cliques (Tomita, Tanaka & Takahashi, 2004)
which have led to good results in practice.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 7 /30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

Finding Additive Pattern Sets: Example

Example
Consider a planning task with state variables V = {vq,..., v}
and the pattern collection C = {P1,..., Ps} with Py = {v1, w2, v3},

Py = {vi,va}, P3 ={w3}, Pa ={va} and P5 = {ws}.
There are operators affecting each individual variable,
variables v; and v», variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {PQ, P4, P5}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 8 / 30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

The Canonical Heuristic Function

Definition (Canonical Heuristic Function)
Let C be a pattern collection for an FDR planning task.

The canonical heuristic h¢ for pattern collection C is defined as

h(s) = max Z hP(s),

Decliques(C) PeD

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic K is admissible and consistent.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 9 /30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {vy,..., v}

and the pattern collection C = {P1,..., Ps} with Py = {v1, va, v3},
P2 = {Vl, V2}, P3 = {Vg}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v» and an operator that affects v3 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pg, P3}, {Pz, P4, P5}
What is the canonical heuristic function h¢?

Answer:
hC = max {hP1, hP> 4 hP3 APz 4 pPe 4 pPs)
= max{h{"17V27V3}, plvive} o h{Va}7 plvisve} 4 plua} o h{Vs}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 10 / 30

E7. Pattern Databases: Multiple Patterns Additivity & the Canonical Heuristic

How Good is the Canonical Heuristic Function?

» The canonical heuristic function is the best possible admissible
heuristic we can derive from C using our additivity criterion.

> Even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion
based on an idea called cost partitioning.

~> We will return to this topic in Part F.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 11 /30

E7. Pattern Databases: Multiple Patterns Dominated Additive Sets

E7.2 Dominated Additive Sets

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 12 / 30

E7. Pattern Databases: Multiple Patterns Dominated Additive Sets

Computing h¢ Efficiently: Motivation

Consider
K = max {htvivevsd plivivel 4 plvsl plvived 4 plvd 4 plely,

» We need to evaluate this expression for every search node.

» |t is thus worth to spend some effort in precomputations
to make the evaluation more efficient.

A naive implementation requires 5 PDB lookups
(one for each pattern) and maximizes over 3 additive sets.

Can we do better?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

E7. Pattern Databases: Multiple Patterns Dominated Additive Sets

Dominated Sum Theorem

Theorem (Dominated Sum)
Let {P1,..., Py} be an additive pattern set for an FDR planning
task M, and let P be a pattern with P; C P for all i € {1,..., k}.

Then Sk, hPi < hP.

Proof.

Because P; C P, all projections mp, are coarsenings

of the projection mp. Let 77 := T(M)™.

We can view each h”i as an abstraction heuristic for solving 7.
By the argumentation of the previous theorem, {Pi,..., P} is an
additive pattern set and hence Zle h*i is an admissible heuristic
for solving 7’. Hence, Zf-‘zl h" is bounded by the optimal

goal distances in 7', which implies fozl hPr < hP.

E7. Pattern Databases: Multiple Patterns Dominated Additive Sets

Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pn} and {Qu,...,Qm} be additive pattern sets
of an FDR planning task such that each pattern P;
is a subset of some pattern Q; (not necessarily proper).

szgwﬁgzgww

Proof.
n () m

ZhP; % Z Z KPi (é) ith
i=1 Jj=1

Jj=1 PiCQ;
where (1) holds because each P; is contained in some Q;
and (2) follows from the dominated sum theorem.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

L]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 14 / 30
E7. Pattern Databases: Multiple Patterns Dominated Additive Sets
Dominance Pruning
» We can use the dominated sum corollary
to simplify the representation of h°:
sums that are dominated by other sums can be pruned.
» The dominance test can be performed in polynomial time.
Example
maX{h{vl’V2’v3}, pivive} + h{Vz}7 pivive} + piva} + h{Vs}}
— max{h{V17V27V3}7 plvive} 4 plua} h{Vs}}
~> number of PDB lookups reduced from 5 to 4;
number of additive sets reduced from 3 to 2
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 16 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

E7.3 Redundant Patterns

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

17/

E7. Pattern Databases: Multiple Patterns

Redundant Patterns

Redundant Patterns

» The previous example shows that sometimes,
not all patterns in a pattern collection are useful.
» Pattern {v3} could be removed because
it does not affect the heuristic value.

» In this section, we will show that certain patterns
are never useful and should thus never be considered.

» Knowing about such redundant patterns is useful for
algorithms that try to find good patterns automatically.

~ |t allows us to focus on the useful ones.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 12, 2025 18 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Non-Goal Patterns

Theorem (Non-Goal Patterns are Trivial)

Let M be a SAS™ planning task, and let P be a pattern for I
such that no variable in P is mentioned in the goal formula of T1.
Then hP(s) = 0 for all states s.

Proof.
All states in the abstraction are goal states.

~> Patterns with no goal variables are redundant.
They should not be included in a pattern collection.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

19 /

30

E7. Pattern Databases: Multiple Patterns

Redundant Patterns

Causal Graphs: Motivation

» For more interesting notions of redundancy,
we need to introduce causal graphs.

» Causal graphs describe the dependency structure
between the state variables of a planning task.

» Causal graphs are a general tool for analyzing planning tasks.

P> They are used in many contexts besides abstraction heuristics.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 12, 2025 20 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Causal Graphs

Definition (Causal Graph)
Let M= (V,I,0,~) be an FDR planning task.

The causal graph of I, written CG(I1), is the directed graph
whose vertices are the state variables V' and which has an arc (u, v)
iff u # v and there exists an operator o € O such that:

> u appears anywhere in o (in precondition, effect conditions
or atomic effects), and

» v is modified by an effect of o.

Idea: an arc (u,v) in the causal graph indicates that variable u
is in some way relevant for modifying the value of v

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 21 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Causally Relevant Variables

Definition (Causally Relevant)

Let M= (V,I,0,v) be an FDR planning task,

and let P C V be a pattern for I1.

We say that v € P is causally relevant for P if CG(IN),
restricted to the variables of P, contains a directed path from v
to a variable v/ € P that is mentioned in the goal formula 7.

Note: The definition implies that variables in P mentioned
in the goal are always causally relevant for P.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 22 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless)
Let P C V be a pattern for an FDR planning task I, and let
P’ C P consist of all variables that are causally relevant for P.

Then hP(s) = hP'(s) for all states s.

~» Patterns P where not all variables are causally relevant are
redundant. The smaller subpattern P’ should be used instead.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 23 / 30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Causally Irrelevant Variables are Useless: Proof

Proof Sketch.
(>): holds because 7p is a refinement of mps

(<): Obvious if h¥'(s) = co; else, consider an optimal abstract
plan (o1,...,0n) for wp/(s) in T(M)™P".

W.l.0.g., each o; modifies some variable in P’.

(Other o; are redundant and can be omitted.)

Because P’ includes all variables causally relevant for P,
no variable in P\ P’ is mentioned in any o; or in the goal.

Then the same abstract plan also is a solution for wp(s) in 7 ()™,
Hence, the optimal solution cost under abstraction 7p
is no larger than under mp:.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 24 /30

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Causally Connected Patterns

Definition (Causally Connected)

Let M= (V,I,0,v) be an FDR planning task,
and let P C V be a pattern for I1.

We say that P is causally connected if the subgraph of CG(IM)
induced by P is weakly connected (i.e., contains a path
from every vertex to every other vertex, ignoring arc directions).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 25 / 30

E7. Pattern Databases: Multiple Patterns

Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable)

Let P C V be a pattern for a SAS™ planning task I

that is not causally connected, and let Py, P> be a partition of P
into non-empty subsets such that CG(I) contains no arc
between the two sets.

Then hP(s) = hP1(s) + h"2(s) for all states s.

~» Causally disconnected patterns P are redundant.
The smaller subpatterns P; and P, should be used instead.

Redundant Patterns

E7. Pattern Databases: Multiple Patterns Redundant Patterns

Disconnected Patterns are Decomposable: Proof

Proof Sketch.

(>): There is no arc between P; and P, in the causal graph,
and thus there is no operator that affects both patterns.
Therefore, they are additive, and h” > hPr + hP2 follows
from the dominated sum theorem.

(<): Obvious if hP1(s) = oo or hP2(s) = cc. Else, consider
optimal abstract plans p; for 7(M)™1 and po for 7 (M)™72.
Because the variables of the two projections do not interact,
concatenating the two plans yields an abstract plan for 7(1)™?.

Hence, the optimal solution cost under abstraction 7p is at most
the sum of costs of p; and py, and thus h” < hP1 4 pP2.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 27 / 30

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 26 / 30
E7. Pattern Databases: Multiple Patterns Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 28 / 30

E7. Pattern Databases: Multiple Patterns

Summary (1)

Summary

» When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
possible, and maximize where addition is inadmissible.

> A set of patterns is additive if each operator affects (i.e.,
assigns to a variable from) at most one pattern in the set.

» The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given this additivity criterion.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 29 / 30

E7. Pattern Databases: Multiple Patterns

Summary (2)

Not all patterns need to be considered, as some are redundant:
> Patterns should include a goal variable (else h” = 0).

» Patterns should only include causally relevant variables
(others can be dropped without affecting the heuristic value).

» Patterns should be causally connected (disconnected patterns
can be split into smaller subpatterns at no loss).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Summary

30 /

Planning and Optimization
E8. Pattern Databases: Pattern Selection

Malte Helmert and Gabriele Roger

Universitat Basel

November 12, 2025

Planning and Optimization
November 12, 2025 — E8. Pattern Databases: Pattern Selection

E8.1 Pattern Selection as Local Search
E8.2 Search Neighbourhood
E8.3 Literature

E8.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 2 /24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 1/24
Content of the Course
Prelude
Foundations
Abstraction in Syntactic
{ Approaches General Projection
Delete Relaxation
{ Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 3 /24

E8. Pattern Databases: Pattern Selection Pattern Selection as Local Search

E8.1 Pattern Selection as Local
Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 4 /24

E8. Pattern Databases: Pattern Selection Pattern Selection as Local Search

Pattern Selection as an Optimization Problem

Only one question remains to be answered now
in order to apply PDBs to planning tasks in practice:

How do we automatically find a good pattern collection?

The Idea
Pattern selection can be cast as an optimization problem:
» Given: a set of candidates
(= pattern collections which fit into a given memory limit)
> Find: a best possible candidate, or an approximation
(= pattern collection with high heuristic quality)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 5 /24

E8. Pattern Databases: Pattern Selection

Pattern Selection as Local Search

How to solve this optimization problem?

» For problems of interesting size, we cannot hope to find
(and prove optimal) a globally optimal pattern collection.

» Question: How many candidates are there?

> Instead, we try to find good solutions by local search.

Two approaches from the literature:
» Edelkamp (2007): using an evolutionary algorithm
» Haslum et al. (2007): using hill-climbing

~> in the following: main ideas of the second approach

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Pattern Selection as Local Search

6 /24

E8. Pattern Databases: Pattern Selection Pattern Selection as Local Search

Pattern Selection as Hill-Climbing

Reminder: Hill Climbing
current := an initial candidate
loop forever:
next := a neighbour of current with maximum quality
if quality(next) < quality(current):
return current
current := next

more on hill climbing:
~~ Foundations of Artificial Intelligence course FS 2025, Ch. C1-C2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 7/ 24

E8. Pattern Databases: Pattern Selection

Pattern Selection as Hill-Climbing

Reminder: Hill Climbing
current := an initial candidate
loop forever:
next := a neighbour of current with maximum quality
if quality(next) < quality(current):
return current
current := next

Three questions to answer to use this for pattern selection:
@ initial candidate: What is the initial pattern collection?

@ neighbourhood: Which pattern collections are considered next
starting from a given collection?

© quality: How do we evaluate the quality of pattern collections?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Pattern Selection as Local Search

8 /24

E8. Pattern Databases: Pattern Selection

E8.2 Search Neighbourhood

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025

Search Neighbourhood

9/

24

E8. Pattern Databases: Pattern Selection

Search Neighbourhood: Basic Idea

The basic idea is that we
P start from small patterns with only a single variable,
P grow them by adding slightly larger patterns

» and prefer moving to pattern collections that improve
the heuristic value of many states.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025

Search Neighbourhood

10 /

24

E8. Pattern Databases: Pattern Selection

Initial Pattern Collection

1. Initial Candidate
The initial pattern collection is
{{v} | v is a state variable mentioned in the goal formula}.

Motivation:
P patterns with one variable are the simplest possible ones
and hence a natural starting point
» non-goal patterns are trivial (~~ Chapter E7),
so would be useless

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025

Search Neighbourhood

11/

E8. Pattern Databases: Pattern Selection

Which Pattern Collections to Consider Next

From this initial pattern collection, we incrementally grow
larger pattern collections to obtain an improved heuristic.

2. Neighbourhood
The neighbours of C are all pattern collections C U { P’} where

» P'=PuU{v} for some P €C,

> P ¢C,

» all variables of P’ are causally relevant for P/,
» P’ is causally connected, and

» all pattern databases in C U {P’} can be represented
within some prespecified space limit.

~> add one pattern with one additional variable at a time

~~ use criteria for redundant patterns (~» Chapter E7)
to avoid neighbours that cannot improve the heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025

Search Neighbourhood

12

/ 24

E8. Pattern Databases: Pattern Selection Search Neighbourhood

Checking Causal Relevance and Connectivity

Remark: For causal relevance and connectivity, there is a sufficient
and necessary criterion which is easy to check:
P v is a predecessor of some u € P in the causal graph, or

> v is a successor of some u € P in the causal graph
and is mentioned in the goal formula.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 13 / 24

E8. Pattern Databases: Pattern Selection

Evaluating the Quality of Pattern Collections

P The last question we need to answer is how to evaluate
the quality of pattern collections.

» This is perhaps the most critical point: without a good
evaluation criterion, pattern collections are chosen blindly.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Search Neighbourhood

14 / 24

E8. Pattern Databases: Pattern Selection Search Neighbourhood

Approaches for Evaluating Heuristic Quality

Three approaches have been suggested:

P estimating the mean heuristic value of the resulting heuristic
(Edelkamp, 2007)

> estimating search effort under the resulting heuristic
using a model for predicting search effort
(Haslum et al., 2007; Franco et al., 2017)

P> sampling states in the state space and counting how many
of them have improved heuristic values compared to
the current pattern collection (Haslum et al., 2007)

The last approach is most commonly used
and has been shown to work well experimentally.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 15 / 24

E8. Pattern Databases: Pattern Selection

Heuristic Quality by Improved Sample States

3. Quality
» Generate M states sy, ..., sy through random walks
in the state space from the initial state
(according to certain parameters not discussed in detail).

» The degree of improvement of a pattern collection C’
which is generated as a successor of collection C
is the number of sample states s; for which h°'(s;) > h¢(s;).

» Use the degree of improvement as the quality measure for C'.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025

Search Neighbourhood

16 / 24

E8. Pattern Databases: Pattern Selection

Computing h¢(s)

Search Neighbourhood

> So we need to compute h€ (s) for some states s
and each candidate successor collection C’.

» We have PDB:s for all patterns in C, but not for the new
pattern P € C’ (of the form P U {v} for some P € C).

> If possible, we want to avoid fully computing
all PDBs for all neighbours.

Idea:

> For SAS™ tasks M, h”'(s) is identical to the
optimal solution cost for the syntactic projection IM|p.

» We can use any optimal planning algorithm for this.

» In particular, we can use A* search using h” as a heuristic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 17 / 24

E8. Pattern Databases: Pattern Selection Literature

E8.3 Literature

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025 18 /

24

E8. Pattern Databases: Pattern Selection Literature

References (1)

References on planning with pattern databases:

@ Stefan Edelkamp.
Planning with Pattern Databases.
Proc. ECP 2001, pp. 13-24, 2001.
First paper on planning with pattern databases.

@ Stefan Edelkamp.
Symbolic Pattern Databases in Heuristic Search Planning.
Proc. AIPS 2002, pp. 274-283, 2002.
Uses BDDs to store pattern databases more compactly.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 19 / 24

E8. Pattern Databases: Pattern Selection Literature

References (2)

References on planning with pattern databases:

@ Patrik Haslum, Blai Bonet and Héctor Geffner.
New Admissible Heuristics for Domain-Independent Planning.
Proc. AAAI 2005, pp. 1164-1168, 2005.
Introduces constrained PDBs.
First pattern selection methods based on heuristic quality.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025 20 /

24

E8. Pattern Databases: Pattern Selection Literature

References (3)

References on planning with pattern databases:

@ Stefan Edelkamp.
Automated Creation of Pattern Database Search Heuristics.
Proc. MoChArt 2006, pp. 121-135, 2007.
First search-based pattern selection method.

@ Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet and
Sven Koenig.
Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning.
Proc. AAAI 2007, pp. 1007-1012, 2007.
Introduces canonical heuristic for pattern collections.
Search-based pattern selection based on Korf, Reid &
Edelkamp’s theory for search effort estimation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 21 / 24

E8. Pattern Databases: Pattern Selection Literature

References (4)

References on planning with pattern databases:

@ Santiago Franco, Alvaro Torralba, Levi H. S. Lelis
and Mike Barley.
On Creating Complementary Pattern Databases
Proc. 1JCAI 2017, pp. 4302-4309, 2017.
Improved version of Edelkamp’s pattern collection
selection approach evaluating pattern collections
based on a prediction of A* search effort.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025 22 /

24

E8. Pattern Databases: Pattern Selection Summary

E8.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 12, 2025 23 / 24

E8. Pattern Databases: Pattern Selection Summary

Summary

» One way to automatically find a good pattern collection
is by searching in the space of pattern collections.
» One such approach uses hill-climbing search
P starting from single-variable patterns
» adding patterns with one additional variable at a time
» evaluating patterns by the number of improved sample states
P> By exploiting what we know about redundant patterns,
the hill-climbing search space can be reduced significantly.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 12, 2025 24 /

24

Planning and Optimization
November 17, 2025 — E9. Merge-and-Shrink: Factored Transition Systems

Planning and Optimization E9.1 Motivation

E9. Merge-and-Shrink: Factored Transition Systems E9Q.2 Main Idea

o E9.3 Atomic Projections
Malte Helmert and Gabriele Roger

E9.4 Synchronized Product

Universitat Basel

November 17, 2025 EQ.5 Factored Transition Systems

E9.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 1/38 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 2 /38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Content of the Course

— Prelude

— Foundations

| Abstraction in E9.1 Motivation

= Approaches General

Pattern Databases

— Constraints Cartesian
Abstractions

— Delete Relaxation

[

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 3 /38 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 4 /38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Beyond Pattern Databases

» Despite their popularity, pattern databases have some
fundamental limitations (~ example on next slides).

» Today and next time, we study a class of abstractions called
merge-and-shrink abstractions.

» Merge-and-shrink abstractions can be seen as a
proper generalization of pattern databases.

> They can do everything that pattern databases can do
(modulo polynomial extra effort).
» They can do some things that pattern databases cannot.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 5 /38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Back to the Running Example

Logistics problem with one package, two trucks, two locations:
> state variable package: {L, R, A, B}
> state variable truck A: {L, R}
> state variable truck B: {L, R}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 6 /38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Example: Projection (1)

Tﬂ{package} :

RRL

gl TN

RLR

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 7/ 38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Example: Projection (2)

Tw{package,truck A} -

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 8 /38

E9. Merge-and-Shrink: Factored Transition Systems Motivation

Limitations of Projections

How accurate is the PDB heuristic?

» consider generalization of the example:
N trucks, 1 package

P consider any pattern that is a proper subset of variable set V

» h(sp) <2 ~~ no better than atomic projection to package

These values cannot be improved by maximizing
over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics

with h(sg) > 3 for tasks of this kind of any size.

Time and space requirements are linear in V.

(In fact, with time/space O(N?) we can construct a merge-and-shrink abstraction

that gives the perfect heuristic h* for such tasks, but we do not show this here.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 9 /38

E9. Merge-and-Shrink: Factored Transition Systems Main Idea

E9.2 Main ldea

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 10 / 38

E9. Merge-and-Shrink: Factored Transition Systems Main Idea

Merge-and-Shrink Abstractions: Main Idea

Main Idea of Merge-and-shrink Abstractions
(due to Drager, Finkbeiner & Podelski, 2006):

Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

> Represent planning task as factored transition system (FTS):
a set of (small) abstract transition systems (factors)
that jointly represent the full transition system of the task.
> lteratively transform FTS by:
» merging: combining two factors into one
» shrinking: reducing the size of a single factor by abstraction
» When only a single factor is left, its goal distances
are the merge-and-shrink heuristic values.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 11 /38

E9. Merge-and-Shrink: Factored Transition Systems Main Idea

Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

D L

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 12 / 38

E9. Merge-and-Shrink: Factored Transition Systems Main Idea

Merge-and-Shrink Abstractions: Idea

Merge: replace two factors with their product

b b L

o e & 8.
s ol S

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 13 /38

E9. Merge-and-Shrink: Factored Transition Systems Main Idea

Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

X

7
I

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 14 / 38

E9. Merge-and-Shrink: Factored Transition Systems Atomic Projections

E9.3 Atomic Projections

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 15 / 38

E9. Merge-and-Shrink: Factored Transition Systems Atomic Projections

Running Example: Explanations

» Atomic projections (projections to a single state variable)
play an important role for merge-and-shrink abstractions.

» Unlike previous chapters, transition labels
are critically important for merge-and-shrink.

» Hence we now look at the transition systems for atomic
projections of our example task, including transition labels.
» We abbreviate labels (operator names) as in these examples:
» MALR: move truck A from left to right

» DAR: drop package from truck A at right location
» PBL: pick up package with truck B at left location

» We abbreviate parallel arcs with commas and wildcards (x)
as in these examples:
> PAL, DAL: two parallel arcs labeled PAL and DAL
> MAxx: two parallel arcs labeled MALR and MARL

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 16 / 38

E9. Merge-and-Shrink: Factored Transition Systems Atomic Projections

Running Example: Atomic Projection for Package

E9. Merge-and-Shrink: Factored Transition Systems Atomic Projections

Running Example: Atomic Projection for Truck A

Tﬂ-{package} .
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 17 / 38
E9. Merge-and-Shrink: Factored Transition Systems Atomic Projections

Running Example: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx,DAx PAx, DA%

MBLR

G MBRL °

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 19 / 38

Tﬂ{truck A} -
PAL,DAL,MBxx, PAR,DAR,MBx%,
PBx,DBx PBx,DBx
MALR
u MARL e
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 18 / 38
E9. Merge-and-Shrink: Factored Transition Systems Synchronized Product

E9.4 Synchronized Product

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 20 / 38

E9. Merge-and-Shrink: Factored Transition Systems

Synchronized Product: Idea

» Given two abstract transition systems with the same labels,
we can compute a product transition system.

» The product transition system captures all information
of both transition systems.

> A sequence of labels is a solution for the product
iff it is a solution for both factors.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025

21/

Synchronized Product

38

E9. Merge-and-Shrink: Factored Transition Systems

Synchronized Product of Transition Systems

Definition (Synchronized Product of Transition Systems)
For i € {1,2}, let T; = (Si, L, c, T}, so, S«;) be transition systems
with the same labels and cost function.
The synchronized product of 77 and 73, in symbols 71 ® 73,
is the transition system 7g = (Sg, L, ¢, Tg, Sog, S«g) With
> 5@ = 51 X 52

> Ty = {<51,52> £> <t1, t2> | s1 £> t1 € T1 and s £> th € Tg}

> Som = (S01,%02)
» Sie = Si1 X Se2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025

22 /

Synchronized Product

38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tw{package} ® Tﬂ-{truck A} .

PAL, DAL, MBxx*,
PB*,DBx

PAR,DAR ,MBxx,
PB*,DBx

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

November 17, 2025

23 /

Synchronized Product

38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tw{package} ® Tﬂ-{truck A} .
5@ = 51 X 52

PAL, DAL, MBxx, PAR,DAR,MBxx,
PB*,DBx PB*,DBx

ﬁ! MALR ﬂﬁ

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

November 17, 2025

24

Synchronized Product

/ 38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tﬂ-{package} X Tw{truck A} -
Sog = (So1, S02)

PAL,DAL,MBxx*, PAR,DAR,MBxx,
PBx*,DBx PBx*,DBx

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November

Synchronized Product

17, 2025 25 / 38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tﬂ-{package} X Tw{truck A} -
5*® = 5*]_ X 5*2

PAL,DAL,MBxx*, PAR,DAR,MBxx,
PBx*,DBx PB*,DBx

ﬁ! MALR ﬁi

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November

Synchronized Product

17, 2025 26 / 38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tw{package} ® 7—7r{truck A} .
Te = {<51,52> £> <t1, t2> | S1 £> t1 € T1 and s £> th € Tz}

Mixx

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx*,DBx PB*,DBx

M. Helmert, G. Roger (Universitat Basel) November

Planning and Optimization

Synchronized Product

17, 2025 27 / 38

E9. Merge-and-Shrink: Factored Transition Systems

Example: Synchronized Product

Tw{package} ® Tﬂ-{truck A} .
L 14)4
Tg = {<51,52> — <t1, t2> ’ s1—ti € Tiand s = th € T2}

Mixr

PAL, DAL, MBxx, PAR,DAR,MBxx,
PB*,DBx PB*,DBx

M. Helmert, G. Roger (Universitat Basel) November

Planning and Optimization

Synchronized Product

17, 2025 28 / 38

E9. Merge-and-Shrink: Factored Transition Systems Synchronized Product

Example: Synchronized Product

Tﬂ-{package} X Tw{truck A} -
l l ¢
Tg = {<51,52> — <t1, t2> ’ s1—~t € Tiyand sp = th € Tz}

Moxr

PAL,DAL,MBxx*, PAR,DAR,MBxx,
PBx*,DBx PBx,DBx

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 29 / 38

E9. Merge-and-Shrink: Factored Transition Systems Synchronized Product

Example: Synchronized Product

Tﬂ-{package} X Tw{truck A} -
l ¢ ¢
Tg = {<51,52> — <t1, t2> ’ s1—ti € Tyand sp = th € Tz}

PAL,DAL,MBxx, PAR,DAR,MBxx,
PBx,DBx PB*,DBx

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 30 / 38

E9. Merge-and-Shrink: Factored Transition Systems Synchronized Product

Associativity and Commutativity

» Up to isomorphism (“names of states”),
products are associative and commutative:

> (ToT)T"~Te(T'aT")
> TRT' ~T' &T
» We do not care about names of states and thus
treat products as associative and commutative.
» We can then define the product of a set F = {T1,...,7a}
of transition systems: @ F =71 ®...® T,

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 31 /38

E9. Merge-and-Shrink: Factored Transition Systems Factored Transition Systems

E9.5 Factored Transition Systems

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 32 /38

E9. Merge-and-Shrink: Factored Transition Systems Factored Transition Systems

Factored Transition System

Definition (Factored Transition System)

A finite set F = {T1,...,7,} of transition systems
with the same labels and cost function
is called a factored transition system (FTS).

F represents the transition system) F.

A planning task gives rise to an FTS via its atomic projections:

Definition (Factored Transition System Induced by Planning Task)
Let I1 be a planning task with state variables V.

The factored transition system induced by [I1
is the FTS F(M) = {77 | v € V}.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 33 /38

E9. Merge-and-Shrink: Factored Transition Systems Factored Transition Systems

Back to the Example Product

Tﬂ'{package} X Tﬂ'{truck A} -

PAL,DAL,MBxx*, PAR,DAR,MBxx*,
PBx*,DBx PBx*,DBx

®

We haVe Tﬂ{package} ® Tﬂ{truck A} ~u Tw{package,truck A} Coincidence?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 34 /38

E9. Merge-and-Shrink: Factored Transition Systems Factored Transition Systems

Products of Projections

Theorem (Products of Projections)

Let M be a SAS™ planning task with variable set V,
and let V1 and V, be disjoint subsets of V.

Then T™1 @ T™V2 ~ TTV10V2,
(Proof omitted.)

~» products allow us to build finer projections from coarser ones

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 35 /38

E9. Merge-and-Shrink: Factored Transition Systems Factored Transition Systems

Recovering 7 (IT) from the Factored Transition System

» By repeated application of the theorem, we can recover
all pattern database heuristics of a SAS™ planning task
as products of atomic factors.

» Moreover, by computing the product of all atomic projections,
we can recover the identity abstraction id = my/.

This implies:

Corollary (Recovering T(IM) from the Factored Transition System)
Let N be a SAS™ planning task. Then & F(N) ~ T ().

This is an important result because it shows
that F(IN) represents all important information about I1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 36 / 38

E9. Merge-and-Shrink: Factored Transition Systems Summary E9. Merge-and-Shrink: Factored Transition Systems Summary

Summary

> A factored transition system is a set of transition systems
that represents a larger transition system by focusing
on its individual components (factors).

E96 SU mmary » For planning tasks, these factors are the atomic projections
(projections to single state variables).

» The synchronized product 7 ® T of two transition systems
with the same labels captures their “joint behaviour”.

» For SAS™ tasks, all projections can be obtained
as products of atomic projections.

» In particular, the product of all factors of a SAS™ task
results in the full transition system of the task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 37 / 38 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 38 /38

Planning and Optimization
E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

November 17, 2025

Planning and Optimization
November 17, 2025 — E10. Merge-and-Shrink: Algorithm

E10.1 Generic Algorithm
E10.2 Example
E10.3 Maintaining the Abstraction

E10.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 2 /57

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 1 /57
Content of the Course
— Prelude
— Foundations
Abstraction in
= Approaches General
— Delete Relaxation | [Pattern Databases
— Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 3 /57

E10. Merge-and-Shrink: Algorithm Generic Algorithm

E10.1 Generic Algorithm

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 4 /57

E10. Merge-and-Shrink: Algorithm Generic Algorithm

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

» Initialization: Compute the FTS
consisting of all atomic projections.
» Loop: Repeatedly apply a transformation to the FTS.

» Merging: Combine two factors by replacing them
with their synchronized product.

> Shrinking: If the factors are too large,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

> Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 5 /57

E10. Merge-and-Shrink: Algorithm Generic Algorithm

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task 1
F:= F(I)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F=(F\{T1,2}) U{T1 ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 5 on T
Fi= (F\{THU{T"}

return the remaining factor 7% in F

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 6 /57

E10. Merge-and-Shrink: Algorithm Generic Algorithm

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

» When to merge, when to shrink?
~~ general strategy

» Which abstractions to merge?
~> merge strategy

» Which abstraction to shrink, and how to shrink it (which §)?
~> shrink strategy

merge and shrink strategies ~» Ch. E11/E12

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 7 /57

E10. Merge-and-Shrink: Algorithm Generic Algorithm

General Strategy

A typical general strategy:
» define a limit V on the number of states allowed in each factor
> in each iteration, select two factors we would like to merge
» merge them if this does not exhaust the state number limit

> otherwise shrink one or both factors just enough
to make a subsequent merge possible

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 8 /57

E10. Merge-and-Shrink: Algorithm Example
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 9 /57
E10. Merge-and-Shrink: Algorithm Example
Initialization Step: Atomic Projection for Package
Tﬂ{package} :
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 11 / 57

E10. Merge-and-Shrink: Algorithm Example
Back to the Running Example
Logistics problem with one package, two trucks, two locations:
> state variable package: {L, R, A, B}
> state variable truck A: {L, R}
> state variable truck B: {L, R}
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 10 / 57
E10. Merge-and-Shrink: Algorithm Example
Initialization Step: Atomic Projection for Truck A
Tﬂ-{truck A} -
PAL,DAL,MBxx, PAR,DAR,MBx%,
PBx%,DB* PBx,DB*
MALR
u MARL e
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 12 / 57

E10. Merge-and-Shrink: Algorithm Example

Initialization Step: Atomic Projection for Truck B

Tﬂ{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx, DA% PAx, DA%

MBLR

G MBRL °

current FTS {Tﬂ—{package} , Tﬂ—{truck A} , Tw{truck B} }

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 13 / 57

E10. Merge-and-Shrink: Algorithm Example

First Merge Step
T1 := T ™package} @ T "{truck A}

MBx* MBx*

current FTS: {77, 77 {truek B} }

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 14 / 57

E10. Merge-and-Shrink: Algorithm Example

Need to Shrink?

> With sufficient memory, we could now compute 77 ® T ™{truck B}
and recover the full transition system of the task.

» However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

» To make the product fit the bound, we shrink 77 to 4 states.
We can decide freely how exactly to abstract 73.

» In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrink strategy.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 15 / 57

E10. Merge-and-Shrink: Algorithm Example

First Shrink Step

T> := some abstraction of 71

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 16 / 57

E10. Merge-and-Shrink: Algorithm Example
First Shrink Step
7> := some abstraction of Ty
MBx* MBx*x
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 17 / 57
E10. Merge-and-Shrink: Algorithm Example

First Shrink Step

T> := some abstraction of 73

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

November 17, 2025

19 / 57

E10. Merge-and-Shrink: Algorithm Example
First Shrink Step
7> := some abstraction of T3
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 18 / 57
E10. Merge-and-Shrink: Algorithm Example
First Shrink Step
7> := some abstraction of 77
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 20 / 57

E10. Merge-and-Shrink: Algorithm Example E10. Merge-and-Shrink: Algorithm Example

First Shrink Step First Shrink Step

7> := some abstraction of Ty 7> := some abstraction of Ty

Mykexx Mikexx

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 21 / 57 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 22 / 57

E10. Merge-and-Shrink: Algorithm Example E10. Merge-and-Shrink: Algorithm Example

First Shrink Step First Shrink Step

T> := some abstraction of T; T2 := some abstraction of 71

current FTS: {7, 77 {truek B} }

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 23 / 57 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 24 / 57

E10. Merge-and-Shrink: Algorithm

Example E10. Merge-and-Shrink: Algorithm

Second Merge Step Another Shrink Step?

Example

L T {truc
T3 1= To @ T ek B} » At this point, merge-and-shrink construction stops.

The distances in the final factor define the heuristic function.
> If there were further state variables to integrate,

we would shrink again, e.g., leading to the following
abstraction (again with four states):

MALR

> We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

» The example generalizes to arbitrarily many trucks,

current FTS: {73} even if we stick to the fixed size limit of 8.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 25 / 57

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 26 / 57

E10. Merge-and-Shrink: Algorithm

Maintaining the Abstraction E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1
F:= F(M)
while |F| > 1:
select type € {merge, shrink}

E10.3 Maintaining the Abstraction if type = merge:

select 71,7> € F
F=(F\{T1,T2}) U{T1 ® T2}

if type = shrink:
select T € F
choose an abstraction mapping 5 on T
Fi=(F\{THu{T"

return the remaining factor 7¢ in F

» The algorithm computes an abstract transition system.
» For the heuristic evaluation, we need an abstraction.
» How to maintain and represent the corresponding abstraction?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 27 / 57

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 28 / 57

E10. Merge-and-Shrink: Algorithm

The Need for Succinct Abstractions

Maintaining the Abstraction

» One major difficulty for non-PDB abstraction heuristics is to
succinctly represent the abstraction.

» For pattern databases, this is easy because the abstractions —
projections — are very structured.

» For less rigidly structured abstractions, we need another idea.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 29 / 57

E10. Merge-and-Shrink: Algorithm

How to Represent the Abstraction? (1)

Maintaining the Abstraction

Idea: the computation of the abstraction follows the sequence of
product computations
> For the atomic abstractions 7y}, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in 7™V},
» During the merge (product) step A := A; ® A, we generate
a two-dimensional table that denotes which pair of states of
Aj and A5 corresponds to which state of A.
» During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 30 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

> Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

» At this point, we can throw away all the abstract transition
systems — we just need to keep the tables.

» During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
~ 2|V| lookups, O(|V]) time

Again, we illustrate the process with our running example.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 31 /57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Atomic Abstractions

Maintaining the Abstraction

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mok x

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 32 /57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mok x

Mkexx
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 33 /57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Merge Step

Maintaining the Abstraction

For product transition systems A; ® Ay, we again number the
product states consecutively and generate a table that links state
pairs of A; and A5 to states of A:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 34 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems A; ® Ay, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 35 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Merge Step

Maintaining the Abstraction

For product transition systems A; ® Ay, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

Sy = 0 Sy = 1
s1=0 0 1
S1 = 1 2 3
51 = 4 5
S1 3 6 7
M. Helmert, G. Roger (Umversitat Base\) Planning and Optimization November 17, 2025 36 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Maintaining the Abstraction when Shrinking

» The hard part in representing the abstraction is to keep it
consistent when shrinking.
P In theory, this is easy to do:
» When combining states i and j, arbitrarily use one of them
(say i) as the number of the new state.
» Find all table entries in the table for this abstraction which
map to the other state j and change them to .
» However, doing a table scan each time two states are
combined is very inefficient.

> Fortunately, there also is an efficient implementation which
takes constant time per combination.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 37 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Maintaining the Abstraction Efficiently

P Associate each abstract state with a linked list, representing
all table entries that map to this state.

» Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

» While shrinking, when combining i and j, splice the list
elements of j into the list elements of /.

» For linked lists, this is a constant-time operation.

» Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

» Finally, regenerate the mapping table from the linked list
information.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 38 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

Representation before shrinking:

52:0 52:1
s1=0 0 1
s1=1 2 3
51 =2 4 5
51:3 6 7

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 39 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

listy = {(0,0)}

listy = {(0,1)}

list, = {(1, 0)}

lists = {(1,1)}

lista = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list, = {(3,1)}

‘ Sy = 0 Sy = 1

ss=0| 0 1
S1 = 1 ‘ 2 3
si=2| 4 5
ss=3] 6 7

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 40 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listy = {(0,0)}
list; = {(0,1)}
list; = (1,0)}
lists = {(1,1)}
lists = {(2,0)}
lists = {(2,1)}
lists = {(3,0)}
list; = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 41 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}

list = {(1,0), (1,1)}
/i5t3 = @

lists = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list, = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 42 /) 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into /list;.

listo = {(0,0)}
listy = {(0,1)}
Ii5t2 = {(17 0)7 (17 1)}

lists = 1]

lists = {(2,0)}
lists = {(2,1)}
listo — {(3,0)}
list, = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 43 / 57

E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

listo = {(0,0)}
listy = {(0,1)}
/i5t2 = {(]—7 0)7 (17 1)}

lists = 1]
lists = {(2,0), (2,1)}
lists = Q)

lists = {(3,0)}
list; = {(3,1)}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 44 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

2. When combining i and j, splice list; into list;.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0)}
list, = {(0,1)}

lists = {(1,0), (1, 1)}
lists = ()

lists = {(2,0), (2,1)}
lists = 1]
lists = {(3,0)}
list; = {(3,1)}

November 17, 2025

45 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

2. When combining i and j, splice list; into list;.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0)}

listy = {(0,1)}

list, = {(17 0)7 (1’ 1)}
lists = 0

lists = {(2,0), (2, 1)}
lists = 0

lists = {(3,0), (3,1)}
list; = 1]

November 17, 2025

46 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

2. When combining i and j, splice list; into /list;.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0)}

list, = {(0,1)}

lists = {(1,0), (1, 1)}
/i5t3 = @

lists = {(2,0), (2, 1)}
lists = 1]

lists = {(3,0), (3,1)}
list; = @

November 17, 2025

47 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

2. When combining i and j, splice list; into list;.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0),(1,1)}
lists = ()

lists = {(2,0), (2,1),
(3.0).(3.1)}

/i5t5 = @

lists = @

list; = 1]

November 17, 2025

48 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

2. When combining i and j, splice list; into list;.

020 0=

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Maintaining the Abstraction

listo = {(0,0)}
listy = {(0,1)}

list, = {(1,0), (1,1)}

/i5t3 = @

lista = {(2,0),(2,1),

/iSt5 = @
lists = 0
list; = 1]

(3,0),(3,1)}

November 17, 2025 49 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

CEL @

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Maintaining the Abstraction

listo = {(0,0)}
listy = {(0,1)}

/i5t3 = (D
listy = {(,
/iSt5 = @
lists = 0
list; = 1]

2
3,

0)’(3
0

November 17, 2025 50 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Maintaining the Abstraction

listo = {(0,0)}

list, = {(0,1)}

lists = {(1,0), (1, 1)}

lists = {(2,0), (2, 1),
3,0).(3.1)}

listy = @

Ii5t5 = @

lists = ()

list; = 1]

November 17, 2025 51 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

4. Regenerate the mapping table from the linked lists.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0
list; = {(0, 1

}
}

lists = {(2,0),(2,1),

listy = @
/i5t5 = @
lists = 0
list; = 1]

)
)
list, = {(1,0), (1,1)}
)
)

(3,0),(3,1)}

November 17, 2025 52 / 57

E10. Merge-and-Shrink: Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction

4. Regenerate the mapping table from the linked lists.

O30:0=

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

listo = {(0,0)}
list, = {(0,1)}
lists = {(1,0), (1, 1)}
lists = {(2,0), (2, 1),
(3,0),(3,1)}
listy = 1]
lists = @
/ista = @
list; = 1]
‘ Sy = 0 Sy = 1
s1=0 0 1
si=1 2 2
S = 3 3
s1=3 3 3

November 17, 2025 53 / 57

E10. Merge-and-Shrink: Algorithm

The Final Heuristic Representation

Maintaining the Abstraction

At the end, our heuristic is represented by six tables:

» three one-dimensional tables for the atomic abstractions:

Toackeze | L R A B

TtruckA ‘ L R -rtruckB ‘ L R

o 1 2 3 [0 1 [0 1
> two tables for the two merge and subsequent shrink steps:
T;&S ‘ =0 s=1 Tn%&s ‘ =0 s=1
S1 = 0 0 1 S1 = 0 1 1
S1 = 1 2 2 S1 = 1 1 0
51 =2 3 3 51 =2 2 2
s1=3 3 3 s1=3 3 3

> one table with goal distances for the final transition system:

T ‘5:0 s=1 s=2 s=3
h(s)| 3 2 0 1

Given a state s = {package — L, truck A — L, truck B — R},
its heuristic value is then looked up as:

> h(S) - Th[Tr%&S[Tnlq&s[Tpackage[LL Ttruck A[L]]a 7—truck B[R]]]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 54 / 57

E10. Merge-and-Shrink: Algorithm

E10.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Summary

November 17, 2025 55 / 57

E10. Merge-and-Shrink: Algorithm Summary

Summary (1)

» Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

» Merge transformations combine two factors
into their synchronized product.

» Shrink transformations reduce the size of a factor
by abstracting it.

» Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

» The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 56 / 57

E10. Merge-and-Shrink: Algorithm Summary

Summary (2)

» Projections of SAS™ tasks correspond to
merges of atomic factors.

» By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 17, 2025 57 / 57

Planning and Optimization
E11. Merge-and-Shrink: Properties and Shrink Strategies

Malte Helmert and Gabriele Roger

Universitat Basel

November 19, 2025

Planning and Optimization
November 19, 2025 — E11. Merge-and-Shrink: Properties and Shrink Strategies

E11.1 Heuristic Properties

E11.2 Shrink Strategies

E11.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

2/

29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 1/29
Content of the Course
— Prelude
— Foundations
Abstraction in
= Approaches General
— Delete Relaxation | [Pattern Databases
— Constraints Cartesian
Abstractions
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 3/29

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Il
F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T,T2}) U{Th ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 5 on T
Fi= (F\{TH U{T?}

return the remaining factor 7% in F

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

4/

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

E11.1 Heuristic Properties

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 5 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better,
we are interested in the properties of the resulting heuristic:

» |s it admissible (h*(s) < h*(s) for all states s)?
> Is it consistent (h*(s) < c(0) 4+ h®(t) for all trans. s > t)?
» Is it perfect (h*(s) = h*(s) for all states s)?
Because merge-and-shrink is a generic procedure,
the answers may depend on how exactly we instantiate it:
> size limits
> merge strategy
P shrink strategy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

6/

Heuristic Properties

29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Merge-and-Shrink as Sequence of Transformations

» Consider a run of the merge-and-shrink construction algorithm
with n iterations of the main loop.

» Let F; (0 < i< n)bethe FTS F after i loop iterations.

» Let 7; (0 </ < n) be the transition system represented by F;,
ie, TT=Q F;.

» In particular, Fo = F(M) and F, = {7,}.

» For SAS™ tasks I, we also know 7o = 7 ().

For a formal study, it is useful to view merge-and-shrink
construction as a sequence of transformations from 7; to Tj.1.

(We do it in a bit more general fashion than necessary for merge and
shrink steps only, to also cover some improvements we will see later.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 7 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Transformations

Definition (Transformation)

Let 7 =(S,L,c,T,%,5) and 7' =(S', L', ', T, s}, S.)
be transition systems.

Let o : S — S’ map the states of T to the states of 7’ and
A : L — L' map the labels of T to the labels of 7.

The tuple 7 = (T,0,\,T') is called a transformation from 7T to
. A

T". We also write it as 7 —= 7.

The transformation 7 induces the heuristic h™ for T

defined as h7(s) = h¥(o(s)).

Example: If « is an abstraction mapping for transition system 7T,

’.d . .
then 7 2% 7 is a transformation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

8 /

Heuristic Properties

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Conservative Transformations

Definition (Conservative Transformation)
Let 7 and 77 be transition systems with label sets L and L’ and
cost functions ¢ and ¢/, respectively.

A transformation (7,0, A, T') is conservative if
> /(M) < c(¥) forall £ € L,
» for all transitions (s, ¢, t) of T there is a transition
(o(s), \(¢),a(t)) of T', and
> for all goal states s of T, state o(s) is a goal state of 7",

Example: If o is an abstraction mapping for transition system 7,

a,id . . .
then T — Ta is a conservative transformation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 9 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Conservative Transformations: Heuristic Properties (1)

Theorem

If T is a conservative transformation from transition system T to
transition system T' then h™ is a safe, consistent, goal-aware and
admissible heuristic for T .

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: For all goal states s, of T, state o(s,) is a goal
state of 7' and therefore h7(s,) = h¥(o(s,)) = 0.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 10 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Conservative Transformations: Heuristic Properties (2)

Proof (continued).

Consistency: Let ¢ and ¢’ be the label cost functions of 7 and 77,
respectively. Consider state s of 7 and transition (s, /, t).

As T has a transition (o(s), A(£),o(t)), it holds that

h™(s) = h(o(s))
< c'(M0)) + b7 (a(t))
= /(\0)) + h™(t)
< c(0) + h(t)

The second inequality holds due to the requirement on the label
costs. []

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 11 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Exact Transformations

Definition (Exact Transformation)
Let 7 and 77 be transition systems with label sets L and L’ and
cost functions ¢ and ¢/, respectively.
A transformation (7,0, A, T") is exact if it is conservative and
Q if (s, ¢/, t') is a transition of T’ then for all s € 071(s") there
is a transition (s, /,t) of T with t € o71(t') and £ € A71(¢),
@ if s’ is a goal state of 7" then all states s € o~ 1(s’) are goal
states of 7, and
Q c(f) = (A(¥)) forall £ € L.

~+ no “new"” transitions and goal states, no cheaper labels

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 12 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Heuristic Properties with Exact Transformations (1)

Theorem
If T is an exact transformation from transition system T to
transition system T' then h™ is the perfect heuristic h* for T .

Proof.

As the transformation is conservative, h” is admissible for 7 and

therefore hi-(s) > h"(s).

For the other direction, we show that for every state s’ of 7’ and
goal path 7/ for s/, there is for each s € 07 1(s') a goal path in T
that has the same cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 13 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Heuristic Properties with Exact Transformations (2)

Proof (continued).
Proof via induction over the length of /.

7| = 0: If s’ is a goal state of 7 then each s € o~1(s') is a goal
state of 7 and the empty path is a goal path for s in 7.

7’| =i+ 1: Let ' = (s', ¢, t')7},, where 7}, is a goal path of

length i from t’. Then there is for each t € o~%(t') a goal path 7;
of the same cost in 7 (by ind. hypothesis). Furthermore, for all

s € 071(s') there is a state t € 0~ 1(t') and a label £ € A~1(¢')
such that 7 has a transition (s, ¢, t). The path m = (s, ¢, t)m; is a
solution for s in 7. As £ and ¢ must have the same cost and

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Composing Transformations

Merge-and-shrink performs many transformations in sequence.
We can formalize this with a notion of composition:
. o, o', N
> GivenT=T -5 T and 7/ =T —= T,
their composition 7”7 = 7/ o 7 is defined as
o’oo, N oA
7_// — 7' 7'//.
» If 7 and 7/ are conservative, then 7/ o 7 is conservative.

» If 7 and 7/ are exact, then 7/ o 7 is exact.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 15 /29

/ /
and 7, have the same cost, m has the same cost as 7. 0l
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 14 / 29
E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Merge-and-Shrink Transformations

F: factored transition system

Replacement with Synchronized Product is Conservative and Exact
Let 71,72 € F with T1 # T».
Let F":= (X \ {71, T2}) U{TL @ T2}.

Then there is an exact transformation (QF, o, id, @ F').

Up to the isomorphism we know from the synchronized product,
we can use o = id.

Abstraction is Conservative

Let v be an abstraction of 7; € F and let F/ := (F\ {7;}) U{7*}.
The transformation (®F, o, id, ®F’) with
o({s1,...,5n)) = (S1,...,5Si—1,a(5;), Si+1,- .., Sn) iS conservative.

(Proofs omitted.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 16 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies Heuristic Properties

Properties of Merge-and-Shrink Heuristics

We can conclude the following properties
of merge-and-shrink heuristics for SAS™ tasks:

» The heuristic is always admissible and consistent
(because it is induced by a a composition of conservative
transformations).

» |f all shrink transformation used are exact,
the heuristic is perfect (because it is induced by
a composition of exact transformations).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 17 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies

E11.2 Shrink Strategies

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Shrink Strategies

November 19, 2025

18 /

29

E11. Merge-and-Shrink: Properties and Shrink Strategies Shrink Strategies

Reminder: Generic Algorithm Template

F:= F(I)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F=(F\{Ti,T2}) U{TL © T2}
if type = shrink:
select T € F
choose an abstraction mapping 5 on T
Fi= (F\{TH U{T?}

return the remaining factor 7% in F

Remaining Questions:
» Which abstractions to select for merging? ~~ merge strategy
» How to shrink an abstraction? ~ shrink strategy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 19 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Shrink Strategies

How to shrink an abstraction?

We cover two common approaches:
> f-preserving shrinking
» bisimulation-based shrinking

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Shrink Strategies

November 19, 2025

20

/ 29

E11. Merge-and-Shrink: Properties and Shrink Strategies

f-preserving Shrink Strategy

f-preserving Shrink Strategy

Repeatedly combine abstract states with

identical abstract goal distances (h values) and
identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion
Prefer combining states where g + h is high.
In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be
explored by A*, so inaccuracies there matter less

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

21/

Shrink Strategies

29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Bisimulation

Definition (Bisimulation)

Let T =(S,L,c, T,so,Ss) be a transition system. An equivalence
relation ~ on S is a bisimulation for T if for every (s, £,s') € T
and every t ~ s there is a transition (t,¢,t') € T with t’ ~ 5.

A bisimulation ~ is goal-respecting if s ~ t implies that either
s,te S,ors, t &S,

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 19, 2025 22/

Shrink Strategies

29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Bisimulation: Example

~ with equivalence classes
{{1,2,5},{3,4}} isa
goal-respecting
bisimulation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

23 /

Shrink Strategies

29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Bisimulation Abstractions

Definition (Abstractions as Bisimulation)

Let T =(S,L,c, T,sp,Ss) be a transition system and o : S — S’
be an abstraction of 7. The abstraction induces the equivalence
relation ~g as s ~ t iff a(s) = a(t).

We say that « is a (goal-respecting) bisimulation for T if ~, is a
(goal-respecting) bisimulation for T.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 19, 2025 24 /

Shrink Strategies

29

E11. Merge-and-Shrink: Properties and Shrink Strategies Shrink Strategies

Abstraction as Bisimulations: Example

Abstraction o with
a(l)=a(2) =a(5) =Aand a(3) = a(4) =B
is a goal-respecting bisimulation for 7.

TOé

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 25 /29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Goal-respecting Bisimulations are Exact

Theorem
Let F be a factored transition system and o be an abstraction of
T € F.
If « is a goal-respecting bisimulation then the transformation
(®F,0,id,@F") with
> O'(<51, . 7S,-,>) = <51, . ,S,',l,Oz(S,'), Si+1y- .-
> F=(F\{Ti}) u{T"}

is exact.

,Sn) and

(Proofs omitted.)

Shrinking with bisimulation preserves the heuristic estimates.

Shrink Strategies

E11. Merge-and-Shrink: Properties and Shrink Strategies Shrink Strategies

Bisimulations: Discussion

» As all bisimulations preserve all relevant information, we are
interested in the coarsest such abstraction (to shrink as much
as possible).

» There is always a unique coarsest bisimulation for 7 and it
can be computed efficiently (from the explicit representation).

> In some cases, computing the bisimulation is still too
expensive or it cannot sufficiently shrink a transition system.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 27 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 26 / 29
E11. Merge-and-Shrink: Properties and Shrink Strategies Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 28 / 29

E11. Merge-and-Shrink: Properties and Shrink Strategies

Summary

» Merge-and-shrink abstractions can be analyzed
by viewing them as a sequence of transformations.

> We only use conservative transformations,
and hence merge-and-shrink heuristics for SAS™ tasks
are admissible and consistent.

» Merge-and-shrink heuristics for SAS™ tasks
that only use exact transformations are perfect.

» Bisimulation is an exact shrinking method.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

Summary

29 /

29

Planning and Optimization
November 19, 2025 — E12. Merge-and-Shrink: Merge Strategies & Outlook

Planning and Optimization

E12.1 Merge Strategies
E12. Merge-and-Shrink: Merge Strategies & Outlook

E12.2 Outlook: Label Reduction and Pruning
Malte Helmert and Gabriele Roger

Universitat Basel E123 Summary

November 19, 2025 .
E12.4 Literature

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 1/25 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 2 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Content of the Course

— Prelude

— Foundations

Abstraction in E12.1 Merge Strategies

= Approaches General

Pattern Databases

— Constraints Cartesian
Abstractions

— Delete Relaxation

[

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 3 /25 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 4 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1
F:= F(M)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
Fi=(F\{T1,T2}) U{T1 © T2}
if type = shrink:
select T € F
choose an abstraction mapping 5 on T
Fi= (F\{THU{T"}

return the remaining factor 7< in F

Remaining Question:
» Which abstractions to select for merging? ~~ merge strategy

November 19, 2025 5/ 25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E12. Merge-and-Shrink: Merge Strategies & Outlook

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy
In each iteration after the first, choose the abstraction computed
in the previous iteration as 73.

Rationale: only maintains one “complex” abstraction at a time

» Fully defined by an ordering of atomic projections/variables.

» Each merge-and-shrink heuristic computed with a non-linear
merge strategy can also be computed with a linear merge
strategy.

» However, linear merging can require a super-polynomial
blow-up of the final representation size.

> Recent research turned from linear to non-linear strategies,
also because better label reduction techniques (later in this
chapter) enabled a more efficient computation.

November 19, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Merge Strategies

6 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Classes of Merge Strategies

We can distinguish two major types of merge strategies:

P precomputed merge strategies fix a unique merge order
up-front.
One-time effort but cannot react to other transformations
applied to the factors.

> stateless merge strategies only consider the current FTS and
decide what factors to merge.
Typically computing a score for each pair of factors and
naturally non-linear; easy to implement but cannot capture
dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless
strategies.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 7 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook

Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hypn: Ordering of atomic projections
» Start with a goal variable.

» Add variables that appear in preconditions of operators
affecting previous variables.

> If that is not possible, add a goal variable.

Rationale: increases h quickly

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025

Merge Strategies

8 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first
merge variables within each cluster.

Example: MIASM (“maximum intermediate abstraction size
minimizing merging strategy")

MIASM strategy
» Measure interaction by ratio of unnecessary states in the
merged system (= states not traversed by any abstract plan).

> Best-first search to identify interesting variable sets.

» Disjoint variable sets chosen by a greedy algorithm for
maximum weighted set packing.

Rationale: increase power of pruning (later in this chapter)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 9 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize
on labels that occur close to a goal state.

Example: DFP (named after Drager, Finkbeiner and Podelski)
DFP strategy
» labelrank(¢,T) = min{h*(t) | (s, ¥, t) transition in T}

» score(T,T') = min{max{labelrank(¢, T), labelrank(¢, T")} |
¢ label in T and 7'}

> Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region,
which is likely to be searched by A*.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 10 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Merge Strategies

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected
component of the causal graph.

Example: SCC framework

SCC strategy
» Compute strongly connected components of causal graph

» Secondary strategies for order in which

» the SCCs are considered (e.g. topologic order),
> the factors within an SCC are merged, and
> the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP or a stateless MIASM variant

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 11 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

E12.2 Outlook: Label Reduction and
Pruning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 12 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

Further Transformations

State-of-the-art Merge & Shrink uses two further transformations:
» Label reduction
» Pruning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 13 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

Label Reduction

» Do no longer distinguish certain labels, similar to abstraction
that does not distinguish certain states.

> A label reduction (\, c’) for a FTS F with label set L is given
by a function A : L — L, where L’ is an arbitrary set of labels,
and a label cost function ¢’ on L’ such that for all ¢ € L,
(M) < c(0).
The label-reduced TSs have L’ and ¢’ for the labels and cost,
and in each transition the original label ¢ is replaced with A(¢).

» Label reduction is a conservative transformation.

v

There are also clear criteria when label reduction is exact.

» Reduces the time and memory requirement for merge and
shrink steps and enables coarser bisimulation abstractions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 14 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

Alive States

SO—0
~-F—0O0—0—@
O—C~

backward-reachable

reachable

P state s is reachable if we can reach it from the initial state
P state s is backward-reachable if we can reach the goal from s

P> state s is alive if it is reachable and backward-reachable
— only alive states can be traversed by a solution

P> a state s is dead if it is not alive.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 15 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

Pruning States (1)

» If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

» Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

» This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.

— use heuristic estimate co

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 16 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Outlook: Label Reduction and Pruning

Pruning States (2)

> Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

» Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

» However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A*(but
not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 17 / 25
E12. Merge-and-Shrink: Merge Strategies & Outlook Summary
Summary

> There is a wide range of merge strategies. We only covered
some important ones.

» Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.

» Pruning is used to keep the size of the factors small. It

depends on the intended application how aggressive the
pruning can be.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 19 / 25

E12. Merge-and-Shrink: Merge Strategies & Outlook Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 18 / 25
E12. Merge-and-Shrink: Merge Strategies & Outlook Literature

E12.4 Literature

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 19, 2025

20 /

25

E12. Merge-and-Shrink: Merge Strategies & Outlook Literature

Literature (1)

References on merge-and-shrink abstractions:

[Klaus Driger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

@ Malte Helmert, Patrik Haslum and Jérg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.

E12. Merge-and-Shrink: Merge Strategies & Outlook

Literature (2)

@ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.

Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014.
Detailed journal version of the previous two publications.

Literature

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 21 /25
E12. Merge-and-Shrink: Merge Strategies & Outlook Literature
Literature (3)
[@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.
Introduces modern version of label reduction.
(There was a more complicated version before.)
@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.
Proc. SoCS 2014, pp. 53-61, 2014.
Introduces UMC and MIASM merging strategies
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 23 /25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 22 /25
E12. Merge-and-Shrink: Merge Strategies & Outlook Literature
Literature (4)
M Malte Helmert, Gabriele Réger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106-114, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.
@ Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781-883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 24 /25

E12. Merge-and-Shrink: Merge Strategies & Outlook Literature
Literature (5)
[@ Silvan Sievers, Florian Pommerening , Thomas Keller and
Malte Helmert.
Cost-Partitioned Merge-and-Shrink Heuristics for Optimal
Classical Planning.
Proc. 1JCAI 2020, pp. 4152-4160, 2020.
Extends saturated cost partitioning to merge-and-shrink.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 19, 2025 25 / 25

Planning and Optimization
November 24, 2025 — E13. Cartesian Abstractions

Planning and Optimization
E13. Cartesian Abstractions

E13.1 Introduction
E13.2 Cartesian Sets
Malte Helmert and Gabriele Roger

Universitst Basel E13.3 Cartesian Abstractions

November 24, 2025
E13.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 1/27 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 2 /27

E13. Cartesian Abstractions Introduction

Content of the Course

— Prelude

— Foundations

[Abstraction in E13.1 Introduction

= Approaches General

— Delete Relaxation Pattern Databases

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 3 /27 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 4 /27

[

|

Merge & Shrink

E13. Cartesian Abstractions Introduction

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

> Start with a very coarse abstraction.
> Iteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.
> If yes, the task is solved.
» |f not, refine the abstraction so that the same flaw will not be
encountered in future iterations.

CEGAR is another technique originally introduced for model checking.

November 24, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

/ 27

E13. Cartesian Abstractions Introduction

Our Plan for Today

» For a certain class of abstractions (the Cartesian
abstractions), CEGAR can be efficiently implemented.

» In this chapter, we get to know this class of abstractions and
the necessary foundations.

» In the next chapter, we see how they can be used within
CEGAR.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 6 /27

E13. Cartesian Abstractions Introduction

Remarks

» In Ch. E13 and E14 we continue to only consider SAS™ tasks.

> To facilitate notation, we will use an arbitrary (but fixed)
order on the variables.
— Tuple of variables instead of set of variables.

» These chapters are based on:
Jendrik Seipp and Malte Helmert.
Counterexample-Guided Cartesian Abstraction Refinement for
Classical Planning. Journal of Artificial Intelligence Research
62, pp. 535-577. 2018.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

/ 27

E13. Cartesian Abstractions Introduction

Example Task: Two Packages, One Truck

In E13 and E14 we use the following running example.

Example (Two Packages, One Truck)
Consider the following FDR planning task (V/, I, O,~):
> V= {pAapB7 t} with
> dom(p)A = dom(pB) = {Lv L, R}
> dom(t) = {L,R}
> I:{pAHL,pBHL,tHL}
> 0= {pICkupl,J ‘ S {A7 B}v./ € {L7 R}}
U {drop;; | i € {A,B},j € {L,R}}
U{move;; | i,j € {L,R},i # j}, where
> pickup; ;= (pi=j At =j,pi:=11)
» drop; ; = (pi=IAt=j,pi:=],1)
> move;j = (t=1it:=j,1)

> v=(pa=RApg=R)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 8 /27

E13. Cartesian Abstractions Cartesian Sets

E13.2 Cartesian Sets

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 9 /27

E13. Cartesian Abstractions Cartesian Sets

Cartesian Sets

Definition

A set of states for a planning task with variables (vq,..., v,) is
called Cartesian if it is of the form A; x --- x A,,, where

Ai Cdom(v;) forall 1 <j<n.

{L,1} x{R} x{L,R} ={(L,R, L), (L,R,R), (I, R, L), (I,R,R)}
for variables (pa, pB, t)

E13. Cartesian Abstractions Cartesian Sets

Conjunctions of Atoms as Cartesian Sets

For a conjunction ¢ of atoms, the set of all states s with s = is
Cartesian and can be defined as follows:

Definition

Let ¢ be a conjunction of atoms over finite domain variables
V =(v1,...,vy). The Cartesian set induced by ¢ is
Cartesian(p) = Ay X - -+ X Ap, where

dom(v;) if ¢ contains no atom v; = d,

A — {d} if ¢ contains an atom v; = d and
e no atom v; = d’ with d # d’
0 otherwise (conflicting atoms for v;).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 11 /27

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 10 / 27
E13. Cartesian Abstractions Cartesian Sets
Conjunctions of Atoms as Cartesian Sets: Examples
In the running example with variables (pa, ps, t)
» Cartesian(pa = RNt =L)={R} x {L,I,R} x {L}
» Cartesian(pa = RANt=LAt=R)={R} x{L,I,R} x0
Planning and Optimization November 24, 2025 12 /27

M. Helmert, G. Roger (Universitat Basel)

E13. Cartesian Abstractions Cartesian Sets

Properties of Cartesian Sets

Theorem
Let M= (V,0,!l,7) be a SAS™ planning task.
@ The set of goal states of I is Cartesian.

@ For all o € O, the set of states in which
o is applicable is Cartesian.

© The intersection of Cartesian sets
over the same variables is Cartesian.

@ For all operators o, the regression of a Cartesian set
wrt. o is Cartesian.

From the proofs we will see that the corresponding Cartesian sets
are easy to determine.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

E13. Cartesian Abstractions Cartesian Sets

Properties of Cartesian Sets

Proof Sketch.
@ The set of goal states is Cartesian(7y).

@ For o € O, the set of states in which o is applicable is
Cartesian(pre(0)).

© The intersection of Cartesian sets A; X --- x A, and
By x -+ xBpis (A1 NBy) x -+ x (AN By).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 14 / 27

E13. Cartesian Abstractions Cartesian Sets

Properties of Cartesian Sets

Proof Sketch (continued).

@ With variables (vq,...,v,), the regression of Cartesian set
b=B; x - X B,wrt. ois regr(b,0) = Ay X -+ X A,
where

B; if v; does not occur in pre(o) and eff(0)
0 if o has an effect setting v; to d’ ¢ B;

or if o has no effect on v;
but a precondition v; = d with d ¢ B;.
dom(v;) if o has no precondition on v; and
an effect setting v; to d’ € B;
{d} if o has a precondition v; = d and
an effect setting v; to d’ € B;
or if o has precondition v; = d with d € B;

and no effect on v;

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

E13. Cartesian Abstractions Cartesian Sets

Splitting Cartesian Sets

dée dée

o .

Theorem (Splits)
©Q /fbC aandc C a are disjoint Cartesian subsets of the
Cartesian set a, then a can be partitioned into
Cartesian sets d and e with b C d and c C e.

@Q Ifc C ais a Cartesian subset of the Cartesian set a and
s € a\ c, then a can be partitioned into
Cartesian sets d and e with s € d and c C e.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 16 / 27

E13. Cartesian Abstractions Cartesian Sets

Splitting Cartesian Sets i

=)
Proof.

For1), leta=A; x -+ x A, b=By x---x B, and

c=C x---x Cp.

Let j be such that B; and C; are disjoint. It must exist because
otherwise b and ¢ are not disjoint (we could select for each
variable v; a value in B; N G;).

Partition A; into D; and E; with B; C D; and C; C Ej,

eg Ej=C and D; = Aj\ G.

Thend =A; x - x Aj_1 X Dj x Ajy1 X --- X A, and

e=Ar X - xAj_1 XxEx A1 x-- XA,

2) follows from 1) by setting b = {s} (a Cartesian set). O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 17 / 27

E13. Cartesian Abstractions Cartesian Sets

Splitting Cartesian Sets: Example

a: {I,R, L} x {L,1} x {L,R}

:

b:{l} x {L} x {R}

®G
®®

c: L} x {1} x {L,R}

On which variable(s) can we split? ~ first or second.
What are the two Cartesian sets d and e in each case?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

18 / 27

E13. Cartesian Abstractions Cartesian Sets

Splitting Cartesian Sets: Example

a:{I,R, L} x {L, 1} x {L,R}

:

b {l} x {L} x {R}

®G
®®

e {Ly x {1} x {L,R}

Split on first variable:
d={LR} x{L, 1} x{L,R} and e = {L} x {L, I} x {L,R}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 19 / 27

E13. Cartesian Abstractions

Splitting Cartesian Sets: Example

a:{I,R, L} x {L,1} x {L,R}

b:{I} x {L} x {R}

@9 c:{L}y x {I} x {L,R}
©

Split on second variable:
d={LR,L} x{L} x{L,R}and e={l,R,L} x {I} x {L,R}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

Cartesian Sets

20 / 27

E13. Cartesian Abstractions Cartesian Abstractions

E13.3 Cartesian Abstractions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 21 /27

E13. Cartesian Abstractions Cartesian Abstractions

Reminder: Abstractions as Equivalence Relations

» An abstraction « induces the equivalence relation ~ over the
set of (concrete) states as s ~, t iff a(s) = a(t).

» The equivalence class [s], of state s is the set of all concrete
states that are mapped to the same abstract state as s.

> We write ~ and [s], if a is clear from context.

E13. Cartesian Abstractions Cartesian Abstractions

Cartesian Abstraction

Definition
An abstraction « is called Cartesian if all equivalence classes of ~
are Cartesian sets.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 23 /27

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 22 /27
E13. Cartesian Abstractions Cartesian Abstractions
Example

{1} x {L,1,R}
x{R}

{L} x{L,I,R}

<R} {L,1} x {L,1,R}

x{L}

Labels omitted for clarity.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 24 /27

E13. Cartesian Abstractions Cartesian Abstractions

Relationship to other Classes of Abstractions

> Cartesian abstractions generalize projections (PDBs): the
equivalence classes of projections are Cartesian.

» Merge & Shrink abstractions are more general than Cartesian
abstractions (every abstraction can be represented as Merge
& Shrink abstraction).

» Merge & Shrink and Cartesian abstractions are incomparable
in representation size: there are compact Cartesian
abstractions that do not have a compact Merge & Shrink
representation and vice versa.

E13. Cartesian Abstractions

E13.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025

Summary

26 /

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 25 /27
E13. Cartesian Abstractions Summary
Summary

> Cartesian sets are sets of states that can be represented as a
Cartesian product of possible values for each variable.

» In Cartesian abstractions the sets of states that do not get
distinguished must be Cartesian.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 27 /

27

Planning and Optimization
E14. Cartesian Abstractions: CEGAR

Malte Helmert and Gabriele Roger

Universitat Basel

November 24, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 1/26

Planning and Optimization
November 24, 2025 — E14. Cartesian Abstractions: CEGAR

E14.1 CEGAR

E14.2 Flaws

E14.3 Refinement

E14.4 Example

E14.5 Heuristic Representation

E14.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025

2 /26

Content of the Course

— Prelude

— Foundations

Abstraction in
= Approaches General

— Delete Relaxation Pattern Databases

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 3 /26

[

|

Merge & Shrink

E14. Cartesian Abstractions: CEGAR

E14.1 CEGAR

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025

CEGAR

4/ 26

E14. Cartesian Abstractions: CEGAR CEGAR

Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is an
approach to compute a tailored abstraction for a task
(or to solve it).

> Start with a very coarse abstraction.
> Iteratively compute an (optimal) abstract solution and check
whether it works for the concrete tasks.
> If yes, the task is solved.
» If not, refine the abstraction so that the same flaw will not be
encountered in future iterations.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025 5/

26

E14. Cartesian Abstractions: CEGAR CEGAR

CEGAR Algorithm

Generic CEGAR algorithm for planning task 1
T := TrivialAbstractTransitionSystem([1) < one abstract state
while not TerminationCondition(): < e.g. time/memory limit
7 := FindOptimalTrace(7) « abstract solution (path in 7)
if 7 is "“no trace” then return 1 unsolvable
F := FindFlaw(7, 1, 7)
if Fis “no flaw” then
return label sequence of 7 as plan for 1
T := Refine(T, F)
return 7

Open questions:
» What are flaws (and how to find them)? ~ next

» How do we refine the system?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 6 /26

E14. Cartesian Abstractions: CEGAR Flaws

E14.2 Flaws

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025 7/

26

E14. Cartesian Abstractions: CEGAR Flaws

Flaws

A flaw is a reason why (the label sequence of) 7 does not solve 1
the way it solves the abstract system 7 (with abstraction «).

Start from the initial state of 1 and iteratively apply the next
operator (label) o from 7.

» Precondition flaw: o is not applicable in the current state s.

» Goal flaw: the final state is not a goal state.

» Deviation flaw: the next abstract transition is a - a', the
current concrete state is s with «(s) = a but for successor
state s’ = s[o] we have a(s’) # a’ (deviating from the
abstract path).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 8 /26

E14. Cartesian Abstractions: CEGAR

Extracting Flaws

[s]

For the refinement, we represent flaws in the form (s, ¢), where
> s is a concrete state,
» ¢ C [s] is a non-empty Cartesian set,
» the abstract plan relied on “being in ¢” but s ¢ c.

(s, c) will define the split for the refinement step.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 24, 2025

Flaws

9/

26

E14. Cartesian Abstractions: CEGAR

Extracting Different Kinds of Flaws

» Precondition flaw: if o is not applicabe in state s, use (s, c),
where c is the set of concrete states in [s] in which o is
applicable.

» Goal flaw: if the final state s is not a goal state, use (s, c),
where c is the set of concrete goal states in [s].

» Deviation flaw: the next abstract transition is a > &', the
current concrete state is s with «(s) = a but for successor
state s’ = s[o] we have a(s’) # a’ (deviating from the
abstract path). Use (s, c), where c is the intersection of [s]
and regr(a, o).

Easy for Cartesian abstractions, using the results from Ch. E13.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

Flaws

10 /

26

E14. Cartesian Abstractions: CEGAR

E14.3 Refinement

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

Refinement

11/

E14. Cartesian Abstractions: CEGAR

CEGAR Algorithm

Generic CEGAR algorithm for planning task Il

T := TrivialAbstractTransitionSystem([T)
while not TerminationCondition():
7 := FindOptimalTrace(7)
if 7 is “no trace” then return I1 unsolvable
F := FindFlaw(7,I1,7)
if Fis “no flaw" then
return label sequence of 7 as plan for I
T := Refine(T, F)

return 7

Open questions:

» How do we refine the system?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025

12/

Refinement

E14. Cartesian Abstractions: CEGAR Refinement

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.
Refine((S', L', ¢, T',s5,S.), (s, ¢c))

(d,e) = Split([s], s, c)

S" = S\ {[s]} U{d e}

T" := RewireTransitions(T’,[s], d, e)

if [s] = s} then s := d else s§ := s},

if [s] € S, then S/ := (S \ {[s]}) U {e} else S := S,

return (S", L', ', T" sg,S!)

SRS

Split [s] into d and e. c

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 13 /26

E14. Cartesian Abstractions: CEGAR

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.
Refine((S", L', ¢, T',s5,S.), (s, ¢c))

(d,e) := Split([s], s, ¢)

§" = S5"\{[s]} u{d, e}

T” := RewireTransitions(T’,[s], d, e)

if [s] = s} then s := d else s§ := s},

if [s] € S, then S := (S \ {[s]}) U {e} else S := S,

return (S", L', ', T" sy, S!)

Update incident transitions of [s].

» Check for each incoming and outgoing transition of [s]
(including self-loops) whether it needs to be rewired
from/to d, from/to e, or both.

» Easy for SAS™ operators and Cartesian abstract states.

Refinement

E14. Cartesian Abstractions: CEGAR Refinement

Refinement

Refinement splits abstract state [s] and maintains the transition
system induced by the underlying abstraction.
Refine((S', L', ¢/, T', s}, S.), (s,¢))

(d, e) = Split([s], 5,)

"= S"\{[s]}u{d, e}

T" := RewireTransitions(T’,[s], d, e)

if [s] = s{ then s := d else s{f := s

if [s] € S, then S/ := (S/\ {[s]}) U {e} else S} := S,

return (S”, L', ', T" sg,S!)

Update abstract initial state and goal states.

The way we defined the flaws, e can never be the abstract initial
state and d never be an abstract goal state.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 15 / 26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 14 / 26
E14. Cartesian Abstractions: CEGAR Example
November 24, 2025 16 / 26

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

E14. Cartesian Abstractions: CEGAR

Example: Two Packages, One Truck

{41, Ry x {L, I, R}
x{L, R}

Abstract plan () ends in state LLL, which is not a goal.

Refine {L, I, R} x {L, I, R} x {L, R} with split (LLL, {R} x {R} x {L, R}).
~ split on first or second variable;

s {L, 1} x {L,1,R} x {L, R} and {R} x {L,1,R} x {L, R}

Example

E14. Cartesian Abstractions: CEGAR Example

Example: Two Packages, One Truck

{R} x {L,I,R}

Abstract plan (drop, g); first action inapplicable in LLL.

Refine {L, 1} x {L, 1, R} x {L, R} with split (LLL,{/} x {L,I,R} x {R}).
~ split on first or third variable;

~{L T x {L1,R} x {L} and {L, 1} x {L,I,R} x {R}

M. Helmert, G. Réger (Universitat Basel) Planning and Optimization November 24, 2025 18 / 26

M. Helmert, G. Réger (Universitat Basel) Planning and Optimization November 24, 2025 17 / 26
E14. Cartesian Abstractions: CEGAR Example
Example: Two Packages, One Truck
(R} x {L,1,R}

{L,/}X{L,/,R} L1} x{L,I,R

Abstract plan (move, r,drop, g); second action inapplicable in LLR.

Refine {L, 1} x {L, I, R} x {R} with split (LLR, {I} x {L,1,R} x {R}).

~> split on first variable;

ws {L} x {L,1, R} x {R} and {1} x {L, 1, R} x {R}
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 19 / 26

E14. Cartesian Abstractions: CEGAR Example

Example: Two Packages, One Truck

3 xA{L, 1, R}
{R} x {L,1,R}

{L} x{L, I, R}
x{R}

{L, 1} x {L, I, R}
x{L}

Abstract plan (move; g, drop,); deviation flaw at first transition.
Refine {L, 1} x {L, I, R} x {L} with split (LLL,{I} x {L,I, R} x {L}).
~ split on first variable;

~ AL} x {L,I,R} x {L} and {I} x {L,I,R} x {L}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 20 / 26

E14. Cartesian Abstractions: CEGAR Example

Example: Two Packages, One Truck

{1} x{L,1,R}
x{R}
x{L, R}

{L} x {L,1,R}
x{L}

{L} x {L,],R}

E14. Cartesian Abstractions: CEGAR Heuristic Representation

E14.5 Heuristic Representation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 22 / 26

X {R} % {L}
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 21 / 26
E14. Cartesian Abstractions: CEGAR Heuristic Representation

Representation

> In every iteration, we split one abstract state based on one
variable.
P> Represent abstraction as binary tree of abstract states.
> Root: Single state of trivial abstraction
> Leaves: Abstract states of final abstraction
» With each inner node, we store the variable on which the
state was split.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 23 / 26

E14. Cartesian Abstractions: CEGAR Heuristic Representation

Representation: Running Example

{L,1,RY x {L,1,R} x {L,R}
PA
(L 1y x {L1,RY x {L,R} {R} x {L,[,R} x {L,R}
t

heur. estimate: 0
/ \

{L, 1} x {L,1,R} x {L} {L,1} x{L,I,R} x {R}
PA

RN PR

{L} x{L,,R}y x {L} {1} x{L,I,R} x{L} {L} x{L,I,R}x{R} {I} x{L,I,R} x{R}

heur. estimate: 3 heur. estimate: 2 heur. estimate: 4 heur. estimate: 1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 24, 2025 24 /26

E14. Cartesian Abstractions: CEGAR

E14.6 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

November 24, 2025

Summary

25 /

E14. Cartesian Abstractions: CEGAR

Summary

Counterexample-guided abstraction refinement (CEGAR):
> Iteratively improve a coarse abstraction:

» Find an optimal abstract solution.
» Try it in the concrete transition system.
> If it fails, extract a flaw and refine the abstraction.

» Flaws: unsatisfied precondition, unsatisfied goal, deviation.

» Refinement: split abstract state based on flaw to avoid

repeating it.

» Can be efficiently implemented for Cartesian abstractions.

> Can stop at any time. The resulting heuristic is safe,
goal-aware, admissible and consistent.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 24, 2025

Summary

26 /

26

Planning and Optimization

F1. Constraints: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 26, 2025

Planning and Optimization
November 26, 2025 — F1. Constraints: Introduction

F1.1 Constraint-based Heuristics

F1.2 Multiple Heuristics

F1.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 2 /24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 1/24
Content of the Course
— Prelude
—| Foundations
— Approaches
—| Delete Relaxation
— Abstraction
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 3 /24

F1. Constraints: Introduction Constraint-based Heuristics

F1.1 Constraint-based Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 4 /24

F1. Constraints: Introduction Constraint-based Heuristics

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:
> delete relaxation

abstraction

critical paths

landmarks

vvyyy

network flows

» potential heuristic

Landmarks, network flows and potential heuristics are based on
constraints that can be specified for a planning task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 5 /24

F1. Constraints: Introduction Constraint-based Heuristics

Constraints: Example

1L

FDR planning task (V, [, 0,~) with < ,@w
» V = {robot-at, dishes-at} with
» dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
» dom(dishes-at) = {Table, Robot, Dishwasher}
» | = {robot-at — C1, dishes-at — Table}
» operators

Images from wikimedia

» move-x-y to move from cell x to adjacent cell y
» pickup dishes, and
» load dishes into the dishwasher.

» ~ = (robot-at = B6) A (dishes-at = Dishwasher)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 6 /24

F1. Constraints: Introduction Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

P> a variable takes a certain value in at least one visited state.
(a fact landmark constraint)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 7/ 24

F1. Constraints: Introduction Constraint-based Heuristics

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

44
B
il L)

» robot-at = Cl, dishes-at = Table (initial state)

v

robot-at = B6, dishes-at = Dishwasher (goal state)
> robot-at = Al, robot-at = B3, robot-at = B4,
robot-at = Bb, robot-at = A6, dishes-at = Robot

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 8 /24

F1. Constraints: Introduction Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

» a variable takes some value in at least one visited state.
(a fact landmark constraint)

P an action must be applied.
(an action landmark constraint)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 9 /24

F1. Constraints: Introduction

Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

e
&

> pickup

> load

> move-B3-B4
> move-B4-B5

;
;
X))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

10 /

Constraint-based Heuristics

F1. Constraints: Introduction Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

P> a variable takes some value in at least one visited state.
(a fact landmark constraint)

P an action must be applied.
(an action landmark constraint)

P at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 11 /24

F1. Constraints: Introduction

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
A — b
| v
B e e
*
@
» {pickup} » {move-A6-B6, move-B5-B6}
> {load} » {move-A3-B3, move-B2-B3, move-C3-B3}
> {move-B3-B4} > {move-B1-Al, move-A2-A1}
» {move-B4-B5} > ...

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

12/

Constraint-based Heuristics

F1. Constraints: Introduction Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

» a variable takes some value in at least one visited state.
(a fact landmark constraint)

> at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

» fact consumption and production is “balanced”.
(a network flow constraint)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 13 / 24

F1. Constraints: Introduction Constraint-based Heuristics

Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6
00 o
A b
P
B %

Answer: as often as actions that leave this cell

If Count, denotes how often operator o is applied, we have:

Cour"tmove—Al-Bl + Countmove—B2—Bl + Cou Ntmove-C1-B1 =

Countmove-Bl-Al + Countmove-Bl-B2 + Cou Ntmove-B1-C1

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 14 / 24

F1. Constraints: Introduction Multiple Heuristics

F1.2 Multiple Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 15 / 24

F1. Constraints: Introduction Multiple Heuristics

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:
P> maximize
» canoncial heuristic (for abstractions)
» minimum hitting set (for landmarks)
P cost partitioning

P operator counting

Often computed as solution to a (integer) linear program.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 16 / 24

F1. Constraints: Introduction Multiple Heuristics

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task (V, I, {01, 02,03, 04},) with

V = {v1, va, v3} with dom(v;) = {A, B} and

dom(v2) = dom(V3) = {A, B, C}, | = {Vl — A, Vo — A, V3 — A},

and y=(vy =B)A(v» =C) A (v3 =C).
Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function h¢?

Answer: Let hj :== hYi. Then K¢ = max {h1 + ho, hy + h3}.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 17 / 24

F1. Constraints: Introduction Multiple Heuristics

Reminder: Orthogonality and Additivity

Why can we add h; and hy (h; and h3) admissibly?

Theorem (Additivity for Orthogonal Abstractions)
Let h®t, ..., h®" be abstraction heuristics of the same transition
system such that a; and o are orthogonal for all i # j.

Then 37, h™i is a safe, goal-aware, admissible and consistent
heuristic for I.

The proof exploits that every concrete transition
induces state-changing transition in at most one abstraction.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 18 / 24

F1. Constraints: Introduction Multiple Heuristics

Combining Heuristics (In)admissibly: Example

Let h = hy + ho + hs.

07, 03, 04 02, 03, 04
hy
01,04 01,04 01,04
2 1 0
N p\ .
h2 A @ C
01,03 01,03 01,03

2 1 0
0 L
s (& @@

(02,03,04) is a plan for s = (B, A, A) but h(s) = 4.
Heuristics hy, and hs both account for the single application of o,.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 19 / 24

F1. Constraints: Introduction Multiple Heuristics

Prevent Inadmissibility

The reason that hy and h3z are not additive is because
the cost of 05 is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of 0 in one heuristic by setting
its cost to 0 (e.g., costz(02) = 0).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 20 / 24

F1. Constraints: Introduction Multiple Heuristics

Combining Heuristics Admissibly: Example

Let i = h1 + hy + hj, where hf = h** assuming cost3(0z) = 0.

02,03, 04 02,03, 04
h
01, 04
0
03
01, 03

h, 1 A 02]f% 04 0<(\C>
3 0-cost U

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) = 3 an admissible estimate.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 21 / 24

F1. Constraints: Introduction Multiple Heuristics

Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are
distributed in a way that the sum of the individual costs is no
larger than the cost of the operator.

This can also be expressed as a constraint,
the cost partitioning constraint:

Zcost,-(o) < cost(o) for all 0o € O
i=1

(more details later)

F1. Constraints: Introduction Summary

F1.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 23 / 24

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 22 / 24
F1. Constraints: Introduction Summary
Summary

» Landmarks and network flows are constraints that describe
something that holds in every solution of the task.

» Heuristics can be combined admissibly if the cost partitioning
constraint is satisfied.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 24 /24

Planning and Optimization
F2. Landmarks: RTG Landmarks

Malte Helmert and Gabriele Roger

Universitat Basel

November 26, 2025

Planning and Optimization
November 26, 2025 — F2. Landmarks: RTG Landmarks

F2.1 Landmarks
F2.2 Set Representation
F2.3 Landmarks from RTGs

F2.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 1/ 40
Content of the Course
— Prelude — Cost Partitioning
- Foundations Post-Hoc
Optimization
— Approaches
- — Network Flows
- Delete Relaxation
Operator
] Abstraction Counting
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 3 /40

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 2 /40
F2. Landmarks: RTG Landmarks Landmarks
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 4/ 40

F2. Landmarks: RTG Landmarks

Landmarks

Basic Idea: Something that must happen in every solution

For example
> some operator must be applied (action landmark)
» some atomic proposition must hold (fact landmark)

» some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

5/

Landmarks

40

F2. Landmarks: RTG Landmarks Landmarks

Reminder: Terminology

. . Y4 _1 4n
Consider sequence of transitions s% = s, ... s""1 =2 o"
such that s = s and s" = 5.

» s0 ..., s"is called (state) path from s to s’

» (1,...,¢, is called (label) path from s to s’

F2. Landmarks: RTG Landmarks

Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task
MN=(V,I,0,7).

A disjunctive action landmark for s is a set of operators L C O
such that every label path from s to a goal state contains an

operator from L.
The cost of landmark L is cost(L) = min,ey cost(o).

If we talk about landmarks for the initial state, we omit “for /".

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks

7/

40

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 6 / 40
F2. Landmarks: RTG Landmarks Landmarks
Fact and Formula Landmarks
Definition (Formula and Fact Landmark)
Let s be a state of a propositional or FDR planning task
N=(V,1,0,7).
A formula landmark for s is a formula X over V such that
every state path from s to a goal state contains a state s’
with s = .
If X is an atomic proposition then X\ is a fact landmark.
If we talk about landmarks for the initial state, we omit “for /" .
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 8 / 40

F2. Landmarks: RTG Landmarks Landmarks

Landmarks: Example

Example
Consider a FDR planning task (V, 1, O,) with
» V = {robot-at, dishes-at} with
» dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
» dom(dishes-at) = {Table, Robot, Dishwasher}
» | = {robot-at — C1, dishes-at — Table}
» operators

> move-x-y to move from cell x to adjacent cell y
» pickup dishes, and
P |oad dishes into the dishwasher.

» ~ = (robot-at = B6) A (dishes-at = Dishwasher)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 9 / 40

F2. Landmarks: RTG Landmarks

Fact and Formula Landmarks: Example

1 2 3 4 5 6

1) o

4,4 , =
Biil
B
‘ '@ @
Images from wikimedia

Each fact in gray is a fact landmark:
> robot-at = x for x € {Al, A6, B3,B4,B5,B6,C1}
> dishes-at = x for x € {Dishwasher, Robot, Table}

Formula landmarks:
» dishes—-at = Robot A robot-at = B4
» robot-at = Bl V robot-at = A2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks

10 / 40

F2. Landmarks: RTG Landmarks Landmarks

Disjunctive Action Landmarks: Example

1 2 3 4 5 6

g
&

Actions of same color form disjunctive action landmark:

» {pickup} » {move-A6-B6, move-B5-B6}

> {load} » {move-A3-B3, move-B2-B3, move-C3-B3}
> {move-B3-B4} > {move-B1-Al, move-A2-Al}

» {move-B4-B5} > ...

R

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 11 / 40

F2. Landmarks: RTG Landmarks

Remarks

» Not every landmark is informative. Some examples:

» The set of all operators is a disjunctive action landmark
unless the initial state is already a goal state.

> Every variable that is initially true is a fact landmark.

» The goal formula is a formula landmark.

» Every fact landmark v that is initially false induces a

disjunctive action landmark consisting of all operators that
possibly make v true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks

12 / 40

F2. Landmarks: RTG Landmarks

Complexity: Disjunctive Action Landmarks

Theorem
Deciding whether a given operator set is a disjunctive action
landmark is as hard as the plan existence problem.

Proof.

Given a propositional planning task M = (V. /I, O,~),
create a new planning task I’ with goal g ¢ V as
N"=(vVu{g}llu{g— F},0U{oy, 01}, g), where

o, =(7,8,0), and
oT = (Tag70>‘

If v =T then I is trivially solvable. Otherwise I is solvable
iff {oT} is not a disjunctive action landmark of I’

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks

13 / 40

F2. Landmarks: RTG Landmarks Landmarks

Complexity: Fact Landmarks

Theorem
Deciding whether a given atomic proposition is a fact landmark
is as hard as the plan existence problem.

Proof.

Given a propositional planning task M= (V, /I, O,~),

let p, g ¢ V be new atomic propositions and create a new planning
task ' = (VU {p,g},/U{p— F,g— F},0U{o0,0'},g), where

o=(v,g,0), and
o' =(T,g Ap,0).

Then p is a fact landmark of 1" iff 1 is not solvable.]
M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization November 26, 2025 14 / 40

F2. Landmarks: RTG Landmarks

Complexity: Discussion

» Does this mean that the idea of exploiting landmarks is
fruitless?— No!

> We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.

> The way we generate the landmarks guarantees that they are
indeed landmarks.

> Efficient landmark generation methods do not guarantee to
generate all possible landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks

15 / 40

F2. Landmarks: RTG Landmarks Landmarks

Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

» RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)

» LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What's the Difference Anyway? (ICAPS 2009)

» h™ landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

Today we will discuss the special case of i landmarks for m =1,
restricted to STRIPS planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 16 / 40

F2. Landmarks: RTG Landmarks Set Representation

F2.2 Set Representation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 17 / 40

F2. Landmarks: RTG Landmarks

Set Representation of STRIPS Planning Tasks

In this (and the following) sections, we only consider STRIPS. For
a more convenient notation, we will use a set representation of
STRIPS planning task. ..

Three differences:
» Represent conjunctions of variables as sets of variables.

> Use two sets to represent add and delete effects of operators
separately.

> Represent states as sets of the true variables.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Set Representation

November 26, 2025 18 / 40

F2. Landmarks: RTG Landmarks

STRIPS Operators in Set Representation

Set Representation

» Every STRIPS operator is of the form
(ViA--AVp, arA---ANagA=di A A=dy,c)

where v;, a;, djc are state variables and c is the cost.
P> The same operator o in set representation is
(pre(o), add(o), del(0), cost(o)), where
» pre(o) ={wi,...,Vv,} are the preconditions,
» add(o) = {a1,...,a4} are the add effects,
> del(o) = {d1,...,d,} are the delete effects, and
> cost(o) = c is the operator cost.

» Since STRIPS operators must be conflict-free,
add(o) N del(o) = ()

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 19 / 40

F2. Landmarks: RTG Landmarks

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
(V,1,0,G), where
> V is a finite set of state variables,
» | C V is the initial state,
> O is a finite set of STRIPS operators in set representation,
> G C V is the goal.

The corresponding planning task in the previous notation is
(V,I',0',~), where

> I'(v)=Tiffvel,
» O={(AN v, AN vA A -v,cost(o))]|oe€ O},

vepre(o) veadd(o) vedel(o)
> v = /\ V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

November 26, 2025 20 /

Set Representation

40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

F2.3 Landmarks from RTGs

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 21 / 40

F2. Landmarks: RTG Landmarks

Content of the Course

Prelude { Cost Partitioning ‘ # Orderings ‘

Foundations Post-Hoc LM-Count

Optimization Heuristic

Approaches

Network Flows

MHS Heuristic ‘

Operator { Cut Landmarks

Delete Relaxation

T

Abstraction B Counting
Potential
N Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks from RTGs

22 / 40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Incidental Landmarks: Example

Example (Incidental Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={ab,c,d,ef},

I ={a,b,e},
o1 = <{a}v {C’ d, e}’ {b}>a
o2 = ({d, e}, {f},{a}), and
G ={e, f}.

Single solution: (o1, 02)
» All variables are fact landmarks.
» Variable b is initially true but irrelevant for the plan.

» Variable ¢ gets true as “side effect” of 0 but it is not
necessary for the goal or to make an operator applicable.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 23 / 40

F2. Landmarks: RTG Landmarks

Causal Landmarks (1)

Definition (Causal Formula Landmark)
Let M= (V,I,0,) be a propositional or FDR planning task.

A formula X over V is a causal formula landmark for [if v = X or
if for all plans m = (o1, ..., 0p) there is an o; with pre(o;) = A.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks from RTGs

24 / 40

F2. Landmarks: RTG Landmarks

Causal Landmarks (2)

Landmarks from RTGs

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let M= (V,I,0, G) be a STRIPS planning task

(in set representation).

A variable v € V is a causal fact landmark for /
> ifve Gor

» if for all plans m = (o1, ..., 0,) there is an o; with v € pre(o;).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 25 / 40

F2. Landmarks: RTG Landmarks

Causal Landmarks: Example

Example (Causal Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={a,b,c,d, e f},
I ={a,b,e},
o1 = <{a}7 {Ca d, e}a {b}),

02 = <{d7 e}7 {f}v {a}>7 and
G ={e,f}.

Single solution: (o1, 02)
» All variables are fact landmarks for the initial state.
» Only a,d, e and f are causal landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks from RTGs

26 / 40

F2. Landmarks: RTG Landmarks

What We Are Doing Next

Landmarks from RTGs

» Causal landmarks are the desirable landmarks.

» We can use a simplified version of RTGs for STRIPS to
compute causal landmarks for STRIPS planning tasks.

» We will define landmarks of AND/OR graphs, ...
and show how they can be computed.

v

> Afterwards we establish that these are landmarks
of the planning task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 27 / 40

F2. Landmarks: RTG Landmarks

Simplified Relaxed Task Graph

Definition
For a STRIPS planning task M = (V, [, 0, G) (in set
representation), the simplified relaxed task graph sRTG(IMT) is the
AND/OR graph (Nang U Nor, A, type) with
» Nang = {no | 0 € Oy U{v,vg}
with type(n) = A for all n € N,pq,
» Nor ={n, |veV}
with type(n) =V for all n € N, and
» A= {(ns,n,) | 0€ O,a€ add(o)} U
{{nonp) | 0 € O.p & pre(0)} U
{{ny,n) |vellu
{{ng,n,) | v € G}

Like RTG but without extra nodes to support arbitrary conditions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025

Landmarks from RTGs

28 / 40

F2. Landmarks: RTG Landmarks Landmarks from RTGs F2. Landmarks: RTG Landmarks Landmarks from RTGs

Simplified RTG: Example Justification

Definition (Justification)
Let G = (N, A, type) be an AND/OR graph.
A subgraph J = (N7, A, type’) with N/ C N and A’ C A and
type’ = type| s justifies n, € N iff
> n, e N/,
> Vn e N7 with type(n) = A:
Y{n,n') € A:n" € N/ and (n,n’) € A/
> Vn e N7 with type(n) = Vv:
In,ny € A:n' € N/ and (n,n') € A/, and
> Jis acyclic.

The simplified RTG for our example task is:

“Proves’ that n, is forced true.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 29 / 40 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 30 / 40
F2. Landmarks: RTG Landmarks Landmarks from RTGs F2. Landmarks: RTG Landmarks Landmarks from RTGs
Landmarks in AND/OR Graphs Characterizing Equation System
Theorem

Let G = (N, A, type) be an AND/OR graph. Consider the

Definition (Landmarks in AND/OR Graphs) following system of equations:

Let G = (N, A, type) be an AND/OR graph. LM(n) = {n} U ﬂ LM(n') type(n) = V

A node n € N is a landmark for reaching n, € N (n,n")EA

if n € V/ for all justifications J for n,. LM(n) = {n} U U LM(n') type(n) = A
(n,n")EA

But: exponential number of possible justifications
The equation system has a unique maximal solution (maximal with

regard to set inclusion), and for this solution it holds that

n" € LM(n) iff n’ is a landmark for reaching n in G.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 31 /40 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 32 /40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Computation of Maximal Solution

Theorem

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n) ={n}uU () LM(n') type(n) =V
(n,n")EA

LM(n)={n}U [J LM(n') type(n)= A
(n,n")EA

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

Computation: Initialize landmark sets as LM(n) = N and
apply equations as update rules until fixpoint.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 33 /40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Computation: Example

a,lo1 ad.el o102

(cf. screen version of slides for step-wise computation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 34 /40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Relation to Planning Task Landmarks

Theorem
Let M= (V,I,0,v) be a STRIPS planning task and
let L be the set of landmarks for reaching n¢g in sSRTG(M™).

The set {v € V | n, € L} is exactly the set of
causal fact landmarks in M.

For operators o € O, if n, € L then {o} is a
disjunctive action landmark in M.
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 35 /40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={ab,c,d, e f},

I ={a,b,e},
o1 = ({a}, {c,d, e}, {b}),
o, = ({d,e},{f},{a}), and
G ={e f}.

» [M(ng) ={a,d,e f,1,G, 01,02}
» a,d,e, and f are causal fact landmarks of 7.

» {01} and {0y} are disjunctive action landmarks of M.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 36 / 40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

(Some) Landmarks of " Are Landmarks of Tl

Theorem
Let N be a STRIPS planning task.

All fact landmarks of T are fact landmarks of I and all disjunctive
action landmarks of T are disjunctive action landmarks of T1.

Proof.

Let L be a disjunctive action landmark of M and 7 be a plan for
M. Then 7 is also a plan for M and, thus, 7 contains an operator
from L.

Let f be a fact landmark of M. If f is already true in the initial

state, then it is also a landmark of . Otherwise, every plan for T
contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of M. Therefore, also each plan of

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Not All Landmarks of " are Landmarks of I

Example
Consider STRIPS task ({a, b,c},0,{o1,02},{c}) with
o1 = <{}7 {a}v {}7 1> and o = <{a}7 {C}’ {a}v 1>-

a A cis a formula landmark of M* but not of M.

I contains such an operator, making f a fact landmark of I1. O]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 37 / 40
F2. Landmarks: RTG Landmarks Summary

F2.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 39 /40

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 38 /40
F2. Landmarks: RTG Landmarks Summary
Summary

P> Fact landmark: atomic proposition that is true in each state
path to a goal

» Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

» We can efficiently compute all causal fact landmarks of a
delete-free STRIPS task from the (simplified) RTG.

> Fact landmarks of the delete relaxed task are also
landmarks of the original task.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization November 26, 2025 40 / 40

Planning and Optimization
F3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Roger

Universitat Basel

December 1, 2025

Planning and Optimization
December 1, 2025 — F3. Landmarks: Orderings & LM-Count Heuristic

F3.1 Landmark Orderings
F3.2 Landmark Propagation
F3.3 Landmark-count Heuristic

F3.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 1/32
F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 3 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 2 /32
F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings
Content of the Course
Optimization Heuristic
Approaches
| Planning - - Network Flows | H MHS Heuristic |
Delete Relaxation
|| Operator { Cut Landmarks
{ Abstraction Counting
LM-Cut Heuristic
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 4 /32

F3. Landmarks: Orderings & LM-Count Heuristic

Why Landmark Orderings?

Landmark Orderings

» To compute a landmark heuristic estimate for state s
we need landmarks for s.

» We could invest the time to compute them
for every state from scratch.

> Alternatively, we can compute landmarks once and
propagate them over operator applications.

» Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

P (We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~ LM-Cut.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 5 /32

F3. Landmarks: Orderings & LM-Count Heuristic

Example

Consider task ({a, b,c,d},l,{01,02,...,0n},d) with
» [(v) =1 forve{ab,cd}
» o1 =(T,aAb), and
» 0y = (a,c A—a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
/[[<01, 02>]]?

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Orderings

6 /32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Terminology

Let 7 = (01,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.

> o is true at time i if I[(o1,...,0)] F ¢.
Also special case i = 0: ¢ is true at time 0 if / |= .

>

» No formula is true at time i < 0.

P> ¢ is added at time i if it is true at time / but not at time / — 1.
>

@ is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p, 7).

v

last(, 7) denotes the last time in which ¢ is added in 7.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 7/ 32

F3. Landmarks: Orderings & LM-Count Heuristic

Landmark Orderings

Definition (Landmark Orderings)
Let ¢ and % be formula landmarks. There is

> a natural ordering between ¢ and 1) (written p — 1))
if in each plan 7 it holds that first(p, 7) < first(¢), 7).
"o must be true some time strictly before 1 is first added.”

> a greedy-necessary ordering between ¢ and v (written
© —rgn 1) if for every plan m = (01, ..., 0,) it holds that
S[[<Olv) Oﬁrst(l/),ﬂ)—l)]]): P-
"o must be true immediately before ¢ is first added.”

> a weak ordering between ¢ and v (written ¢ —, 1))
if in each plan 7 it holds that first(p,) < last(,).
"o must be true some time before v is last added.”

Not covered: reasonable orderings, which generalize weak orderings

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Orderings

8 /32

F3. Landmarks: Orderings & LM-Count Heuristic

Natural Orderings

Definition
There is a natural ordering between ¢ and ¥ (written ¢ — 1))
if in each plan 7 it holds that first(¢,) < first(v, 7).

» We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

» For fact landmarks v, v/ with v # v/,
if n,, € LM(n,) then v/ — v.

December 1, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Landmark Orderings

/ 32

F3. Landmarks: Orderings & LM-Count Heuristic

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and 1

(written ¢ —4, ¢0) if in each plan where v is first added at time i,
@ is true at time / — 1.

» We can again determine such orderings from the sRTG.

» For an OR node n,, we define the set of first achievers as
FA(ny,) = {no | no € succ(n,) and n, & LM(n,)}.

> Then v/ —gn v if ny € succ(n,) for all n, € FA(ny).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Orderings

10 / 32

F3. Landmarks: Orderings & LM-Count Heuristic

F3.2 Landmark Propagation

December 1, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

11/

Landmark Propagation

F3. Landmarks: Orderings & LM-Count Heuristic

Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
» I(v) =1 forve{ab,c,d}
» o =(T,aAb)and 0 = (a,c A —a A —b) (plus some more).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
IT{o1, 02)]? All not achieved yet on the state path

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

P There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Propagation

12 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Past and Future Landmarks

» In the following, £, is always a set of formula landmarks for
the initial state with set of orderings O;.

> The set L;,(s) of past landmarks of a state s
contains all landmarks from £; that are
at some point true in every path from the initial state to s.

» The set L; . (s) of future landmarks of a state s
contains all landmarks from £; that are also
landmarks of s but not true in s.

> Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

> Since the exact sets are defined over all paths
between certain states, we use approximations.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 13 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lsut) such that
['fut U 'Cpast = El-

L is valid in state s if
» I = 1 and I has no s-plan, or
> L= <£pasta£fut> with ﬁpast) ‘C;ast and Lg € EFut'

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 14 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context in Search: LM-BFS Algorithm

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s',L(s")))

L(s) := (L;,0) and distances(s) := o if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 15 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context: Exploit Information from Multiple Paths

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
<57 & V> = Open'pOP()
if v < h(s,LL(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s'))
IL(s’) :=merge_landmark_states(LL(s’), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,L(s")))

L(s) := (£;,0) and distances(s) := oo if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 16 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Merging Landmark States Context: Progression for a Transition

L(init), £/, O; := compute_landmark_info(init())
. . . . if h(init(),L(init)) < co then
Merging combines the information from two landmark states. open.insert((init(), 0, h(init(), L(init))))

merge_landmark_states(IL, L") while open # () do

if L=_1 or' = 1 then return L; .<S,g, v) = open.pop()
(Lpast, Lsut) =1L if v < h(_S,]L(s)) then
(A)= L open.insert((s, g, h(s,1L(s))))

past’ ~fut else if distances(s) then
return (Lpast N Liase, Lur U L) distfn:es(s) = g()
if is_goal(s) then return extract_plan(s);
Theorem foreach (a.s’) € succ(s) do
If L and 1" are valid in a state s then also L’ := progress_landmark_state(L(s), (s, a, s"))
merge_landmark_states(IL, L") is valid in s. LL(s") :=merge_landmark_states(L(s’), L")

if L(s’) # L and h(s’,L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

L(s) := (L, 0) and distances(s) := oo if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 17 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 18 / 32
F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation
Progressing Landmark States Basic Progression
1 1+1 / -
> If we expand a §tate s with transmon (s,0,5), Definition (Basic Progression)
we use progression to determine a landmark state for s’ Basi . landmark r I d o
; the one we know for s asic progression maps landmark state (Lpast, Lsut) and transition
rom .
_ _ _ (s,0,s") to landmark state (Lpast U Ladd, Lsut \ Ladd), Where
> We will only introduce progression methods that preserve the Logd ={p€L)]|sEpands = o}

validity of landmark states.

> Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

“Extend the past with all landmarks added in s’ and
remove them from the future.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 19 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 20 / 32

F3. Landmarks: Orderings & LM-Count Heuristic

Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.

Goal progression maps landmark state (Lpast, Lsut) and transition
(s,0,s") to landmark state (L, Lgoa1), Where

Looal = {0 €Ly |7 @and s [~}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Propagation

21 /32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Weak Ordering Progression

© —w ¥ “@ must be true some time before 1 is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Lut)
and transition (s, 0,s’) to landmark state

(L1AY | 3 —w ¥ 1 @ & Lpast})-

“Landmark 1 must be added in the future because we haven't
done something that must be done before 1 is last added.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 22 / 32

F3. Landmarks: Orderings & LM-Count Heuristic

Greedy-necessary Ordering Progression

© —rgn ¥: “p must be true immediately before 1) is first added.”

Definition (Greedy-necessary Ordering Progression)
The greedy necessary ordering progression maps landmark state
(Lpast, Leyt) and transition (s, 0,s’) to landmark state
> L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s' =1, and

> (L1, {p|s' FEpand 3p =gt € O 1) € Lpast, s’ = P})
otherwise.

“Landmark 1 has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Landmark Propagation

23 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Natural Ordering Progression

@ — : must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)
The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state
> | if thereisa p — ¢ € Oy with ¢ & Lpast and s” = 4, and
> (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 24 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

F3.3 Landmark-count Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 25 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Content of the Course

Prelude { Cost Partitioning ‘ # Orderings

Foundations Post-Hoc
Optimization

Approaches
MHS Heuristic ‘

Network Flows

Delete Relaxation

T

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)
Let I1 be a planning task, s be a state and L. = (Lpast, Lut) be a
valid landmark state for s.

The LM-count heuristic for s and L is

oo ifL=1,

hLM—count s.L) =
(s,L) |Leut| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 27 / 32

Operator { Cut Landmarks
Abstraction Counting
LM-Cut Heuristic
Potential
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 26 / 32
F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Path-dependent

» LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

» Search algorithms need estimates for states.
> ~~ we use estimate from the current landmark state.

» ~ heuristic estimate for a state is not well-defined.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 28 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Inadmissible

Example
Consider STRIPS planning task N = ({a, b}, 1, {0}, {a, b}) with
I =0,0=(0,{a, b},0,1). Let L= {a, b} and O = 0.

Landmark state (0}, £) for the initial state is valid and the estimate
is htM-count(J (() {a, b})) = 2
while h*(I) = 1.

s pLM-count iq inadmissible.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 29 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic: Comments

» LM-Count alone is not a particularily informative heuristic.

v

On the positive side, it complements KFF very well.

» For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal ptM-count
estimate.

» The LM-sum heuristic is a cost-aware variant of the heuristic
that sums up the costs of the cheapest achiever (= operator
that adds the fact landmark) of each landmark.

» There is an admissible variant of the heuristic based on
operator cost partitioning.

F3. Landmarks: Orderings & LM-Count Heuristic Summary

F3.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 31 /32

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 30 / 32
F3. Landmarks: Orderings & LM-Count Heuristic Summary
Summary

» We can propagate landmark sets over action applications.

» Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

» We can combine the landmark information from several paths
to the same state.

» The LM-count heuristic counts how many landmarks still need
to be satisfied.

» The LM-count heuristic is inadmissible (but there is an
admissible variant).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 32 /32

Planning and Optimization
F4. Landmarks: Minimum Hitting Set Heuristic

Malte Helmert and Gabriele Roger

Universitat Basel

December 1, 2025

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 1/12

Planning and Optimization
December 1, 2025 — F4. Landmarks: Minimum Hitting Set Heuristic

F4.1 Minimum Hitting Set Heuristic

F4.2 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 2 /12

Content of the Course

{ Cost Partitioning ‘ # Orderings ‘
Post-Hoc LM-Count
'] Optimization B Heuristic
P
Operator
{ Abstraction B Counting
N Heuristics

The remaining landmark topics focus on
disjunctive action landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 3/12

F4. Landmarks: Minimum Hitting Set Heuristic Minimum Hitting Set Heuristic

F4.1 Minimum Hitting Set Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 4 /12

F4. Landmarks

Minimum Hitting Set Heuristic

Content of the Course

Minimum Hitting Set Heuristic

RTG Landmarks

M. Helmert, G. Roger (Universitat Basel) Planni

ng and Optimization

{ Cost Partitioning ‘ # Orderings ‘
Post-Hoc LM-Count
|| Optimization B Heuristic
| st |
Operator Cut Landmarks
Abstraction || Counting
] Heuristics

December 1, 2025

5/

12

F4. Landmarks: Minimum Hitting Set Heuristic Minimum Hitting Set Heuristic

Exploiting Disjunctive Action Landmarks

» The cost cost(L) of a disjunctive action landmark L is an
admissible heuristic, but it is usually not very informative.

» Landmark heuristics typically aim to combine multiple
disjunctive action landmarks.

How can we exploit a given set £ of disjunctive action landmarks?
» Sum of costs), cost(L)?
~> not admissible!
» Maximize costs max; ¢, cost(L)?
~> usually very weak heuristic
> better: Hitting sets

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 6 /12

F4. Landmarks

Minimum Hitting Set Heuristic

Hitting Sets

Definition (Hitting Set)

Let X be a set, F = {Fy,..

Xandc: X — Rar be a cost function for X.

Minimum Hitting Set Heuristic

., Fa} C 2% be a family of subsets of

A hitting set is a subset H C X that “hits” all subsets in F, i.e.,
HNF # 0 forall FeF. The cost of His)~ 4 c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

MHS is a “classical” NP-complete problem (Karp, 1972)

M. Helmert, G. Roger (Universitat Basel) Planni

ng and Optimization

December 1, 2025

/12

F4. Landmarks: Minimum Hitting Set Heuristic Minimum Hitting Set Heuristic

Example: Hitting Sets

Example
X = {017 02, 03, 04}

]: - {{04}7 {017 02}7 {017 03}7 {027 03}}
c(o1) =3, c(o2) =4, c(03) =5, c(og) =0
Specify a minimum hitting set.

Solution: {o1,02,04} with cost 3+4+0=7

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 8 /12

F4. Landmarks: Minimum Hitting Set Heuristic

Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let £ be a set of disjunctive action landmarks. The hitting set
heuristic AMHS(L) is defined as the cost of a minimum hitting set
for £ with ¢(o) = cost(o0).

Proposition (Hitting Set Heuristic is Admissible)
Let L be a set of disjunctive action landmarks for state s.
Then hMHS(L) is an admissible estimate for s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

9/

Minimum Hitting Set Heuristic

12

F4. Landmarks: Minimum Hitting Set Heuristic Minimum Hitting Set Heuristic

Hitting Set Heuristic: Discussion

» The hitting set heuristic is the best possible heuristic
that only uses the given information. ..

» ... but is NP-hard to compute.

» ~~ Use approximations that can be efficiently computed.
= LP-relaxation, cost partitioning (both discussed later)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 10 / 12

F4. Landmarks: Minimum Hitting Set Heuristic

F4.2 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025

Summary

11/

F4. Landmarks: Minimum Hitting Set Heuristic Summary

Summary

> Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks.

» The computation of a minimal hitting set is NP-hard.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 1, 2025 12 /12

Planning and Optimization
December 3, 2025 — F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Planning and Optimization F5.1 i-g Form
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

F5.2 Cut Landmarks

Malte Helmert and Gabriele Roger

F5.3 The LM-Cut Heuristic

Universitat Basel

December 3, 2025
F5.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 1/26 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 2 /26

Content of the Course Roadmap for this Chapter

Prelude # Cost Partitioning ‘ # Orderings

» We first introduce a new normal form for delete-free STRIPS
Foundations Post-Hoc LM-Count tasks that simplifies later definitions.

QAT Heuristic » We then present a method that computes disjunctive action
landmarks for such tasks.

Approaches

Network Flows { MHS Heuristic
Delete Relaxation » We conclude with the LM-cut heuristic

——— || Operator that builds on this method.
Abstraction Counting

Potential
Heuristics

T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 3 /26 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 4 /26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic i-g Form
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 5 /26
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic i-g Form

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic i-g Form

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks

in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task (V,/, O,~) is in i-g form if
» V contains atoms j and g
> Initially exactly 7 is true: /(v) =T iff v =1
» g is the only goal atom: v = {g}

» Every action has at least one precondition.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 6 /26

Transformation to i-g Form

Every delete-free STRIPS task 1 = (V, [/, O,~) can easily be
transformed into an analogous task in i-g form.

> If j or g are in V already, rename them everywhere.
> Add jand g to V.

» Add an operator ({i},{ve V|I(v)=T}{},0).
» Add an operator (v,{g},{},0).

» Replace all operator preconditions T with /.

>

Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

7/

26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic i-g Form

Example: Delete-Free Planning Task in i-g Form

Example
Consider a delete-relaxed STRIPS planning (V, 1, O,) with
V={iab,cdgt !l={i>T}U{v>F|veV\{i}},7v=g¢
and operators

> Oplue = <{i}7 {‘37 b}7 {}74>'

> Ogreen = ({i},{a, ¢}, {},5),

P Oplack = <{i}7 {b, C}v {}7 3>v

» Ored = <{ba C}7 {d}v {}72>1 and

> Oorange = <{a7 d}7 {g}, {}7 0>

optimal solution to reach g from i:

> plan: <Ob|ue7 Oblacks Ored> Oorange)

> cost: 44+3+2+0=9 (= h™(I) because plan is optimal)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 8 /26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

F5.2 Cut Landmarks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Cut Landmarks

December 3, 2025

9

/

/ 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Content of the Course

Cut Landmarks

RTG Landmarks

Prelude { Cost Partitioning ‘ #

Orderings

Foundations Post-Hoc

LM-Count
Heuristic

Approaches

Optimization
Network Flows #

MHS Heuristic

Delete Relaxation

T

Abstraction B Counting
Potential
- Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 10 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) P: O — V for a
delete-free STRIPS task N = (V,/,0,~) in i-g form
maps each operator to one of its preconditions

(i.e. P(o) € pre(o) for all 0 € O).

Definition (Justification Graphs)

Let P be a pcf for (V,1,0,7) in i-g form. The justification graph

Cut Landmarks

for P is the directed, edge-labeled graph J = (V, E), where

» the vertices are the variables from V/, and

> E contains an edge P(0) 2 a for each o € O, a € add(o).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 3, 2025

11/

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Justification Graph

Example (Precondition Choice Function)

Cut Landmarks

P(oblue) = P(Ogreen) = P(Oblack) =1, P(Ored) = b, P(Oorange) =a
Pl(oblue) = Pl(ogreen) = P/(Oblack) = iv Pl(ored) =C, Pl(oorange) =d

Oblue = <{l}7 {37 b}v {}v 4
Ogreen = <{i}7 {av C}v {}7 5

=0 0t = ({byc} {d} {12

)
)
Oblack = <{i}7 {b7 C}7 {}7 3;
)

Oorange = <{a’ d}v {g}v {}7 0

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 3, 2025

12/

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic Cut Landmarks

Cuts

Definition (Cut)
A cut in a justification graph is a subset C of its edges such that
all paths from / to g contain an edge from C.

ovive = ({i},{a, b}, {},4)
Ogreen = ({i},{a, ¢}, {},5)
Ovlack = {{i},{b,c},{},3)

e Ored = ({bv C}v{d}v{)

\ Oorange = ({37 d}7 {g}7 {)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 13 /26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic Cut Landmarks

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for (V,1,0,~) (in i-g form) and
C be a cut in the justification graph for P.

The set of edge labels from C (formally {o | (v,0,V’) € C})
is a disjunctive action landmark for I.
Proof idea:

» The justification graph corresponds to a simpler problem
where some preconditions (those not picked by the pcf) are
ignored.

» Cuts are landmarks for this simplified problem.

» Hence they are also landmarks for the original problem.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 14 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic Cut Landmarks

Example: Cuts in Justification Graphs

Example (Landmarks)

> [= {Oorange} (cost = O) > [, = {Ogl’een7 Oblack} (COSt = 3)
> [3= {Ored} (COSt = 2) > Ly = {Ogreena Oblue} (COSt = 4)

Oblue = <{l}7 {37 b}v {}v 4>
Ogreen = <{i}7 {av C}v {}7 5)
Oblack — <{’}7 {b7 C}7 {}7 3>

2)
0)

oed = ({b, c}, {d}, {},
-6 Oorange = <{a’ d}v {g}’ {}v

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 15 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic Cut Landmarks

Power of Cuts in Justification Graphs

» Which landmarks can be computed with the cut method?
» all interesting ones!

Proposition (perfect hitting set heuristics)

Let L be the set of all “cut landmarks” of a given planning task
with initial state I. Then hMH15(L£) = h*(1).

~ Hitting set heuristic for £ is perfect.

Proof idea:

» Show 1:1 correspondence of hitting sets H for £ and plans,
i.e., each hitting set for £ corresponds to a plan,
and vice versa.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 16 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

F5.3 The LM-Cut Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The LM-Cut Heuristic

December 3, 2025 17 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic The LM-Cut Heuristic

Content of the Course

Prelude { Cost Partitioning ‘ # Orderings ‘

Foundations Post-Hoc LM-Count

Optimization Heuristic

Approaches

Network Flows

MHS Heuristic ‘

Operator # Cut Landmarks

Delete Relaxation

T

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

LM-Cut Heuristic: Motivation

The LM-Cut Heuristic

» In general, there are exponentially many pcfs, hence
computing all relevant landmarks is not tractable.

» The LM-cut heuristic is a method that chooses pcfs
and computes cuts in a goal-oriented way.

> As a side effect, it computes a

P a cost partitioning over multiple instances of h™®* that is also
P a saturated cost partitioning over disjunctive action landmarks.

~~ next week

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 19 / 26

Abstraction Counting

Potential

Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 18 / 26
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic The LM-Cut Heuristic

LM-Cut Heuristic

htM-cut: Helmert & Domshlak (2009)
Initialize AXM-<Ut(]) := 0. Then iterate:
@ Compute h™®* values of the variables. Stop if "™?*(g) = 0.

@ Compute justification graph G for the P that chooses
preconditions with maximal h™®* value

© Determine the goal zone V; of G that consists of all nodes
that have a zero-cost path to g.

@ Compute the cut L that contains the labels of all edges
(v,0,V') such that v & V,, v/ € V; and v can be reached
from i without traversing a node in V.

It is guaranteed that cost(L) > 0.

@ Increase h-M-<t(]) by cost(L).
@ Decrease cost(o) by cost(L) for all o € L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

20 /

26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Computation of LM-Cut

The LM-Cut Heuristic

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Computation of LM-Cut

The LM-Cut Heuristic

3 round | P(0crange) | P(0red) landmark cost
1 d b {Ored } 2
2 a b {Ogreen 5 oblue} 4

hLM-Cut (I) 6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 3, 2025 22 / 26

Oblue <{’.}7{aa b}?{}74>
Ogreen <{{}7{av C},{} 5>
0 ---------- Oblack = <{I},{b, C},{} 3)
E ored = ({b, c},{d},{},0)
5 Oorange = <{av d}7 {g}7 {}7 O>
3 round | P(0orange) | P(0red) landmark cost
1 d b {ored} 2
hLM—cut(,) 2
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 21 / 26
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic The LM-Cut Heuristic
Example: Computation of LM-Cut
0
Oblue = <{’}7 {aa b}7 {}7 0>
........ Ogreen <{{}7{av ch, {},0)
0 Oblack = <{’}7{b7 C}v{} 2)
ored = ({b, c},{d},{},0)
1 Oorange = <{a7 d}?{g}7{}70>
1 ---- “rOUnd P(oorangc) P(Ol’ed) Iandmark cost
...... 1 d b {ored} 2
2 a b {Ogreen, oblue} 4
3 d C {ogreen, Oblack} 1
hLM-cut(I) 7
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 23 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Properties of LM-Cut Heuristic

Theorem

The LM-Cut Heuristic

Let (V,1,0,v) be a delete-free STRIPS task in i-g normal form.
The LM-cut heuristic is admissible: htM-cut(1) < h*(I).

Proof omitted.

If M is not delete-free, we can compute h*M-<ut on M+,

Then A*M-cUt is bounded by h™.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 3, 2025 24 / 26

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

F5.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 3, 2025

Summary

25 /

F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Summary

» Cuts in justification graphs are a general method to find

disjunctive action lan

dmarks.

» The minimum hitting set over all cut landmarks is a
perfect heuristic for delete-free planning tasks.

» The LM-cut heuristic is an admissible heuristic

based on these ideas.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization December 3, 2025

Summary

26 / 26

Planning and Optimization
December 3, 2025 — F6. Linear & Integer Programming

Planning and Optimization

F6.1 Integer Programs
F6. Linear & Integer Programming

F6.2 Linear Programs
Malte Helmert and Gabriele Roger

F6.3 Normal Forms and Duality

Universitat Basel

D 202
ecember 3, 2025 F6.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 1/35 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 2 /35

Content of the Course (Timeline) Content of the Course (Relevance)

— Landmarks

] T

Cost Partitioning

[

— Prelude

— Foundations

— Foundations Post-Hoc

Optimization
— Approaches -

Network Flows

[

Approaches

Planning — Delete Relaxation

I
[

[

Delete Relaxation

Operator — Abstraction

— Abstraction Counting -

— Constraints Potential
Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 3 /35 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 4 /35

Not Content of this Course (Relevance)

F6. Linear & Integer Programming Integer Programs

F6.1 Integer Programs

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 5 /35
F6. Linear & Integer Programming Integer Programs
Motivation

» This goes on beyond Computer Science
> Active research on IPs and LPs in

» Operation Research

> Mathematics
» Many application areas, for instance:

» Manufacturing
> Agriculture

> Mining

> Logistics

» Planning

» As an application, we treat LPs / IPs as a blackbox

v

We just look at the fundamentals

v

However, even on the application side there is much more
(e.g., modelling tricks or solver parameters to speed up
computation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 7 /35

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 6 /35
F6. Linear & Integer Programming Integer Programs
Motivation

Example (Optimization Problem)
Consider the following scenario:

» A factory produces two products A and B
» Selling one (unit of) B yields 5 times the profit of selling one A

» A client places the unusual order to “buy anything that can
be produced on that day as long as two plus twice the units of
A is not smaller than the number of B”

» More than 12 products in total cannot be produced per day

» There is only material for 6 units of A
(there is enough material to produce any amount of B)

How many units of A and B does the client receive
if the factory owner aims to maximize her profit?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 8 /35

F6. Linear & Integer Programming Integer Programs

Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)
maximize X4 +5Xg subject to

242Xy 2> Xp
Xa+ Xg <12
X4 <6

Xa=0, Xg=0

~~ unique optimal solution:
produce 4 A (X4 = 4) and 8 B (Xg = 8) for a profit of 44

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 9 /35

F6. Linear & Integer Programming

Same Program as Input for the Solver

File ip.1p
Maximize
obj: X_A + 5 X_B
Subject To
cl: -2 X A+XB<=2
c2: X_A + X_B <= 12
Bounds
0<=X_AK=6
0 <= X_B
General
X_A X_B
End

— Demo (Gurobi; same format also works with CPLEX and others)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Integer Programs

10 / 35

F6. Linear & Integer Programming Integer Programs

Integer Program Example: Visualization

XB

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 3, 2025 11 /35

F6. Linear & Integer Programming

Integer Programs

Integer Program
An integer program (IP) consists of:
> a finite set of integer-valued variables V/
> a finite set of linear inequalities (constraints) over V/
P an objective function, which is a linear combination of V/

» which should be minimized or maximized.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Integer Programs

12 / 35

F6. Linear & Integer Programming Integer Programs

Terminology

> An integer assignment to all variables in V' is feasible if it
satisfies the constraints.

» An integer program is feasible if there is such a feasible
assignment. Otherwise it is infeasible.

> A feasible maximum (resp. minimum) problem is
unbounded if the objective function can assume arbitrarily
large positive (resp. negative) values at feasible assignments.
Otherwise it is bounded.

» The objective value of a bounded feasible maximum
(resp. minimum) problem is the maximum (resp. minimum)
value of the objective function with a feasible assignment.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 13 / 35

F6. Linear & Integer Programming

Another Example

Example
minimize 3X,, +4X,, +5X,, subject to

Xo, > 1
Xop 4 Xop > 1
Xoy + Xoy > 1
Xo, 4 Xop > 1

Xop >0, X,, 20, X, >0 X, >0
What example from a recent chapter does this IP encode?

~» the minimum hitting set from Chapter F4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Integer Programs

December 3, 2025 14 / 35

F6. Linear & Integer Programming Integer Programs

Complexity of Solving Integer Programs

» As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

» Reminder: MHS is a “classical” NP-complete problem
» Good news: Solving an IP is not harder
~> Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be
integer-valued leads to a simpler problem

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 15 / 35

F6. Linear & Integer Programming

F6.2 Linear Programs

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Linear Programs

December 3, 2025 16 / 35

F6. Linear & Integer Programming

Linear Programs

Linear Program
A linear program (LP) consists of:

> a finite set of real-valued variables V/
> a finite set of linear inequalities (constraints) over V
P an objective function, which is a linear combination of V

» which should be minimized or maximized.
We use the introduced IP terminology also for LPs.

Mixed IPs (MIPs) are something between IPs and LPs:
some variables are integer-valued, some are real-valued.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Linear Programs

17 / 35

F6. Linear & Integer Programming

Linear Program: Example

Let X4 and Xg be the (real-valued) number of produced A and B

Example (Optimization Problem as Linear Program)

maximize X, +5Xg subject to

242X4 > Xp
Xa+ Xp <12
Xa<6

Xa2>20, Xg=>0
~> unique optimal solution:
Xa = 3% and Xg = 8% with objective value 46%

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Linear Programs

18 / 35

F6. Linear & Integer Programming

Same Program as Input for the Solver

File 1p.1p

Maximize

obj: X_A + 5 X_B
Subject To

cl: -2 X_A+XB<=2
c2: X_A + X B <= 12

Bounds
0<=X_AK=6
0 <= X_B

End

— Demo (Gurobi; same format also works with CPLEX and others)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Linear Programs

19 / 35

F6. Linear & Integer Programming

Linear Program Example: Visualization

XB
~
T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Linear Programs

20 / 35

F6. Linear & Integer Programming Linear Programs

Solving Linear Programs

» Observation:

Here, LP solution is an upper bound for the corresponding IP.
> Complexity:

LP solving is a polynomial-time problem.
» Common idea:

Approximate IP solution with corresponding LP
(LP relaxation).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 21 / 35

F6. Linear & Integer Programming

LP Relaxation

Linear Programs

Theorem (LP Relaxation)
The LP relaxation of an integer program is the problem that arises
by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective
value of the LP relaxation is an upper (resp. lower) bound on the
value of the IP.

Proof idea.
Every feasible assignment for the IP is also feasible for the LP. [

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 22 / 35

F6. Linear & Integer Programming

LP Relaxation of MHS heuristic

Linear Programs

Example (Minimum Hitting Set)
minimize 3X,, + 4X,, +5X,, subject to

Xo, > 1
Xoy + X0 21
Xoy + X0y 21
Koy +Xoy 2 1

X01 2 01 X02 Z 01 XO3 Z 01 XO4 2 0

~= optimal solution of LP relaxation:

Xo, = 1 and X, = X,, = Xo, = 0.5 with objective value 6
~+ LP relaxation of MHS heuristic is admissible

and can be computed in polynomial time

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 23 / 35

F6. Linear & Integer Programming Normal Forms and Duality

F6.3 Normal Forms and Duality

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 24 / 35

F6. Linear & Integer Programming Normal Forms and Duality F6. Linear & Integer Programming Normal Forms and Duality

Standard Maximum Problem Standard Maximum Problem: Matrix and Vectors

Normal form for maximization problems:

Definition (Standard Maximum Problem) A standard maximum problem is often given by
Find values for xi, ..., x,, to maximize » an m-vector b = (by,...,bn) " (bounds),
> an n-vector ¢ = {cy,...,c,) " (objective coefficients),

X1+ e G » and an m X n matrix

subject to the constraints

a1 a2 ... ain
ani a» ... ap o
a11x1 + axe + -+ anx, < by A=| | o .| (coefficients)
az1x1 + axpxo + -+ a2nxy < bo
dml dm2 --- dmn
» Then the problem is to find a vector x = (x1,...,x,)" to
Am1X1 + ameXo + -+ amnXn < bm maximize ¢’ x subject to Ax < b and x > 0.
and x; > 0,x >0,...,x, > 0.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 25 / 35 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 26 / 35
F6. Linear & Integer Programming Normal Forms and Duality F6. Linear & Integer Programming Normal Forms and Duality
Standard Minimum Problem Some LP Theory: Duality

Every LP has an alternative view (its dual LP).

P there is also a standard minimum problem

Primal Dual
> it's form is identical to the standard maximum problem, maximization (or minimization) | minimization (or maximization)
except that . .
o L L . objective coefficients bounds
> the aim is to minimize the objective function - ..
: bounds objective coefficients
> subject to Ax>b . .
) o) bounded variable >-constraint
> All linear programs can efficiently be converted into a <_constraint bounded variable
standard maximum/minimum problem. free variable —_constraint
=-constraint free variable

dual of dual: original LP

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 27 / 35 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 28 / 35

F6. Linear & Integer Programming

Dual Problem

Normal Forms and Duality

Definition (Dual Problem)
The dual of the standard maximum problem

maximize ¢ x subject to Ax < b and x>0
is the standard minimum problem

minimize b”y subject to ATy > candy >0

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 29 / 35

F6. Linear & Integer Programming

Dual Problem: Example

Example (Dual of the Optimization Problem)
maximize X, +5Xp subject to

[Yi] —2Xa+ Xp <2
[Y2] Xa+ Xg <12
[Y3] Xp<6

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Normal Forms and Duality

30 / 35

F6. Linear & Integer Programming Normal Forms and Duality

Dual Problem: Example

Example (Dual of the Optimization Problem)
minimize 2Y; +12Y> +6Y3 subject to

[XA] 2Y1+ Yo+ Y3 >1
[Xe] Yi+Y22>5

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 31 /35

F6. Linear & Integer Programming

Duality Theorem

Theorem (Duality Theorem)
If a standard linear program is bounded feasible, then so is its dual,
and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025

Normal Forms and Duality

32 / 35

F6. Linear & Integer Programming

F6.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Summary

December 3, 2025 33 /35

F6. Linear & Integer Programming Summary

Summary

» Linear (and integer) programs consist of an objective function
that should be maximized or minimized subject to a set of
given linear constraints.

» Finding solutions for integer programs is NP-complete.

v

LP solving is a polynomial time problem.

» The dual of a maximization LP is a minimization LP
and vice versa.

» The dual of a bounded feasible LP has the
same objective value.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 3, 2025 34 /35

F6. Linear & Integer Programming

Further Reading

The slides in this chapter are based on the following
excellent tutorial on LP solving:

[M Thomas S. Ferguson.
Linear Programming — A Concise Introduction.
UCLA, unpublished document available online.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Summary

December 3, 2025 35 /35

Planning and Optimizati
F7. Cost Partitioning

Malte Helmert and Gabriele Ro
Universitat Basel

December 8, 2025

on

ger

Planning and Optimization
December 8, 2025 — F7. Cost Partitioning

F7.1 Introduction

F7.2 Cost Partitioning

F7.3 Uniform Cost Partitioning
F7.4 Saturated Cost Partitioning

F7.5 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 8, 2025

2/ 49

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 1/49
Content of the Course
o]
Post-Hoc # Uniform CP
Optimization
Approaches Saturated CP
- Network Flows
Delete Relaxation Optimal CP
|| Operator
Abstraction Counting General CP
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 3 /49

F7. Cost Partitioning

F7.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

December 8, 2025

4/ 49

F7. Cost Partitioning Introduction

Exploiting Additivity

> Additivity allows to add up heuristic estimates admissibly.
This gives better heuristic estimates than the maximum.

» For example, the canonical heuristic for PDBs sums up where
addition is admissible (by an additivity criterion) and takes the
maximum otherwise.

» Cost partitioning provides a more general additivity criterion,
based on an adaption of the operator costs.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 5 /49

F7. Cost Partitioning

Combining Heuristics (In)admissibly: Example

Let h:h1+h2—|—h3.

02, 03, 04 02, 03, 04
h
01, 04 01,04 01, 04
2 1 0
N p\ N
ho A @ C
01,03 01, 03 01,03

2 1 0
0 L
hs (& @@

(02,03,04) is a plan for s = (B, A, A) but h(s) = 4.
Heuristics h, and hs both account for the single application of o,.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

6/

Introduction

49

F7. Cost Partitioning Introduction

Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of oy is considered in both.

Solution 1: We can ignore the cost of 0, in all but one heuristic by
setting its cost to 0 (e.g., costz(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of 0, between the
abstractions that use it (i.e. cost;(02) =0,

costy(02) = costz(0y) = 0.5).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint
n

Z costi(0) < cost(o) for all 0 € O
i=1

What about o1, 03 and 047

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 7/ 49

F7. Cost Partitioning

Combining Heuristics Admissibly: Example

Let i = hy + hyp + hj, where hi = h** assuming cost3(0z) = 0.

02,03, 04 02, 03, 04
h
01,04 01,04 01, 04
2 1 0]
02 03
hy A @ C
01,03 01,03 01,03
1 0 1

04 0
3 0-cost U

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) = 3 an admissible estimate.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

8 /

Introduction

49

F7. Cost Partitioning Introduction

Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of oy is considered in both.

Solution 1: We can ignore the cost of 0, in all but one heuristic by
setting its cost to 0 (e.g., costz(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of 0, between the
abstractions that use it (i.e. cost;(02) =0,

costy(02) = costz(0y) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

n
Z costi(0) < cost(o) for all 0 € O
i=1

What about o1, 03 and 047

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 9 /49

F7. Cost Partitioning Introduction

Combining Heuristics Admissibly: Example

Let h = h} + h, + hj, where h% = h"i assuming
cost1(02) = 0, costz(02) = costz(0z) = 0.5.

02,03, 04 02,03, 04
1 01 0
o (A)
01, 04 01, 04

= o
H
o
Q
w
(=)
()

2
02
h &
2 . cost 0.5

01, 03

1
02
3 cost 0.5

(02,03, 04) is an optimal plan for s = (B, A, A) and
H(s) =0+ 1.5+ 1.5 = 3 an admissible estimate.

°
S
°
w
°
S
&

o=
o

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 10 / 49

F7. Cost Partitioning Introduction

Solution: Cost Partitioning

The reason that hy and h3 are not additive is because
the cost of oy is considered in both.

Solution 1: We can ignore the cost of 0, in all but one heuristic by
setting its cost to 0 (e.g., cost3(02) = 0).
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of 0, between the
abstractions that use it (i.e. costi(02) =0,

costr(02) = cost3(02) = 0.5).
This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

Zcost;(o) < cost(o) for all 0 € O
i=1

What about o1, 03 and 047

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 11 /49

F7. Cost Partitioning Cost Partitioning

F7.2 Cost Partitioning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 12 / 49

F7. Cost Partitioning Cost Partitioning

Content of the Course

Landmarks

Prelude

F7. Cost Partitioning Cost Partitioning

Cost Partitioning

Definition (Cost Partitioning)

Let I be a planning task with operators O.

A cost partitioning for I is a tuple (costy, ..., cost,), where
> cost“,-:O—HR(J)r for1<i<nand
> >, costi(o) < cost(o) for all 0 € O.

The cost partitioning induces a tuple (M4, ...,I,) of planning

tasks, where each [1; is identical to I except that the cost
of each operator o is cost;(0).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 14 / 49

|| Post-Hoc # Uniform CP
Optimization
Approaches Saturated CP
- Network Flows
Delete Relaxation Optimal CP
|| Operator
Abstraction Counting General CP
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 13 / 49
F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let I be a planning task, (costi, ..., cost,) be a cost partitioning
and (My,...,MN,) be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for T, i.e., > 7 4 hf, < hf.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 15 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Admissibility (2)

Proof of Theorem.
If there is no plan for state s of I, both sides are co. Otherwise,
let 7 = (o1,...,0m) be an optimal plan for s. Then

n n m
> k() <Y costi(o) (i plan in each M)
i=1

i=1 j=1

m n
= Z Z cost;(o)) (comm./ass. of sum)

j=1i=1
m
< E cost(oj) (cost partitioning)
j=1
= hg(s) (m optimal plan in M)
L]
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 16 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write hp to denote heuristic h
evaluated on task 1.

Corollary (Sum of Admissible Estimates is Admissible)

Let I be a planning task and let (MNy,...,M,) be induced by a cost
partitioning.

For admissible heuristics hy, ..., h,, the sum h(s) = >""_; hin,(s)
is an admissible estimate for s in 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 17 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let I be a planning task and let (MNy,...,M,) be induced
by a cost partitioning (costi, ..., costp).

If hi, ..., h, are consistent heuristics then h =i hin
is a consistent heuristic for I1.

i

Proof.
Let o be an operator that is applicable in state s.

h(s) = 3 hin(s) < 3 (costi(o) + hi(s[el)

= Z costj(o) + Z hin,(s[o]) < cost(o) + h(s[o])

i=1

O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 18 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Example

Example (No Cost Partitioning)

Heuristic value: max{2,2} =2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 19 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Example

Example (Cost Partitioning 1)

Heuristic value: 1 4+1 =2

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 20 / 49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Example

Example (Cost Partitioning 2)

0 0

@

Heuristic value: 242 =4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 21 /49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Example

Example (Cost Partitioning 3)

2 2

020

Heuristic value: 0+0=0

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 22 /49

F7. Cost Partitioning Cost Partitioning

Cost Partitioning: Quality

> h(S) = h17|-|1(5) +--+ hn,l'l,,(s)
can be better or worse than any h; n(s)
— depending on cost partitioning
> strategies for defining cost-functions
» uniform (now)
zero-one
saturated (afterwards)
optimal (next chapter)

vyvyy

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 23 /49

F7. Cost Partitioning Uniform Cost Partitioning

F7.3 Uniform Cost Partitioning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 24 /49

F7. Cost Partitioning

Content of the Course

Landmarks

Prelude Concept

| | Optimization
|
Operator
{ Abstraction] Counting
] Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

Uniform Cost Partitioning

25 /49

F7. Cost Partitioning Uniform Cost Partitioning

Idea

» Principal idea: Distribute the cost of each operator equally
(= uniformly) among all heuristics.

» But: Some heuristics do only account for the cost of certain
operators and the cost of other operators does not affect the
heuristic estimate. For example:

» a disjunctive action landmark accounts for the contained
operators,

> a PDB heuristic accounts for all operators affecting the
variables in the pattern.

= Distribute the cost of each operator uniformly among all
heuristics that account for this operator.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 26 / 49

F7. Cost Partitioning

Example: Uniform Cost Partitioning for Landmarks

» For disjunctive action landmark L of state s in task I, let
hirv(s) be the cost of L in I

» Then hy r(s) is admissible (in I1").

» Consider set £ = {Ly,..., Ly} of disjunctive action landmarks
for state s of task [1.

» Use cost partitioning (costy,, ..., cost;,), where

cost(o)/[{Le L|o e L} ifoel;

cost; .(0) =
(o) 0 otherwise

» Let (My,,...,Mg,) be the tuple of induced tasks.
h(s)=>", hi;n, (s) is an admissible estimate for s in 1.

vy

h is the uniform cost partitioning heuristic for landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

Uniform Cost Partitioning

27 / 49

F7. Cost Partitioning Uniform Cost Partitioning

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)
Let £ be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic hV“P (L) is defined as

hUCP(,C) —
LeL

min c’(0) with
oclL

c’(o) = cost(o)/|{L € L | 0 € L}|.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 28 / 49

F7. Cost Partitioning Uniform Cost Partitioning

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

Ly = {o1,03}, Lo ={o1,02,04}, L3 ={01,04,05}

with operator cost function

c(o1) =6, c(o2) =4, c(o3)=1, c(os) =6, c(os) =3
UCP for landmarks uses adapted costs

c(o1) =2, d(02) =4, (03)=1, c(0a) =3, c/(05) =3

with resulting heuristic estimate
hUCP({Ll, Ly, L3}) =14+2+2=05.

(MHS heuristic estimate: 6)

F7. Cost Partitioning Saturated Cost Partitioning

F7.4 Saturated Cost Partitioning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 29 / 49
F7. Cost Partitioning Saturated Cost Partitioning
Content of the Course
o
Optimization
- Network Flows
Delete Relaxation Optimal CP
Operator
{ Abstraction Counting General CP
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 31 /49

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 30 / 49
F7. Cost Partitioning Saturated Cost Partitioning

Heuristics do not always “need” all operator costs

P Pick a heuristic and use
minimum costs preserving all estimates

» Continue with remaining cost
until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff
between computation time and heuristic guidance in practice.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 32 /49

F7. Cost Partitioning Saturated Cost Partitioning

Saturated Cost Function

Definition (Saturated Cost Function)

Let I'1 be a planning task and h be a heuristic.

A cost function scf is saturated for h and cost if
@ scf(o) < cost(o) for all operators o and

@ hn(s) = hn(s) for all states s,
where Mg is I with cost function scf.

F7. Cost Partitioning Saturated Cost Partitioning

Minimal Saturated Cost Function

For abstractions, there exists a unique
minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)
Let 1 be a planning task and « be an abstraction heuristic.
The minimal saturated cost function for « is

mscf(o) = max(max h%(s) — h*(t),0)
a(s)=a(t)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 34 /49

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 33 /49
F7. Cost Partitioning Saturated Cost Partitioning
Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)
Iterate:

@ Pick a heuristic h; that hasn't been picked before.
Terminate if none is left.

@ Compute h; given current cost

© Compute an (ideally minimal) saturated cost function scf;
for h;

© Decrease cost(0) by scfi(o) for all operators o

(scf1,...,scfp) is a saturated cost partitioning (SCP)
for (h1,..., hy) (in pick order)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 35 /49

F7. Cost Partitioning Saturated Cost Partitioning
Example
Consider the abstraction heuristics h; and hy
© Compute minimal saturated cost function mscf; for h;

01,03, 04

02
hl 51,52,53
2

4

01 | 02 | 03 | 04
cost 1 1 1 1

mscf; | O 1 1

03 D
S5

- ()

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 36 /49

F7. Cost Partitioning

Saturated Cost Partitioning F7. Cost Partitioning

Saturated Cost Partitioning
Example Example

Consider the abstraction heuristics h; and hy Consider the abstraction heuristics hy and hy

@ Decrease cost(o) by mscfi(o) for all operators o © Compute minimal saturated cost function mscf; for h;

01, 03,04 01, 03, 04
0> on 03 02 () 03
hy |s1,52,83 Sa S5 hy | s1:%2,53 Sq S5
2 1 0 2 1 0
1 0 0
o1 o 02 C] B o1 () 02 Dj —
S1 S Sa, S5 03 S1 S Sa4, S5 03
(@] > (@]
ho X % ho x V
oL | 02| 03 | 04 oL | 02 | 03 | 04
cost 1 0 0 1 cost 1 0 0 1
mscf; | O 1 110 0 mscf; | O 1 1|0
mscfs 1 0 0 1
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 37 /49 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 38 /49

F7. Cost Partitioning

Saturated Cost Partitioning F7. Cost Partitioning

Saturated Cost Partitioning

Example Example

Consider the abstraction heuristics h; and hy Consider the abstraction heuristics h1 and hy

@ Decrease cost(o) by mscfi(o) for all operators o @ Pick a heuristic h;. Terminate if none is left.

01,03, 04 01,03, 04
02 () 03 02 () 03
hy | 51,92, 83 Sy S5 hy | s1, 52,83 S4 S5
2 1 0 2 1 0
1 0 0 1 0 0

O O
(a2 {ss]Do (a2 {ss]Do
(o) (o)
ho X o ho X @
2

02 03 O4 01 02 03 O4
cost 0j0]0]O0 cost 0O|0]|] 0] O
0 mscfy | O | 1 | 1|0 0 mscfy | O | 1 | 1|0
mscf, | 1 | 0| 0 |1 mscf | 1 | 0| 0 | 1
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 39 /49 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 40 / 49

F7. Cost Partitioning

Saturated Cost Partitioning F7. Cost Partitioning

Influence of Selected Order Saturated Cost Partitioning: Order

Consider the abstraction heuristics hy and hy

Saturated Cost Partitioning

01,03, 04
» quality highly susceptible to selected order hy (51,5, 02 o 93 @
> there are almost always orders where SCP performs much 0 0 0
better than uniform or zero-one cost partitioning
» but there are also often orders where SCP performs worse 2 1 0

o

01 | 02| 03 | 04
cost 1 1 1 1
2 mscfy | 1 1 1 0
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 41 / 49 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 42 / 49
F7. Cost Partitioning Saturated Cost Partitioning F7. Cost Partitioning Saturated Cost Partitioning
Saturated Cost Partitioning: Order Influence of Selected Order
Consider the abstraction heuristics h; and hy
01,03, 04
02 M 03 P quality highly susceptible to selected order
hy | s1,52,53 S S5
) » there are almost always orders where SCP performs much
0 0 0 better than uniform or zero-one cost partitioning
9 1 0 » but there are also often orders where SCP performs worse
s o1 s 02 @D 03 Maximizing over multiple orders good solution in practice
(o)
4

- N

3 = = =
cost 0 0 0 1
2 mscfy | 1 1 110
mscfp | O | O | O | O
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 43 / 49 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 44 / 49

F7. Cost Partitioning

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a
minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let N be a planning task and £ be a disjunctive action landmark.

The minimal saturated cost function for L is

foel

0 otherwise

Minee . cost(o)

mscf(o) = {

Does this look familiar?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

Saturated Cost Partitioning

45 / 49

F7. Cost Partitioning

Reminder: LM-Cut

Saturated Cost Partitioning

Oblue = <{i}7 {‘37 b}7 {}7 4)
Owreen = ({i},{a, ¢}, {},5)
Oblack = <{’}7 {b’ C}v {}v 3>

Ored = <{b7 C}v {d}v {}7 2>
Oorange = <{37 d}v {g}7 {}7 0>

round | P(0orange) | P(0red) landmark cost
1 d b {Ored} 2
2 a b {Ogreens Oblue } 4
3 d C {Ogreem Oblack} 1
hLM-cut(I) 7

F7. Cost Partitioning

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks,
where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let I be a planning task and £ be a disjunctive action landmark.

The minimal saturated cost function for L is

foel

otherwise

mscf(0) = Minye . cost(o)

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

Saturated Cost Partitioning

47 / 49

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 46 / 49
F7. Cost Partitioning Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 48 / 49

F7. Cost Partitioning Summary

Summary

» Cost partitioning allows to admissibly add up estimates of
several heuristics.

» This can be better or worse than the best individual heuristic
on the original problem, depending on the cost partitioning.

» Uniform cost partitioning distributes the cost of each operator
uniformly among all heuristics that account for it.

» Saturated cost partitioning offers a good tradeoff between
computation time and heuristic guidance.

» LM-Cut computes a SCP over disjunctive action landmarks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 49 / 49

Planning and Optimization
December 8, 2025 — F8. Optimal and General Cost-Partitioning

Planning and Optimization
F8. Optimal and General Cost-Partitioning F8.1 Optimal Cost Partitioning

Malte Helmert and Gabriele Roger F8.2 General Cost Partitioning

Universitat Basel

December 8, 2025 F8.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 1/24 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 2 /24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Content of the Course

Landmarks

Prelude Concept

F8.1 Optimal Cost Partitioning Foundations Post Hoc Uniform CP

|| Optimization

!
[

Approaches Saturated CP
Network Flows

Delete Relaxation

Operator
Abstraction Counting General CP

Potential
Heuristics

T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 3 /24 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 4 /24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning: General Approach

» Can we find a better cost partitioning than with the uniform
or saturation strategy? Even an optimal one?
> Idea: exploit linear programming

» Use variables for cost of each operator in each task copy
> Express heuristic values with linear constraints
» Maximize sum of heuristic values subject to these constraints

LPs known for
» abstraction heuristics (not covered in this course)

» disjunctive action landmarks (now)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 5 /24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning for Landmarks: Basic Version

» Use an LP that covers the heuristic computation and
the cost partitioning.

» LP variable C; , for cost of operator o in induced task for
disjunctive action landmark L (cost partitioning)

» LP variable Cost; for cost of disjunctive action landmark L in
induced task (value of individual heuristics)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 6 /24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning for Landmarks: Basic LP

Variables
Non-negative variable Cost; for each disj. action landmark L € £
Non-negative variable C; , for each L € £ and operator o

Objective
Maximize 3, . Cost;

Subject to
E Ci o < cost(o) for all operators o
LeL
Cost; < Cpp forallLe Landoc L
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 7/ 24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning for Landmarks: Improved

» Observation: Explicit variables for cost partitioning not
necessary.

» Use implicitly cost; (o) = Cost; for all o € L and 0 otherwise.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 8 /24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning for Landmarks: Improved LP

Variables
Non-negative variable Cost; for each disj. action landmark L € £

Objective
Maximize - Cost;

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Example (1)

Example

Let I1 be a planning task with operators o1, ..., 04 and
cost(o1) = 3, cost(0) = 4, cost(o3) = 5 and cost(os) = 0.
Let the following be disjunctive action landmarks for 1:

Subject to
E Cost; < cost(o) for all operators o
LeL:oclL
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 9 /24
F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning
Example (2)
Example

Maximize Cost,, + Costp, + Costy, + Costy, subject to

[01] Costz, + Costz, < 3
[02] Costg, + Costg, <4
[o3] Costz, + Costg, <5
[04] Costr, <0

Costg, >0 forie{1,2,3,4}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 11 /24

L1 = {oa}

L = {o1, 0}

L3 ={o1,03}

£4 = {02a 03}
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 10 / 24
F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Optimal Cost Partitioning for Landmarks (Dual view)

Variables
Non-negative variable Applied, for each operator o

Objective
Minimize > Applied,, - cost(o)

Subject to

ZAppIiedo > 1 for all landmarks L
o€l

Minimize “plan cost” with all landmarks satisfied.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 12 / 24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)
Minimize 3Applied, + 4Applied,, + 5Applied,, subject to

Applied,, > 1
Applied, + Applied,, >1
Applied, + Applied,, >1
Applied,, + Applied,, >1
Applied, >0 for i e {1,2,3,4}

This is equal to the LP relaxation of the MHS heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 13 / 24

F8. Optimal and General Cost-Partitioning Optimal Cost Partitioning

Reminder: LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)
minimize 3X,, +4X,, +5X,, subject to

Xo, > 1
Koy +Xop 21
Xoy +Xoy 21
Xoy 4+ Xy > 1

Xop 20, Xo, 20, X5, 20, X5 =20

~> optimal solution of LP relaxation:
Xo, = 1 and X,, = X5, = X, = 0.5 with objective value 6

~ LP relaxation of MHS heuristic is admissible
and can be computed polynomial time

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 14 / 24

F8. Optimal and General Cost-Partitioning General Cost Partitioning

F8.2 General Cost Partitioning

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 15 / 24

F8. Optimal and General Cost-Partitioning General Cost Partitioning

Content of the Course

Landmarks

Prelude

Concept

Post-Hoc # Uniform CP
|| Optimization
e
Operator
{ Abstraction || Counting _
] Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 16 / 24

F8. Optimal and General Cost-Partitioning

General Cost Partitioning

Cost functions are usually non-negative.
> We tacitly also required this for task copies
» Makes intuitively sense: original costs are non-negative

> But: not necessary for cost-partitioning!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

17/

General Cost Partitioning

24

F8. Optimal and General Cost-Partitioning

General Cost Partitioning

Definition (General Cost Partitioning)
Let M be a planning task with operators O.

A general cost partitioning for 1 is a tuple (costi, ..

where
» cost;j: O — Rforl<i<nand
> S0, costi(o) < cost(o) for all 0 € O.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

General Cost Partitioning

., COStp),

December 8, 2025

18 /

24

F8. Optimal and General Cost-Partitioning

General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let I be a planning task, {(costi, ..., cost,) be a general cost
partitioning and (I, ..., M,) be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an
admissible heuristic for I, i.e., > 7_; i, < hy.

(Proof omitted.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025

19 /

General Cost Partitioning

24

F8. Optimal and General Cost-Partitioning

General Cost Partitioning: Example

Heuristic value: 24+2 =4

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

General Cost Partitioning

December 8, 2025

20

/ 24

F8. Optimal and General Cost-Partitioning General Cost Partitioning

General Cost Partitioning: Example

0 0
00

Heuristic value: 442 =06

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 21 / 24

F8. Optimal and General Cost-Partitioning General Cost Partitioning

General Cost Partitioning: Example

0 0
©Oz0
() 2 2

F8. Optimal and General Cost-Partitioning Summary

F8.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 23 / 24

Heuristic value: —oco +5 = —o0
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 22 / 24
F8. Optimal and General Cost-Partitioning Summary

Summary

» For abstraction heuristics and disjunctive action landmarks,
we know how to determine an optimal cost partitioning, using
linear programming.

» Although solving a linear program is possible in polynomial
time, the better heuristic guidance often does not outweigh
the overhead (in particular for abstraction heuristics).

» In constrast to standard (non-negative) cost partitioning,
general cost partitioning allows negative operators costs.

» General cost partitioning has the same relevant properties as
non-negative cost partitioning but is more powerful.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 8, 2025 24 / 24

Planning and Optimization
F9. Post-hoc Optimization

Malte Helmert and Gabriele Roger

Universitat Basel

December 10, 2025

Planning and Optimization
December 10, 2025 — F9. Post-hoc Optimization

F9.1 Introduction
F9.2 Post-hoc Optimization
F9.3 Comparison

F9.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 10, 2025

2 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 1/29
Content of the Course
— Landmarks
— Prelude — Cost Partitioning
— Foundations
— Approaches
- — Network Flows
— Delete Relaxation
Operator
— Abstraction Counting
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 3/29

F9. Post-hoc Optimization

F9.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 10, 2025

Introduction

4/29

F9. Post-hoc Optimization Introduction

Example Task (1)

Example (Example Task)
SAST task M= (V,I,0,v) with
» V ={A, B, C} with dom(v) = {0,1,2,3,4} forall v € V
» | ={A—0,B—0,C — 0}
» O={inc;|veV,xe{0,1,2}}U{jump’|veV}
> inc,=(v=x,v:=x+1,1)
> jump” = </\V,€V;V,7év vi=4,v:=31)
» y=A=3ANB=3AC=3

» Each optimal plan consists of three increment operators for
each variable ~» h*(/) =9

> Each operator affects only one variable.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 5 /29

F9. Post-hoc Optimization Introduction

Example Task (2)

» In projections on single variables we can reach the goal with a
jump operator: WA (1) = MBIy = piCH (1) = 1.

» In projections on more variables, we need for each variable
three applications of increment operators to reach the

abstract goal from the abstract initial state:
AABYH () = AACH) = MBCH(I) =6

Example (Canonical Heuristic)
C = {{A}{B},{C}.{A. B}.{A C},{B,C}}
K (s) = max{ 1 (s) + h1BY(s) + ACH(s), MM (s) + AIB-CH(s),
hiBY(s) + hIACH(s), hCH(s) + AIABY(s)}

F9. Post-hoc Optimization Introduction

Post-hoc Optimization Heuristic: ldea

Consider the example task:

> type-v operator: operator modifying variable v
> hiABl —6

= in any plan operators of type A or B incur at least cost 6.
> hAC =6

= in any plan operators of type A or C incur at least cost 6.
» hiBCl =6

= in any plan operators of type B or C incur at least cost 6.
» = any plan has at least cost 777.
» (let's use linear programming. . .)

P> = any plan has at least cost 9.
Can we generalize this kind of reasoning?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 7 /29

C
He(l) =7
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 6 /29
F9. Post-hoc Optimization Post-hoc Optimization

F9.2 Post-hoc Optimization

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 8 /29

F9. Post-hoc Optimization Post-hoc Optimization

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

» can be computed for any kind of heuristic ...
> ... as long as we are able to determine relevance of operators

» if in doubt, it's always safe to assume
an operator is relevant for a heuristic

» but for PhO to work well, it's important that the set of
relevant operators is as small as possible

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 9 /29

F9. Post-hoc Optimization Post-hoc Optimization

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)
Let 7 be a transition system, and let £ be one of its labels.

We say that ¢ affects 7 if T has a transition s L twith s £ t.

Definition (Operator Relevance in Abstractions)
An operator o is relevant for an abstraction « if o affects 7.

We can efficiently determine operator relevance for abstractions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 10 / 29

F9. Post-hoc Optimization Post-hoc Optimization

Linear Program (1)

For a given set of abstractions {a1,...,a,}, we construct
a linear program:

» variable X, for each operator o € O
> intuitively, X, is cost incurred by operator o

» abstraction heuristics are admissible
ZoeoXO > h*(s) foraec{ai,...,an}

P can tighten these constraints to

o
ZOGO:O relevant for o Xo 2 h (S) for a € {a17 cee 704n}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 11 /29

F9. Post-hoc Optimization Post-hoc Optimization

Linear Program (2)

For set of abstractions {aq,...,an}:

Variables
Non-negative variables X, for all operators o0 € O

Objective
Minimize Y .o X,

Subject to
Xo > h*(s) forae€{ay,...,a
ZoEO:o relevant for o - () { L ’ n}
X, >0 foralloe O
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 12 /29

F9. Post-hoc Optimization Post-hoc Optimization

Simplifying the LP

» Reduce the size of the LP by aggregating variables
which always occur together in constraints.

» Happens if several operators are relevant
for exactly the same heuristics.

» Partitioning O/~ induced by this equivalence relation
> One variable X for each [o] € O/~

December 10, 2025 13 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

F9. Post-hoc Optimization

Example

Example
» only operators 01, 02, 03 and o4 are relevant for hy
and hi(sp) =11
> only operators 03, 04, 05 and og are relevant for hy
and hy(sp) =11
» only operators 01,02 and og are relevant for hs
and h3(sp) =8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ~ 0 and 03 ~ 04

= O~ = {[o1], [03]; [0s5], [06]}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

Post-hoc Optimization

14 / 29

F9. Post-hoc Optimization Post-hoc Optimization

Simplifying the LP: Example

LP before aggregation

Variables
Non-negative variable Xi,..., Xg
for operators o1, ..., 06

Minimize X; + Xo + X5+ X4 + X5 + Xs subject to

X1+ Xo+ X35+ Xa > 11
X3+ Xy + Xs+ X > 11
X1+ X2 + Xe>8

X; >0 foric{l,...,6}

December 10, 2025 15 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

F9. Post-hoc Optimization
Simplifying the LP: Example
LP after aggregation
Variables

Non-negative variable X[q}, X3}, X[5], X[]
for equivalence classes [01], [03], [05], [06]

Minimize X[l] + X[3] + X[5] + X[6] subject to

Xy + X 211
X3+ X1 + Xy 2 11
X + + Xjg) > 8

Xi =0 forie{[1],[3],[5] [6]}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

Post-hoc Optimization

16 / 29

F9. Post-hoc Optimization Post-hoc Optimization F9. Post-hoc Optimization Post-hoc Optimization

PhO Heuristic PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic h?glo for abstractions

Qn

Q1,...,an is the objective value of the f&iibwing linear program: hPhO

© Precompute all abstraction heuristics h*1, ..., h*n.

@ Create LP for initial state sp.
© For each new state s:

Minimize Z X[o] subject to
[o]le O/~

Xio1 > h%(s) for all > o)
Z[O]GO/N:O relevant for o~ 1] = () @€ {041, ’a”} L09k up h*(s) for a_” a € {a, : ,Cn} N
» Adjust LP by replacing bounds with the h*(s) values.
X[o] >0 for all [O] S O/N,
where o ~ o iff 0 and o’ are relevant for exactly the same
abstractions in a1, ..., ap.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 17 / 29 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 18 / 29
F9. Post-hoc Optimization Post-hoc Optimization F9. Post-hoc Optimization Post-hoc Optimization
Post-hoc Optimization Heuristic: Admissibility Post-hoc Optimization Heuristic: Admissibility
Theorem (Admissibility) Theorem (Admissibility)
The post-hoc optimization heuristic is admissible. The post-hoc optimization heuristic is admissible.
Proof. Proof (continued).
Let M be a planning task and {a1,...,a,} be a set of abstractions. For each a € {a1,...,ap}, mis a solution in the abstract
We show that there is a feasible variable assignment with objective transition system and the sum in the Corresponding constraint
value equal to the cost of an optimal plan. equals the cost of the state-changing abstract state transitions
Let m be an optimal plan for state s and let cost,(O’) be the cost (i.e.. not accounting for self-loops). As h*(s) corresponds to the
incurred by operators from O’ C O in 7. cost of an optimal solution in the abstraction, the inequality holds.
Setting each X[to costr([0]) is a feasible variable assignment: For this assignment, the objective function has value h*(s)
Constraints X,) > 0 are satisfied. - (cost of), so the objective value of the LP is admissible. O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 19 / 29 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 20 / 29

F9. Post-hoc Optimization Comparison

F9.3 Comparison

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 21 /29

F9. Post-hoc Optimization Comparison

Combining Estimates from Abstraction Heuristics

» Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

» We have already heard of two other such approaches for
abstraction heuristics,
> the canonical heuristic (for PDBs), and
> optimal cost partitioning (not covered in detail).

» How does PhO compare to these?

F9. Post-hoc Optimization Comparison

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. ..
> ...uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.
» . ..dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than hC.

P> .. .is very expensive to compute
(recomputing all abstract goal distances in every state).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 23 /29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 22 /29
F9. Post-hoc Optimization Comparison
PhO: Dual Linear Program
For set of abstractions {aq,...,an}:
Variables
Y,, for each abstraction a € {a1,...,an}
Objective
. o
Maximize 3 cta; an B7(5) Yo
Subject to
Y, <1 forall[o] € O/~
Zae{al,...,an}:o relevant for o [] /
Yo >0 forallae {a,...,an}
We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 < Y, < 1.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 24 /29

F9. Post-hoc Optimization Comparison

Relation to Optimal Cost Partitioning

Theorem
Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.
Consider a feasible assignment (Y,,,..., Y,,) for the variables of
the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
(Yo, cost, ..., Y, cost).

F9. Post-hoc Optimization Comparison

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value h€(s).

Corollary
The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

26 /

29

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 25 /29
F9. Post-hoc Optimization Comparison
h™ vs h

» For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

» The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

» The post-hoc optimization heuristic solves an LP in each
state.

» With post-hoc optimization, a large number of small patterns
works well.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 27 /29

F9. Post-hoc Optimization Summary

F9.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

28

/ 29

F9. Post-hoc Optimization Summary

Summary

P Post-hoc optimization heuristic constraints express
admissibility of heuristics

> exploits (ir-)relevance of operators for heuristics

P explores the middle ground between canonical heuristic and
optimal cost partitioning.

> For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

» The computation can be done in polynomial time.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 29

/ 29

Planning and Optimization
December 10, 2025 — F10. Network Flow Heuristics

Planning and Optimization
F10. Network Flow Heuristics

F10.1 Introduction
F10.2 Transition Normal Form
Malte Helmert and Gabriele Roger

Universitat Basel F].O3 FIOW HeUFIStIC

December 10, 2025
F10.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 1/34 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 2 /34

F10. Network Flow Heuristics Introduction

Content of the Course

— Landmarks
— Prelude — Cost Partitioning
— Foundations i Post-Hoc F]_O]. IntrOd UCtiOn
Optimization

— Approaches

—{ Delete Relaxation

Operator
— Abstraction Counting
Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 3 /34 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 4/ 34

F10. Network Flow Heuristics

Reminder: SAS™ Planning Tasks

For a SAS™ planning task M = (V,/, 0,):
> V is a set of finite-domain state variables,
» Each atom has the form v = d with v € V,d € dom(v).

» Operator preconditions and the goal formula
are satisfiable conjunctions of atoms.

» Operator effects are conflict-free conjunctions of
atomic effects of the form vy :=di A--- A v, := d,.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

December 10, 2025 5/ 34

F10. Network Flow Heuristics

Example Task (1)

» One package, two trucks, two locations
» Variables:

> pos-p with dom(pos-p) = {locy, loca, t1, ta}
> pos-t-i with dom(pos-t-i) = {locy, loc, } for i € {1,2}

» The package is at location 1 and the trucks at location 2,

» | = {pos-p — locy, pos-t-1 — locy, pos-t-2 — locy)
» The goal is to have the package at location 2 and
truck 1 at location 1.
» ~ = (pos-p = locy) A (pos-t-1 = locy)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

December 10, 2025 6 /34

F10. Network Flow Heuristics

Example Task (2)

» Operators: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = locj A\ pos-p = loc;,
pos-p := t;, 1)
unload(t;, locj) = (pos-t-i = locj A\ pos-p = t;,

pos-p = locj, 1)
drive(t;, locj, loc) = (pos-t-i = loc;,
pos-t-i :== lock, 1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

December 10, 2025 7/ 34

F10. Network Flow Heuristics

Example Task: Observations

Consider some atoms of the example task:

» pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded
once more than it is unloaded.
» pos-p = locy initially false and must be true in the goal
> at location 2 the package must be unloaded
once more than it is loaded.
> pos-p = tj initially false and must be false in the goal
> same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Introduction

December 10, 2025 8 / 34

F10. Network Flow Heuristics Introduction

Example: Flow Constraints

Let m be some arbitrary plan for the example task and let
#o0 denote the number of occurrences of operator o in .
Then the following holds:

» pos-p = locy initially true and must be false in the goal
> at location 1 the package must be loaded

once more than it is unloaded.
#load(ty, locy) + #load(to, locy) =
1 + #unload(ty, loc1) + #unload(t,, locy)

P> pos-p = tj initially false and must be false in the goal
> same number of load and unload actions for truck 1.
#unload(ty, loc1) + #unload(ty, locy) =
#load(t1, loc1) + #load(t1, locy)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 9 /34

F10. Network Flow Heuristics Introduction

Network Flow Heuristics: General Idea

Formulate flow constraints for each atom.
These are satisfied by every plan of the task.
The cost of a planiis) cost(o)#o

vvyyy

The objective value of an integer program that minimizes this
cost subject to the flow constraints is a lower bound on the
plan cost (i.e., an admissible heuristic estimate).

» As solving the IP is NP-hard, we solve the LP relaxation
instead.

How do we get the flow constraints?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 10 / 34

F10. Network Flow Heuristics Introduction

How to Derive Flow Constraints?

» The constraints formulate how often an atom can be
produced or consumed.

» “Produced” (resp. “consumed”) means that the atom is false
(resp. true) before an operator application and true (resp.
false) in the successor state.

» For general SAS™ operators, this depends on the state where
the operator is applied: effect v := d only produces v = d
if the operator is applied in a state s with s(v) # d.

» For general SAS™ tasks, the goal does not have to specify a
value for every variable.

> All this makes the definition of flow constraints somewhat
involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 11 / 34

F10. Network Flow Heuristics Transition Normal Form

F10.2 Transition Normal Form

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 12 / 34

F10. Network Flow Heuristics

Variables Occurring in Conditions and Effects

Transition Normal Form

» Many algorithmic problems for SAS™ planning tasks
become simpler when we can make two further restrictions.

» These are related to the variables that occur
in conditions and effects of the task.

Definition (vars(y), vars(e))
For a logical formula ¢ over finite-domain variables V/,
vars(y) denotes the set of finite-domain variables occurring in .

For an effect e over finite-domain variables V,
vars(e) denotes the set of finite-domain variables occurring in e.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 13 / 34

F10. Network Flow Heuristics

Transition Normal Form

Definition (Transition Normal Form)

A SAST planning task M= (V. 1, 0,7)

is in transition normal form (TNF) if
» for all o € O, vars(pre(o)) = vars(eff0)), and
> vars(vy) = V.

In words, an operator in TNF must mention the same variables
in the precondition and effect, and a goal in TNF must mention
all variables (= specify exactly one goal state).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Transition Normal Form

December 10, 2025 14 / 34

F10. Network Flow Heuristics

Converting Operators to TNF: Violations

Transition Normal Form

There are two ways in which an operator o can violate TNF:
» There exists a variable v € vars(pre(0)) \ vars(eff{ 0)).
» There exists a variable v € vars(eff{0)) \ vars(pre(0)).

The first case is easy to address: if v = d is a precondition
with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d
but no precondition on v, how can we add a precondition on v
without changing the meaning of the operator?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 15 / 34

F10. Network Flow Heuristics

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

© While there exists an operator o and a variable
v € vars(eff(0)) with v & vars(pre(o)):
» For each d € dom(v), add a new operator that is like o
but with the additional precondition v = d.
» Remove the original operator.

© Repeat the previous step until no more such variables exist.

Problem:

» If an operator o has n such variables, each with k values
in its domain, this introduces k" variants of o.

» Hence, this is an exponential transformation.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 10, 2025 16 /

Transition Normal Form

34

F10. Network Flow Heuristics Transition Normal Form

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values
© For every variable v, add a new auxiliary value u to its domain.

@ For every variable v and value d € dom(v) \ {u},
add a new operator to change the value of v from d to u
at no cost: (v =d,v :=u,0).

© For all operators o and all variables

v € vars(eff(0)) \ vars(pre(o)),
add the precondition v = u to pre(o).

Properties:

» Transformation can be computed in linear time.

» Due to the auxiliary values, there are new states
and transitions in the induced transition system,
but all path costs between original states remain the same.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 17 / 34

F10. Network Flow Heuristics Transition Normal Form

Converting Goals to TNF

» The auxiliary value idea can also be used
to convert the goal v to TNF.

» For every variable v ¢ vars(y), add the condition v = u to 7.

With these ideas, every SAS™ planning task can be
converted into transition normal form in linear time.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 18 / 34

F10. Network Flow Heuristics Transition Normal Form

TNF for Example Task (1)

The example task is not in transition normal form:

» Load and unload operators have preconditions on the position
of some truck but no effect on this variable.

» The goal does not specify a value for variable pos-t-2.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 19 / 34

F10. Network Flow Heuristics Transition Normal Form

TNF for Example Task (2)

Operators in transition normal form: for i,j, k € {1,2}:

load(t;, locj) = (pos-t-i = loc; A\ pos-p = loc;,
pos-p 1= tj A\ pos-t-i == locj, 1)
unload(t;, locj) = (pos-t-i = loc; A\ pos-p = t;,
pos-p := locj N\ pos-t-i := loc;, 1)
drive(t;, locj, locy) = (pos-t-i = loc;,

pos-t-i := locy, 1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 20 / 34

F10. Network Flow Heuristics Transition Normal Form

TNF for Example Task (3)

To bring the goal in normal form,
» add an additional value u to dom(pos-t-2)
» add zero-cost operators
o1 = (pos-t-2 = locy, pos-t-2 := u, 0) and
02 = (pos-t-2 = locy, pos-t-2 := u, 0)
> Add pos-t-2 = u to the goal:
~v = (pos-p = locy) A (pos-t-1 = locy) A (pos-t-2 = u)

December 10, 2025 21 / 34

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

F10. Network Flow Heuristics Flow Heuristic

F10.3 Flow Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

22 / 34

F10. Network Flow Heuristics Flow Heuristic

Notation

» In SAS™T tasks, states are variable assignments,
conditions are conjunctions over atoms, and
effects are conjunctions of atomic effects.

> In the following, we use a unifying notation to express
that an atom is true in a state/entailed by a condition/
made true by an effect.

» For state s, we write (v = d) € s to express that s(v) = d.

» For a conjunction of atoms ¢, we write (v = d) € ¢ to express
that ¢ has a conjunct v = d (or alternatively ¢ = v = d).

» For effect e, we write (v = d) € e to express that e contains
the atomic effect v :=d.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 23 / 34

F10. Network Flow Heuristics Flow Heuristic

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

Let o be an operator in transition normal form. Then:
» o produces atom a iff a € eff{o) and a & pre(o).
» o consumes atom a iff a € pre(o) and a & eff{0).

» Otherwise o is neutral wrt. atom a.

~ State-independent

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

24 / 34

F10. Network Flow Heuristics Flow Heuristic

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced
to how often it can be consumed.

The constraint depends on the current state s and the goal 7.
If v mentions all variables (as in TNF), the following holds:

> If a € s and a € y then atom a must be equally often
produced and consumed.

» Analogously for a € s and a & ~.

> If a € s and a &~y then a must be consumed once more than
it is produced.

> If a ¢ s and a € v then a must be produced once more than it

is consumed.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 25 / 34
F10. Network Flow Heuristics Flow Heuristic

F10. Network Flow Heuristics Flow Heuristic

Iverson Bracket

The dependency on the current state and the goal can concisely be
expressed with Iverson brackets:

Definition (lverson Bracket)

Let P be a logical proposition (= some statement that can be
evaluated to true or false). Then

Flow Constraints (3)

Definition (Flow Constraint)

Let M= (V, I, 0,~) be a task in transition normal form.
The flow constraint for atom a in state s is

[a€s]+ Z Count, =[a €]+ Z Count,
o€0:aceff(0) o€ 0:acpre(o)

» Count, is an LP variable for the number of occurrences of
operator o.

» Neutral operators either appear on both sides or on none.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 27 / 34

1 if Pis true
[Pl = o
0 if P is false.
Example: [2# 3] =1
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 26 / 34
F10. Network Flow Heuristics Flow Heuristic

Flow Heuristic

Definition (Flow Heuristic)

Let M= (V,/,0,~) be a SAS™ task in transition normal form and
let A={(v=d)|veV,de dom(v)} be the set of atoms of I1.

The flow heuristic Af°¥(s) is the objective value of the following
LP or oo if the LP is infeasible:

minimize) o cost(o) - Count, subject to

[aes]+ > Counto=[aey]+ >, Count, forallac A
o€0:aceffo) o€ 0:acpre(o)

Count, >0 foralloe O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025 28 / 34

F10. Network Flow Heuristics

M. Helmert, G. Roger (Universitat Basel)

Flow Heuristic on Example Task

~ Demo

Planning and Optimization December 10, 2025

29 /

Flow Heuristic

34

F10. Network Flow Heuristics

M. Helmert, G. Roger (Universitat Basel)

Visualization of Flow in Example Task

drive-t1-li -k

) %{,
& 3
2 3
\° X% 1
load-ty -y ,unload-ty-l», 03 b,‘“" S
R
° Sy
e) f °
S X
% b’ﬂ
< $\/ N
% oL v
% KO/
s 2

load-t1 -l
unload-t; -l
drive-ty-lr-ly

Planning and Optimization December 10, 2025

Flow Heuristic

30 / 34

F10. Network Flow Heuristics

M. Helmert, G. Roger (Universitat Basel)

Flow Heuristic: Properties (1)

Theorem
The flow heuristic h® is goal-aware, safe, consistent and
admissible.

Proof Sketch.
It suffices to prove goal-awareness and consistency.

Goal-awareness: If s =7 then Count, = 0 for all 0 € O is feasible
and the objective function has value 0. As Count, > 0 for all
variables and operator costs are nonnegative, the objective value
cannot be smaller.

Planning and Optimization December 10, 2025

31/

Flow Heuristic

F10. Network Flow Heuristics

M. Helmert, G. Roger (Universitat Basel)

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and
let s = s[o].

Increasing Count, by one in an optimal feasible assignment for the
LP for state s yields a feasible assignment for the LP for state s,
where the objective function is h°%(s") + cost(o).

This is an upper bound on Af°¥(s), so in total

hflow(s) < hflow(s") + cost(o). O

Planning and Optimization December 10, 2025

Flow Heuristic

32 / 34

F10. Network Flow Heuristics

F10.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 10, 2025

Summary

33/

F10. Network Flow Heuristics

Summary

> A flow constraint for an atom describes how the number of
producing operator applications is linked to the number of
consuming operator applications.

» The flow heuristic computes a lower bound on the cost of
each operator sequence that satisfies these constraints for all
atoms.

» The flow heuristic only considers the number of occurrences
of each operator, but ignores their order.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 10, 2025

Summary

34 / 34

Planning and Optimization
F11. Operator Counting

Malte Helmert and Gabriele Roger

Universitat Basel

December 15, 2025

Planning and Optimization
December 15, 2025 — F11. Operator Counting

F11.1 Introduction
F11.2 Operator-counting Framework
F11.3 Properties

F11.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 15, 2025

2 /25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 1/25
Content of the Course
— Landmarks
— Prelude — Cost Partitioning
— Foundations Post-Hoc
Optimization
— Approaches
- — Network Flows
— Delete Relaxation
— Abstraction
Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 3 /25

F11. Operator Counting

F11.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 15, 2025

Introduction

4/ 25

F11. Operator Counting

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen, Oblue }-
The flow constraint for some atom a is the constraint

1+ Count,,,,, = Count,,_, if

> ais true in the initial state P Ogreen produces a

> ais false in the goal > 0.4 CONsumes a
In natural language, the flow constraint expresses that

every plan uses o,y once more than Ogreen.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

5/

Introduction

25

F11. Operator Counting

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

01

5>
“plans that use -

as often as »"
2

1

22
= 10
)

plans that use »
once more than »"

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

Introduction

6 /25

F11. Operator Counting

F11.2 Operator-counting Framework

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

7/

Operator-counting Framework

25

F11. Operator Counting

Operator Counting

Operator counting

> generalizes this idea to a framework that allows to
admissibly combine different heuristics.

uses linear constraints ...
... that describe number of occurrences of an operator ...

. and must be satisfied by every plan.

vvyyvyy

provides declarative way to describe
knowledge about solutions.

v

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

allows reasoning about solutions to derive heuristic estimates.

Operator-counting Framework

F11. Operator Counting

Operator-counting Constraint

Definition (Operator-counting Constraints)
Let I be a planning task with operators O and let s be a state.
Let V be the set of integer variables Count, for each o € O.

A linear inequality over V is called an operator-counting constraint
for s if for every plan 7 for s setting each Count, to the number of
occurrences of o in 7 is a feasible variable assignment.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

9/

Operator-counting Framework

25

F11. Operator Counting Operator-counting Framework

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)
The operator-counting integer program IP¢ for a set C of
operator-counting constraints for state s is

Z cost(o) - Count,

C and Count, > 0 for all 0o € O,

Minimize subject to

where O is the set of operators.

The IP heuristic hif is the objective value of IPc,

the LP heuristic hEP is the objective value of its LP-relaxation.
If the IP/LP is infeasible, the heuristic estimate is co.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 10 / 25

F11. Operator Counting

Operator-counting Constraints

» Adding more constraints can only remove feasible solutions.
> Fewer feasible solutions can only increase the objective value.
» Higher objective value means better informed heuristic

= Have we already seen other operator-counting constraints?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025

11/

Operator-counting Framework

25

F11. Operator Counting Operator-counting Framework

Reminder: Minimum Hitting Set for Landmarks

Variables
Non-negative variable Applied, for each operator o

Objective
Minimize) cost(o) - Applied,

Subject to

> Applied,, > 1 for all landmarks L
o€l

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 12 / 25

F11. Operator Counting Operator-counting Framework

Operator Counting with Disjunctive Action Landmarks

Variables
Non-negative variable Count, for each operator o

Objective
Minimize)" cost(o) - Count,

F11. Operator Counting Operator-counting Framework

Reminder: Post-hoc Optimization Heuristic

For set of abstractions {aq,...,an}:

Variables
Non-negative variables X, for all operators o € O
X, is cost incurred by operator o

Objective
Minimize > .o Xo

Subject to
E Count, > 1 for all landmarks L
o€l
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 13 /25
F11. Operator Counting Operator-counting Framework

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions {aq,...,an}:

Variables
Non-negative variables Count, for all operators o € O
Count, - cost(0) is cost incurred by operator o

Objective
Minimize) __ cost(o) - Count,

Subject to
. (e
Zo€O:o relev. for a COSt(O) Counto Z h (S) 'FOF Q€ {O[]_, Tt ,Oén}

cost(o) - Count, >0 foralloe O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 15 / 25

Subject to
Xo > h%(s) fora e {a,...,«a
ZOEOIO relev. for a C () { L ’ n}
X, >0 foralloe O
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 14 / 25
F11. Operator Counting Operator-counting Framework
Example

II
“plans that use »

at least once”

2

“plans that use »
once more than »"

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 16 / 25

F11. Operator Counting Operator-counting Framework

Further Examples?

» The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.

> With this extended definition we could also cover
more heuristics, e.g., the perfect relaxation heuristic h™

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 17 / 25

F11. Operator Counting Properties

F11.3 Properties

F11. Operator Counting Properties

Admissibility

Theorem (Operator-counting Heuristics are Admissible)
The IP and the LP heuristic are admissible.

Proof.

Let C be a set of operator-counting constraints for state s and 7
be an optimal plan for s. The number of operator occurrences of m
are a feasible solution for C. As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of 7 and is
therefore an admissible estimate. O

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 19 / 25

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 18 / 25
F11. Operator Counting Properties
Dominance
Theorem

Let C and C' be sets of operator-counting constraints for s and let
CCC'. ThenlPc <IP¢c and LP¢ < LP¢.

Proof.

Every feasible solution of C’ is also feasible for C. As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C’. O

Adding more constraints can only improve the heuristic estimate.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 15, 2025 20 /

25

F11. Operator Counting Properties

Heuristic Combination

Operator counting as heuristic combination
P> Multiple operator-counting heuristics can be combined by
computing h'c-P/h'cP for the union of their constraints.
» This is an admissible combination.
» Never worse than maximum of individual heuristics
> Sometimes even better than their sum
> We already know a way of admissibly combining heuristics:
cost partitioning.
= How are they related?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 21 /25

F11. Operator Counting Properties

Comparison to Optimal Cost Partitioning

» some heuristics are more compact if expressed as operator
counting

P some heuristics cannot be expressed as operator counting

P operator counting IP even better than optimal cost
partitioning

» Cost partitioning maximizes, so heuristics must be encoded
perfectly to guarantee admissibility.
Operator counting minimizes, so missing information just
makes the heuristic weaker.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 23 /25

F11. Operator Counting Properties
Connection to Cost Partitioning
Theorem
Let Cq,...,C, be sets of operator-counting constraints for s and
C=U",C. Then h'c-P is the optimal general cost partitioning
over the heuristics h'@f’.
Proof Sketch.
In LP¢, add variables Count’ and constraints Count, = Count/,
for all operators 0 and 1 </ < n. Then replace Count, by
Count in G.
Dualizing the resulting LP shows that h'C-P computes a cost
partitioning. Dualizing the component heuristics of that cost
partitioning shows that they are h'@'ij.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 22 /25
F11. Operator Counting Summary
F11.4 Summary
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 24 /25

F11. Operator Counting Summary

Summary

» Many heuristics can be formulated in terms of
operator-counting constraints.

» The operator counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

» The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

» Operator counting is equivalent to optimal general cost
partitioning over individual constraints.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 25 / 25

Planning and Optimization
F12. Potential Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

December 15, 2025

Planning and Optimization
December 15, 2025 — F12. Potential Heuristics

F12.1 Introduction

F12.2 Potential Heuristics

F12.3 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 15, 2025

2 /20

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 1/20
Content of the Course
— Landmarks
— Prelude — Cost Partitioning
— Foundations Post-Hoc
Optimization
— Approaches
- — Network Flows
— Delete Relaxation
Operator
] Abstraction Counting
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 3 /20

F12. Potential Heuristics

F12.1 Introduction

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 15, 2025

Introduction

4/ 20

F12. Potential Heuristics Introduction

Reminder: Transition Normal Form

In this chapter, we consider SAS™T tasks in transition normal form.

> A TNF operator mentions the same variables in the
precondition and in the effect.

> A TNF goal specifies a value for every variable.

F12. Potential Heuristics Introduction

Material Value of a Chess Position

Material value for white:

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 5 /20
F12. Potential Heuristics Introduction
Idea

» Define simple numerical state features fi,..., f,.

» Consider heuristics that are linear combinations of features:
h(s) = wafi(s) + -+« + wafy(s)
with weights (potentials) w; € R

» heuristic very fast to compute if feature values are

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 7 /20

8 +1-6 (white pawns)
7 —1-4 (black pawns)
+3-2 (white knights)
0 —3-0 (black knights)
5 +3-1 (white bishops)
4 —3-1 (black bishops)
3 +5-1 (white rooks)
5 —5-2 (black rooks)
+9-1 (white queen)
! —9-1 (black queen)
=3
M. Helmert, G. Riger (Universitit Basel) Planning and Optimization December 15, 2025 6/ 20
F12. Potential Heuristics Potential Heuristics

F12.2 Potential Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 8 /20

F12. Potential Heuristics Potential Heuristics

Definition

Definition (Feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S — R.

Definition (Potential Heuristic)

A potential heuristic for a set of features F = {f1,...,f}
is a heuristic function h defined as a linear combination
of the features:

h(s) = wafi(s) + -+ - + wpfy(s)
with weights (potentials) w; € R.

Many possibilities = need some restrictions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 9 /20

F12. Potential Heuristics Potential Heuristics

Features for SAS™ Planning Tasks

Which features are good for planning?
Atomic features test if some atom is true in a state:

Definition (Atomic Feature)
Let v = d be an atom of a FDR planning task.

The atomic feature f,— is defined as:

1 if variable v has value d in state s

0 otherwise

foa(s) = [(v=d) € 5] = {

Offer good tradeoff between computation time and guidance

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 10 / 20

F12. Potential Heuristics Potential Heuristics

Example: Atomic Features

Example
Consider a planning task [T with state variables v; and v» and
dom(vy) = dom(vz) = {d1, d», d3}. The set

F = {fViZdj | S {172}7j € {17273}}
is the set of atomic features of 1 and the function
h(S) = 31, —d T 0.5, —d, — 2fv1:d3 + 2-5fv2:d1

is a potential heuristic for F.
The heuristic estimate for a state s = {v; > do, v > d1 } is

h(s)=3-04+05-1—-2-0+25-1=3.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 11 /20

F12. Potential Heuristics Potential Heuristics

Potentials for Optimal Planning

Which potentials are good for optimal planning
and how can we compute them?

> We seek potentials for which h is admissible and well-informed
= declarative approach to heuristic design

» We derive potentials for atomic features by solving an
optimization problem

How to achieve this? Linear programming to the rescue!

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 12 / 20

F12. Potential Heuristics Potential Heuristics

Admissible and Consistent Potential Heuristics

We achieve admissibility through goal-awareness and consistency

Goal-awareness

ZWaZO

acy

Consistency

Z W, — Z w, < cost(o) for all transitions s 2 s’

acs acs’

One constraint transition per transition.
Can we do this more compactly?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 13 /20

F12. Potential Heuristics Potential Heuristics

Admissible and Consistent Potential Heuristics

Consistency for a transition s — s’

cost(0) > Y w,— Y w,
_ i wala :]) wiaes]
= Zajwa([a €s] - [aa €s])
:z::Wa[aes but a ¢ s'| = > wi[a¢ s butacs]

—Sw - Y, a

a consumed a produced
by o by o
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 14 / 20

F12. Potential Heuristics

Potential Heuristics

F12. Potential Heuristics

Potential Heuristics

Admissible and Consistent Potential Heuristics

Goal-awareness and Consistency independent of s

Goal-awareness

Zwazo

acy

Consistency

Zwa - Zwa < cost(o) for all operators o

a consumed
by o

a produced
by o

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 15, 2025 15 /20

Potential Heuristics

> All atomic potential heuristics that satisfy these constraints
are admissible and consistent

» Furthermore, all admissible and consistent atomic potential
heuristics satisfy these constraints

Constraints are a compact characterization of all admissible and
consistent atomic potential heuristics.

LP can be used to find the best admissible and consistent potential
heuristics by encoding a quality metric in the objective function

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 15, 2025 16 / 20

F12. Potential Heuristics

Well-Informed Potential Heuristics

What do we mean by the best potential heuristic?

Potential Heuristics

Different possibilities, e.g., the potential heuristic that

» maximizes heuristic value of a given state s (e.g., initial state)

P> maximizes average heuristic value of all states
(including unreachable ones)

P> maximizes average heuristic value of some sample states

» minimizes estimated search effort

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 15, 2025

17/

F12. Potential Heuristics

Potential and Flow Heuristic

Theorem
For state s, let h™2*P°(s) denote the maximal heuristic value
of all admissible and consistent atomic potential heuristics in s.

Then hM&Pot(s) = pflow(s).
Proof idea: compare dual of h®¥(s) LP to potential heuristic
constraints optimized for state s.

If we optimize the potentials for a given state then for this state it
equals the flow heuristic.

Potential Heuristics

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 15, 2025

18 / 20

F12. Potential Heuristics

F12.3 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 15, 2025

Summary

19 /

20

F12. Potential Heuristics

Summary

Summary

> Potential heuristics are computed as a weighted sum of state
features

» Admissibility and consistency can be encoded compactly in
constraints

» With linear programming, we can efficiently compute the best
potential heuristic wrt some objective

» Potential heuristics can be used as fast admissible

approximations of

M. Helmert, G. Roger (Universitat Basel)

hflow

Planning and Optimization

December 15, 2025

20

/ 20

