

Planning and Optimization

A1. Organizational Matters

Malte Helmert and Gabriele Röger

Universität Basel

September 17, 2025

Content of the Course

People & Coordinates

People: Lecturers

Malte Helmert

Gabriele Röger

Lecturers

Malte Helmert

- **email:** malte.helmert@unibas.ch
- **office:** room 06.004, Spiegelgasse 1

Gabriele Röger

- **email:** gabriele.roeger@unibas.ch
- **office:** room 04.005, Spiegelgasse 1

People: Assistant

Tanja Schindler

Assistant

Tanja Schindler

- **email:** tanja.schindler@unibas.ch
- **office:** room 04.005, Spiegelgasse 1

People: Tutors

Clemens Büchner

Esther Mugdan

Tutors

Clemens Büchner

- **email:** clemens.buechner@unibas.ch
- **office:** room 04.001, Spiegelgasse 5

Esther Mugdan

- **email:** esther.mugdan@unibas.ch
- **office:** room 04.001, Spiegelgasse 5

Time & Place

Lectures

- **time:** Mon 14:15–16:00, Wed 14:15–16:00
- **place:** room 00.003, Spiegelgasse 1

Exercise Sessions

- **time:** Wed 16:15–18:00
- **place:** room 00.003, Spiegelgasse 1

first exercise session: today

Communication Channels

- lecture sessions (Mon, Wed)
- exercise sessions (Wed)
- course homepage
- ADAM workspace
- Discord server (invitation link on ADAM workspace)
- email

registration:

- <https://services.unibas.ch/>
- Please register today to receive all course-related emails!

Planning and Optimization Course on the Web

Course Homepage

[https://dmi.unibas.ch/en/studies/computer-science/
course-offer-fall-semester-25/
lecture-planning-and-optimization/](https://dmi.unibas.ch/en/studies/computer-science/course-offer-fall-semester-25/lecture-planning-and-optimization/)

- course information
- slides
- link to ADAM workspace
- bonus materials (not relevant for the exam)

Target Audience & Rules

Target Audience

target audience:

- M.Sc. Computer Science
 - Major in Machine Intelligence:
module Concepts of Machine Intelligence
module Methods of Machine Intelligence
 - Major in Distributed Systems:
module Applications of Distributed Systems
- M.A. Computer Science ("Master-Studiengang")
module Concepts of Machine Intelligence
- M.Sc. Data Science: module Electives in Data Science
- other students welcome

Prerequisites

prerequisites:

- general computer science background: good knowledge of
 - algorithms and data structures
 - complexity theory
 - mathematical logic
 - programming
- background in Artificial Intelligence:
 - Foundations of Artificial Intelligence course (13548)
 - in particular chapters on state-space search

Gaps?

~~> talk to us to discuss a self-study plan to catch up

Exam

- **written examination** (105 min)
- date and time: **January 28, 14:00–16:00**
- place: Biozentrum, room U1.131
- 8 ECTS credits
- admission to exam: 50% of the exercise marks
- final grade based on exam exclusively
- **no repeat exam** (except in case of illness)

Exercise Sheets

exercise sheets (homework assignments):

- solved in **groups of two or three** ($3 < 4$), submitted in ADAM
- weekly homework assignments
 - released Monday before the lecture
 - have questions or need help?
 - ~~ assistance provided in Wednesday exercises
 - not sure if you need help?
 - ~~ **start before Wednesday!**
 - due following Monday at 23:59
- mixture of theory, programming and experiments
- range from basic understanding to research-oriented

Programming Exercises

programming exercises:

- part of regular assignments
- solutions that obviously do not work: 0 marks
- work with existing C++ and Python code

Exercise Sessions

exercise sessions:

- ask questions about current assignments (and course)
- work on homework assignments
- discuss past homework assignments

Plagiarism

Plagiarism

Plagiarism is presenting someone else's work, ideas, or words as your own, without proper attribution.

For example:

- Using someone's text without citation
- Paraphrasing too closely
- Using information from a source without attribution
- Passing off AI-generated content as your own original work

Plagiarism

Plagiarism

Plagiarism is presenting someone else's work, ideas, or words as your own, without proper attribution.

For example:

- Using someone's text without citation
- Paraphrasing too closely
- Using information from a source without attribution
- Passing off AI-generated content as your own original work

Long-term impact:

- You undermine your own learning.
- You start to lose confidence in your ability to think, write, and solve problems independently.
- Damage to academic reputation and professional consequences in future careers

Plagiarism in Exercises

- You may discuss material from the course, including the exercise assignments, with your peers.
- **But:** You have to independently write down your exercise solutions (in your team).
- Help from an LLM is acceptable to the same extent as it is acceptable from someone who is not a member of your team.

Plagiarism in Exercises

- You may discuss material from the course, including the exercise assignments, with your peers.
- **But:** You have to independently write down your exercise solutions (in your team).
- Help from an LLM is acceptable to the same extent as it is acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

- 0 marks for the exercise sheet (first time)
- exclusion from exam (second time)

Plagiarism in Exercises

- You may discuss material from the course, including the exercise assignments, with your peers.
- **But:** You have to independently write down your exercise solutions (in your team).
- Help from an LLM is acceptable to the same extent as it is acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

- 0 marks for the exercise sheet (first time)
- exclusion from exam (second time)

If in doubt: check with us what is (and isn't) OK **before submitting**
Exercises too difficult? We are happy to help!

Special Needs?

- We (and the university) strive for equality of students with disabilities or chronic illnesses.
- Contact the lecturers for small adaptations.
- Contact the Students Without Barriers (StoB) service point for general adaptations and disadvantage compensation.

People & Coordinates
oooooooo

Target Audience & Rules
oooooooooooo

Course Content
●ooooo

Course Content

Learning Objectives

Learning Objectives

- get to know theoretical and algorithmic foundations of classical planning and work on practical implementations
- understand fundamental concepts underlying modern planning algorithms and theoretical relationships that connect them
- become equipped to understand research papers and conduct projects in this area

Course Material

course material:

- slides (online)
- no textbook
- additional material **on request**

Git Repository

- We use a git repository for programming exercises and for demos during the lecture.
- Setting up the repository is your first task for the exercises.

Demo Examples

When working with the repository, go to its base directory:

Base Directory for Demos and Exercises

```
$ cd planopt-hs25
```

One-time demo set-up (from the base directory)
if the necessary software is installed on your machine:

Demo Set-Up

```
$ cd demo/fast-downward  
$ ./build.py
```

Under Construction...

- Advanced courses are close to the frontiers of research and therefore constantly change.
- We are always happy about feedback, corrections and suggestions!