
Simple Numeric Planning with Two Variables is
Decidable

Hayyan Helala,* and Gerhard Lakemeyera

aRWTH Aachen University, Germany

Abstract. It is known that a simple numeric planning problem
(SNP) with one numeric variable is decidable but undecidable with
three (Helmert 2002). A more recent result (Gnad et. al 2023) showed
undecidability for two numeric and one propositional variable. In
this paper, we show the decidability of SNP with exactly two nu-
meric variables. For this, we first partition the state space into a finite
number of regions and demonstrate the decidability of SNP when
restricted to any of these regions. Afterwards, we develop a correct
search algorithm that abstracts from these regions by tracking an in-
finite number of states following an arithmetic progression pattern.
Finally, we prove termination of the search and draw conclusions
about the reasons for undecidability for general SNP.

1 Introduction
Although the term “planning” was coined to highlight the applica-
tion, planning, in its classical sense, is concerned with solving a
reachability problem over a (possibly infinite) state space and shares
key mathematical properties with other reachability and vector-
addition problems. In simple numeric planning (SNP) with exactly n
numeric variables, states are n-dimensional vectors, effects are vec-
tor additions, and preconditions form convex n-dimensional poly-
topes1 within that state (vector) space. In other words, any reachable
state must be the addition of a (positive) linear combination of the
effect vectors of all actions to the initial (vector) state.

We will first study a restricted domain of SNP, where all actions
share the same preconditions. By abstracting from the differences
in preconditions, we define four types of actions, depending on the
direction of the effect vector. Each such type has a specific function-
ality in our analysis. We will show that the reachable states at which
no more actions are applicable with this domain can be partitioned
into a finite number of arithmetic progressions (APs), i.e., we can
find a finite representation for a (possibly) infinite number of states.

Afterwards, we will partition the state space into a finite number
of polygonal convex regions. To do that, we will view the precondi-
tions as lines that halve the state space, and consider the partitions
produced by all such lines. Each of the resulting regions could be
analyzed as an instance of the restricted domain, i.e., we can define
the same four action types for all actions within each region. Similar
to the restricted domain, the states that are reachable from a region
but not in it could be partitioned into a finite number of APs in cer-
tain cases. In other words, we can find a finite representation for all
possible ways of exiting any of the regions.
∗ Corresponding Author. Email: helal@kbsg.rwth-aachen.de
1 Polytopes are the n-dimensional generalization of the two-dimensional

polygons and three-dimensional polyhedrons.

Having done that, we can prove correctness for an algorithm called
Arithmetic Progression Mining (APM), which searches over APs
instead of single states. In other words, APM will eventually find
any reachable goal state. Finally, we discuss pruning methods and
show that in any case, even if the goal is not reachable, APM will
terminate for any 2-variable SNP.

2 Related Work

Numeric variables allow for an infinite state space, which gener-
ally implies undecidability for the reachability problem. Helmert
[6] showed that even very restricted planning problems involving
numeric variables with additive constant effects and preconditions
given by linear comparisons against zero can simulate Abacus pro-
grams with a numeric variable for each register. Abacus programs
with two registers were already known for their ability to simulate
Turing machines [2]. Hence, numeric planning with two numeric
and an arbitrary number of propositional variables is undecidable. In
that case, the propositional variables are required to store the current
command number during the run of an Abacus program, and their
number grows w.r.t. the program length.

Later, restricted tasks (RT) [8], simple numeric planning (SNP)
[10], and numeric additive planning (NAP) [5] were defined. These
are all equivalent but introduce further restrictions to simplify the
problem for theoretical studies. After Gnad et. al [4] showed that two
numeric and a single propositional variable are enough to make the
planning problem undecidable, it became clear that the two-variable
case is on the boundary of decidability, potentially very hard or even
undecidable.

Concerning the approach, we will be using ideas similar to causal
graphs, which were introduced by [9, 1, 3, 7], and adapted later
for numeric planning, either by restricting the dependencies between
variables [11], or between actions [5]. Specifically, Helal and Lake-
meyer [5] coined the term maintainable plans, which will be equiv-
alent to the term “repetition” in our analysis.

3 Preliminaries

For integer numeric variables V := {x1, ..., xn}, we will use the
n-dimensional integer vector space Zn as a state space. For any such
vector, usually denoted s ∈ Zn for state, we assume that s[xi] is the
i’th element of the vector. When dealing with two-dimensional state
spaces, we will always set V := {x, y}, and for any state s ∈ Z2,
we assume that s = ⟨s[x], s[y]⟩.

3.1 Linear Constraints

Definition 1. For a set of variables V := {x1, ..., xn}, we define
the set of linear constraints over V by LC(V) := {c = ⟨fc, hc⟩ :
fc ∈ Zn, hc ∈ Z}. We use the notation c = [fc · s ≥ hc], where
s is assumed to be an n-dimensional integer variable vector, and
fc · s =

∑
x∈V fc[x]s[x] denotes the inner product.

We define additionally the function R : LC(V)→ 2Z
n

that maps
each linear constraint to the state space subset where it is satisfied,
i.e., for all c ∈ LC(V), R(c) := {s ∈ Zn : fc · s ≥ hc}.

We extend the definition of R to sets of constraints C ⊆ LC(V)
by R(C) :=

⋂
c∈C R(c). Notice that for any finite C ⊂ LC(V),

R(C) is a polygonal convex region. It is known from integer linear
programming that such linear constraints are closed under negation.
Specifically, since only integers are considered, the negation of a lin-
ear constraint c ∈ LC(V) is another linear constraint c ∈ LC(V)
defined by c := [fc · s < hc] = [(−fc) · s ≥ −hc + 1] =
⟨−fc,−hc + 1⟩. Finally, we say that two constraints c1, c2 are par-
allel iff there exists p ∈ Q \ {0} s.t. fc1 = pfc2 . E.g., for any
c ∈ LC(V), c and c are parallel with fc = −fc.

3.2 Simple Numeric Planning

The classical definition of simple numeric planning involves both nu-
meric and propositional variables [10]. However, propositional vari-
ables can be compiled into numeric variables without causing expo-
nential blowup [5]. Additionally, since our goal in this paper is to
prove the decidability of simple numeric planning with two numeric
variables and no propositional variables, we do not introduce propo-
sitional variables in our definition.

Definition 2. A simple numeric planning problem (SNP) is defined
by a tuple (A, V, s0, G) with n := |V | representing the dimension
of the state space Zn, and A is a finite set of actions given as tu-
ples a = (prea, effa) where prea ⊂ LC(V) defines a finite set
of preconditions for the applicability of a, and effa : V → Z de-
fines the (constant) integer value that will be added to each variable
when a is applied. Finally, the state s0 ∈ Zn is an initial state, and
G ⊂ LC(V) is a finite set of goal conditions.2

To ease the notation, we will define for each action a ∈ A an
effect vector va := ⟨effa(x1), ..., effa(xn)⟩. With that: (1) a can be
applied at a state s ∈ Zn by adding its effect vector, i.e., s + va,
(2) a state s satisfies the preconditions of a iff s ∈ R(prea), denoted
s ⊨ a. To conclude the introduction of SNP domains, we define
CA :=

⋃
a∈A prea as the set of all linear constraints in a domain.

We will deal with plans using words over the action set A. Let
us extend the effect vectors to plans by vε := ⟨0, .., 0⟩ ∈ Zn and
vwa := vw + va for w ∈ A∗, a ∈ A. We can also extend the
definition of state satisfaction to plans recursively by assuming the
global validity of the empty word, i.e. s ⊨ ε for all s ∈ Zn, and
define s ⊨ wa iff s ⊨ w and s+ vw ⊨ a.

3.3 Reachability

To study reachability, it is important to define paths and the plans
corresponding to them first.

2 Notice that SNP can be equivalently defined over rationals Q. However, a
multiplication with the least common multiplier of all denominators allows
us to define an equivalent integer-valued SNP for any rational domain [5]

Definition 3. We define a path P as a sequence of states
(s0, ..., s|P |) s.t. for each i ∈ {1, ..., |P |}, there exists an action
ai ∈ A s.t. si−1 ⊨ ai and si = si−1 + vai . We call the word
A(P) := a1a2...a|P | ∈ A∗ the plan corresponding to P , and say
that P is the path that follows the plan A(P) from s0.

We say that there exists a path between two states s1, s2, if there
exists a path P := (t0, ..., t|P |) s.t. t0 = s1 and t|P | = s2. The
notation P [s1, s2] denotes a shortest path between s1 and s2 if one
exists. Otherwise, it is not defined.

Definition 4. Given an initial state s0 ∈ Zn, the set of reachable
states from s0 is defined as

Reach(s0) := {s ∈ Zn s.t. P [s0, s] exists}

We will also need a restricted form of reachability for our analysis.
Given a region R ⊆ Zn, if s0 ∈ R, we define ReachR(s0) as the
set of all states reachable by paths P = (s0, ..., s|P |) with all action
applications happening in R, i.e., si ∈ R for all i ∈ {0, ..., |P |−1}.
If s0 ̸∈ R, then, ReachR(s0) := {s0}.

This concludes the introduction of SNP as a problem. Specifically,
an SNP (A, V, s0, G) is solvable iff Reach(s0) ∩ R(G) is non-
empty.

4 A Restricted Domain
We will first tackle a restricted version of a 2-variable SNP
(A, {x, y}, s0, G), where all actions are applicable at exactly one
region N2 = R({[x ≥ 0], [y ≥ 0]}). In other words, we assume
that prea = CA = {[x ≥ 0], [y ≥ 0]} for all a ∈ A. Notice that
Reach(s0) = ReachN2(s0) in this case. We will show later that
the state space can be partitioned into a finite number of subsets,
where reachability, when restricted to any of these subsets, behaves
similarly to this restricted version.

4.1 Action Functionality

Let us first study the effect vectors of an action in the restricted do-
main. We will say that two actions a, b ∈ A are parallel iff their effect
vectors are, i.e., va = pvb for some p ∈ Q\{0}. We will define four
action types based on their effect vector. We always assume that no
action a ∈ A has a zero effect vector, i.e., va[x] = va[y] = 0, as
these are useless actions.

Definition 5. For an action a ∈ A, we define the types:

va[x] va[y]

a is a repetition ≥ 0 ≥ 0
a is a co-repetition ≤ 0 ≤ 0
a is a y-crossing ≥ 0 < 0
a is an x-crossing < 0 ≥ 0

We call a a crossing if it is an x-crossing or a y-crossing.

In Fig. 1, both a, b are y-crossings but b′ is an x-crossing.
To study each action type, let us fix a state s ∈ N2: (1) For a

repetition r ∈ A, we have s ⊨ ri for all i ∈ N, where ri denotes the
plan with r repeated i times, i.e., r0 := ε and ri = ri−1r. In other
words, a can be “repeated” arbitrarily often from any state in N2.
(2) A co-repetition r′ ∈ A behaves similarly when co-reachability is
considered, i.e., s − ivr′ ⊨ r′ for all i ∈ N. (3) On the other hand,
for a y-crossing a ∈ A, we get (s+ va)[y] < s[y], i.e., by applying

a enough times, the constraint [y ≥ 0] will be eventually “crossed”.
In other words, i ∈ N exists s.t. s ⊨ ai and (s + ai)[y] < 0. (4)
Similarly, x-crossings eventually lead to crossing [x ≥ 0].

The type of any constructed plan w ∈ A∗ can be determined by
considering the overall effect vector of that plan vw ∈ Z2. Therefore,
we can infer the existence of new types by analyzing the available
combinations of action types, as we will show in the next lemma.

Lemma 1. If x- and y-crossings that are unparallel to each other
exist, then a repetition or a co-repetition with a non-zero effect vector
can be constructed.

Proof. Let a be a y-crossing and b an x-crossing. We construct a
plan w := a|vb[y]|b|va[y]|. The effect vector of w is

vw = |vb[y]|va + |va[y]|vb = vb[y]va − va[y]vb

Therefore, vw[y] = 0. If vw[x] > 0, w is a repetition. If vw[x] < 0,
w is a co-repetition. If vw[x] = 0, then, a is parallel to b.

In Fig. 1, since a is a y-crossing and b′ is an x-crossing, and a is
not parallel to b′, we can construct a repetition w := aab′ ∈ {a, b′}∗.
Notice that the direction of the effect vector of w = aab′ is positive,
i.e., (s+ vw)[x] ≥ s[x] and (s+ vw)[y] ≥ s[y] for all s ∈ Z2. If w
is valid from s, it must be valid from s + ivw for all i ∈ N. On the
other hand, any combination of b, b′ has either a zero effect vector or
is a crossing because they are parallel.

We will show later that the existence of a repetition or co-repetition
ensures a significant simplification of the problem. Therefore, we can
focus for now on action sets containing crossings with a similar di-
rection only, w.l.o.g. y-crossings.

4.2 Projection

Let us first measure the maximal number of valid applications of an
action a from a state s, which is equivalent to the minimal number of
actions applications from s after which a is no longer applicable.

Definition 6. Let a ∈ A and s ∈ N2. We define the number of valid
applications of a from s as

#s[a] := min{i ∈ N ∪ {∞} : s+ iva ̸∈ N2}

With this definition, we can see that for all actions a ∈ A and
states s ∈ Z2, we have:

• If s ̸∈ N2, #s[a] = 0.
• Else if a is a repetition, then, #s[a] =∞.

• Else if a is a y-crossing, then, #s[a] =

⌈
s[y] + 1

−va[y]

⌉
.

Similarly, for an x-crossing with x instead of y. With that, we can
define projection formally.

Definition 7. The projection of a crossing a ∈ A from s ∈ N2 is
defined by Proj(s; a) := s+#s[a]va. The path P [s,Proj(s; a)] =
(s, s+ va, s+ 2va, ..., s+#s[a]va) is called a direct path.

In Fig. 1, the red vectors denoting the path P [⟨0, 4⟩, ⟨15,−1⟩]
is a direct path from s := ⟨0, 4⟩ using the action a. Notice that
Proj(s; a) = ⟨15,−1⟩ is the projection of s using a.

As said before, applying a y- crossing often enough, leads to cross-
ing the linear constraint [y ≥ 0]. We denote the state where this
crossing happens as a y-exit. Formally, the y-exits are defined by:

y-EX :=
⋃

s∈N2

(
Reach(s) \R([y ≥ 0])

)

Let µ := −mina∈A va[y] represent the maximal negative effect
on y. Notice that for any state s ∈ y-EX, there exists a state t ∈ N2

and a ∈ A s.t. s + va = t, i.e., (s − t)[y] ≤ µ. Therefore, we can
partition the exits into a finite number of lines by y-EX =

⋃µ
i=1 Li,

where Li := {s ∈ y-EX : s[y] = −i}. We call L1, ..., Lµ the y-
exiting lines. We will show in the next subsection that the reachable
states in y-EX can be represented with a finite number of arithmetic
progressions.

4.3 Arithmetic Progressions

Figure 1. Example of arithmetic progressions AP(ti, ua,b, 2); i ∈ {1, 2}
(black) that are produced by two y-crossings a, b (red and blue) from a state
s := ⟨0, 4⟩ within N2 (light yellow). One can also see L1, L2 (green), the
y-exiting lines. In the ellipse, a repetition aab′ (green) can be constructed

from a y-crossing a (red) and an unparallel x-crossing b′ (orange).

An arithmetic progression has a structure similar to that of a for-
loop, e.g., AP(i, k, n) := (i, i+ k, i+ 2k, ..., i+ nk) for i, k ∈ Z
and n ∈ N. We will extend this idea to 2D and allow for infinite
arithmetic progressions.

Definition 8. For a starting state s ∈ Z2, an update vector v ∈ Z2,
and a number of repetitions n ∈ N∪{∞}, an arithmetic progression
(AP) is defined by AP(s, v, n) := {s+ iv : i ∈ {0, ..., n}}.

We will extend the definition of projection to APs as well by:

Proj(s, v, n; a) := {Proj(s+ iv; a) : i ∈ {0, ..., n}}

We are now able to prove our first theorem, which states that a finite
number of arithmetic progressions can represent an infinite number
of projections from states that follow an arithmetic progression.

Theorem 2. For a y-crossing a ∈ A and an AP AP(s, v, n) ⊆ N2,
there exist u ∈ Z2, k ∈ N, and ti ∈ y-EX; i ∈ {1, ..., k} s.t.:

Proj(s, v, n; a) =
k⋃

i=1

AP(ti, u, ni)

with k =
|va[y]|

d
, d = gcd(|va[y]|, |v[y]|), and

⌊n
k

⌋
≤ ni ≤

⌈n
k

⌉
.

The theorem follows from known principles in number theory,
such as the extended Euclidean algorithm and Bézout pairs.

Consider Fig. 1 and notice that the states reachable by a combi-
nation of a, b on any exiting line are exactly those reachable from
some intermediate state of the direct path P [s,Proj(s; a)], i.e.
(s, s+ va, ..., v+#s[a]va), which follow an arithmetic progression
AP(s, va,#s[a]).

We can generalize this method for any two actions a, b, of which
one (w.l.o.g. b) is a y-crossing. We first consider the AP representing

the states visited on a direct path followed when a is used, then apply
b from each state in that AP. In other words, we can use the last theo-
rem to show that Proj(s, va,#s[a]; b)∩L, the reachable states on a
y-exiting line L by using the actions a, b, can also be partitioned into
a finite number of APs. In general, we define the projection vector of
two unparallel actions a, b ∈ A by:

ua,b :=

〈
|va[x]vb[y]− va[y]vb[x]|

gcd(|va[y]|, |vb[y]|)
, 0

〉
which is parallel to any y-exiting line L. By Th. 2, we can find t ∈ L
and n ∈ N ∪ {∞} s.t. Reach(s) ∩ L = AP(t, ua,b, n). If one
of the actions, w.l.o.g. a, is a repetition, applying a arbitrarily often
never leaves N2, we get an infinite AP. Projecting from that AP using
a y-crossing b, i.e., Proj(s, va,∞; b), we get infinite APs within
each exiting line, i.e., n = ∞. This will be crucial to find a finite
representation for an infinite number of exits, as we will show later.

In Fig. 1, notice that ua,b = ua,b′ = ⟨5, 0⟩ which are parallel to
the y-exiting lines. The reason for the equality ua,b = ua,b′ = vaab′

is that vb′ = −vb.
By induction, we can extend this idea to any number of actions

and prove that in general Reach(s)∩ y-EX can be partitioned into
a finite number of APs. With that, we can prove the following result.

Corollary 3. Restricted simple numeric planning is decidable.

Proof. Given an initial state s0 and goal conditions G. Assume
first that R(G) ⊆ N2, then, we can solve the integer linear pro-
gram with positive integer variables ia ∈ N and the constraints
0 ≤

∑
a∈A iava ∈ R(G). Remember that G is a finite set of lin-

ear constraints. Otherwise, if R(G) intersects with some exiting line,
we can use the methods considered before. All other states are not
reachable as there are no actions available outside of N2.

For our algorithm, later, it is important to extend the definition
of projection to states reachable with any number of actions from
AP(s, v, n) with s, v ∈ Z2 and n ∈ N by:

Projy(s, v, n) :=

n⋃
i=0

(
Reach(s+ iv) ∩ y-EX

)
As shown before, a direct path corresponds to an AP, i.e., we can
prove that Projy(s, v, n) can be partitioned into a finite number
of APs each being contained within some y-exiting line. The same
argument works for Projx(s, v, n). In other words, given an AP
AP(s, v, n), we can, with one step, compute both Projx(s, v, n)
and Projy(s, v, n), which determine all the reachable exits of N2

from any state t ∈ AP(s, v, n).

5 Encoding the State Space
In this section, we will define a partition of the state space into a finite
number of regions where SNP behaves similarly to the restricted
domain. For that, we will construct an encoding of the states within
each region.

Definition 9. For s ∈ Z2 and a linear constraint c ∈ LC({x, y}),
we define the integer distance between s and c as

d[s, c] := fc · s− hc = fc[x]s[x] + fc[y]s[y]− hc ∈ Z

The goal is to normalize the relation between states and linear con-
straints. For example, notice that d[s, c] ≥ 0 iff s ∈ R(c). We can
also use it to pick certain lines within the region R(c).

Definition 10. For a finite set of linear constraints C ⊂ LC({x, y})
and a linear constraint c ∈ C, we define Ec

R(C) := {s ∈ R(C) :
d[s, c] = 0} as an edge of the region R(C).

We say that two edges Ec1
R , Ec2

R of some region R are parallel iff
c1, c2 are parallel. We assume that all considered sets of constraints
C are minimal, i.e., R(C) ⊊ R(C \ {c}) for all constraints c ∈ C.

Notice that in Fig. 2, the region R := R({c1, c2, c3}) has two infi-
nite edges Ec1

R , Ec2
R , and that R′ := R({c1, c2, c′3}) = R({c1, c2})

because c2, c
′
3 are parallel to each other. This can be generalized for

any polygonal infinite convex region of Z2.

Figure 2. Shown are the linear constraints c1 := [x ≥ −2] (green),
c2 := [x ≤ 7] (blue), c3 := [x− 2y ≤ 10] (red on left), c′3 := [x ≤ 11]

(red on left), and the edges (bold black) of the regions
R := R({c1, c2, c3}) (left) and R′ := R({c1, c2, c′3}) (right).

Lemma 4. For a finite set of linear constraints C ⊂ LC(V) with
|V | = 2, R(C) has at most two infinite edges.

5.1 Precondition-Free Regions

We will describe a partition of the state space into “precondition-
free” regions, and show afterwards that each one could be analyzed
similarly to the restricted domain.

Definition 11. For a function γ : CA → {0, 1}, we define:

Cγ := {ci : γ(ci) = 1} ∪ {ci : γ(ci) = 0}

A precondition-free region (PFR) is defined by Rγ := R(Cγ).

Consider the following example with two actions A = {a, b},
which is shown in Fig. 3 and will serve as a running example for the
algorithms of this paper.

• prea = {[x ≤ 0]}, effa(x) = 0, effa(y) = +1.
• preb = {[y ≥ 1]}, effb(x) = +1, effb(y) = −1.

Starting at the intitial state s0 := ⟨0, 0⟩, all valid plans have the form
aibj where i ≥ j ∈ N. Additionally, since CA = {[x ≤ 0], [y ≥ 1]}
the state space Z2 is partitioned into 4 PFRs Rγ ; γ : CA → {0, 1},
all infinite with two infinite edges. We denote the actions applicable
in Rγ with Aγ ; γ : CA → {0, 1}:

• R11 := R({[x ≤ 0], [y ≥ 1]}) with A11 = {a, b}.
• R10 := R({[x ≤ 0], [y ≤ 0]}) with A10 = {a}.
• R01 := R({[x ≥ 1], [y ≥ 1]}) with A01 = {b}.
• R00 := R({[x ≥ 1], [y ≤ 0]}) with A00 = ∅.

Definition 12. For two states s, s′ ∈ Rγ , we say that s′ is region-
ally reachable from s iff s′ ∈ Reachγ(s) := ReachRγ (s). We
call P [s, s′] a regional path, and A(P [s, s′]) a regional plan in that
case. We call the problem of finding out whether s′ ∈ Reachγ(s)
“regional reachability”.

Figure 3. An example of the partitioning of the state space into 4 PFRs
(light yellow). The exiting lines, L1 of R11 and L2 of R01, are marked

(green). The plans aibj ; i ≥ j ∈ {0, .., 3} starting at s0 are drawn (red and
blue). Finally, two examples of projection, from R11 to R01, and from R01

to R00, are shown (black).

The regions are called precondition free because for all actions
a ∈ A, and all γ : CA → {0, 1}, if s ⊨ a for some s ∈ Rγ , then,
s ⊨ a for all s ∈ Rγ . We denote the actions applicable at any state
in Rγ with Aγ := {a ∈ A : prea ⊆ Cγ}. Remember that all PFRs
must be convex polygons and thus have at most two infinite edges
by Lemma 4. In order to make later proofs easier, we will assume
that any infinite PFR (which we call IPFR) has exactly two infinite
edges. If an IPFR has one infinite edge only, we can partition it
into two IPFRs by adding a dummy constraint to produce an edge
unparallel to that infinite edge. With that, both of the resulting IPFRs
have exactly two infinite edges.

Having done that, notice that the number of IPFRs is 2|CA|. We
order the IPFRs R0, ..., R2|CA|−1 by starting at any one and go-
ing clockwise (the mathematical negative rotation in 2D, check Fig.
4). With that, the two neighbors of Ri are R(i+1) mod 2|CA| and
R(i−1) mod 2|CA| for all i ∈ {0, ..., 2|CA| − 1}. The respective ac-
tions would be Ai = Aγ for Ri = Rγ .

Next, we will generalize all concepts defined in the restricted do-
main to any PFR. Finite PFRs include a finite number of states
and can be explored with a finite number of steps. Therefore, we

need to focus on IPFRs. We define cji ; i ∈ {1, 2} s.t. E
c
j
i

Rj
is

one of the infinite edges of Rj . To ensure that the enumeration of
these two edges respects the order defined before, we assume that
cj2 = c

(j+1) mod 2|CA|
1 for all j ∈ {0, ..., 2|CA| − 1} (Check Fig. 4

again). With that, we define an encoding function

ej : Rj → N2 : s 7→ ⟨d[s, cj1], d[s, c
j
2]⟩

In the restricted domain, the infinite edges of N2 are the x and y axes,
and d[s, [x ≥ 0]] = s[x], d[s, [y ≥ 0]] = s[y].

For an action a ∈ A, we can define the integer distance effect of a
on a constraint c by d[a, c] := d[s+a, c]−d[s, c] = fc ·va. Similar to
the restricted domain, we say that a ∈ Aj is a repetition/co-repetition
iff d[a, cji] ≥ 0/d[a, cji] ≤ 0 for all i ∈ {1, 2}, respectively. Ad-
ditionally, we say that a is a positive crossing iff d[a, cj1] ≥ 0
and d[a, cj2] < 0, denoting that applying a sufficiently often from
Rj leads to Rj+1 mod 2|CA|. Similarly, a is a negative crossing iff
d[a, cj1] < 0 and d[a, cj2] ≥ 0. Positive and negative refer, therefore,
to a direction of rotation.

We call an IPFR Rj conic iff it has unparallel infinite edges, i.e.,
cj1 is unparallel to cj2, and non-conic otherwise (Check the non-conic
IPFRs 2 and 6, and the conic ones 0, 1, 3, 4, 5, 7 in Fig. 4). Notice

Figure 4. On left, an example of the partition of the state space by 4 linear
constraints, and the enumeration of the resulting IPFRs is shown. On the
right, we focus on the IPFR 4 and denote 4′ the finite region where the

exceptions to the restricted domain occur. We also show the infinite edges of
region 4 (green) and the direction of a positive crossing (blue) applicable in

region 4.

that our encoding fails for non-conic IPFRs Rj since f
c
j
i
; i ∈ {1, 2}

would be insufficient to encode a (subset of a) 2D-vector space Rj ,
specifically, f

c
j
i
; i ∈ {1, 2} are not linearly independent. However,

since each (infinite) line L can be represented by an infinite sequence
of states (sl)l∈N, we can define levelL(s) := l iff s = sl in that
sequence. If Rj is non-conic, it can be partitioned into a finite number
of lines, i.e., k ∈ N exists s.t. Rj := L0∪ ...∪Lk where Li := {s ∈
Rj : d[s, cj1] = i} for all i ∈ {0, ..., k}. Therefore, we can define
the encoding function for a non-conic IPFR Rj as:

ej : Rj → N2 : s 7→ ⟨i := d[s, cj1], levelLi(s)⟩

5.2 Exiting Lines

To finalize a proof of decidability for regional reachability, we still
need to analyze the exiting lines of the constructed IPFRs, which are
similar to those in the restricted domain. Let j ∈ {0, ..., 2|CA| − 1}
denoting that Rj is some IPFR. The cji -exits of Rj are defined by:

cji -EX :=
⋃

s∈Rj

(
ReachRj (s) \R(cji)

)

for i ∈ {1, 2}. Let µ := −mina∈Aj d[a, c
j
1] denote the minimal

integer distance effect on cj1. We partition the cj1-exits into a finite
number of lines L1, ..., Lµ, where Li := {s ∈ cj1-EX : d[s, cj1] =
−i}. Here again, L1, ..., Lµ are called the cji -exiting lines of Rj . We
will use the term “exiting lines” in general meaning all exiting lines
of all IPFRs.

The analysis of the restricted domain works for all states in an
IPFR with a finite number of exceptions, as we will prove in the
next corollary. With exceptions, we mean invalid action applications
that are assumed to be valid by the methods discussed in the previous
section but are not actually valid. Check region 4′ in Fig. 4.

Corollary 5. Regional reachability is decidable.

Proof. For goal states within the same conic IPFR, notice that the fi-
nite region, where exceptions to the restricted domain take place can
be excluded by a finite number of linear constraints. For goal states
on the exits of the region, we can use the methods defined before
to represent the reachable states with a finite number of APs. Since
only a finite number of minimal paths pass through any finite region,
only a finite number of the states in these APs will be invalid. We can
remove all these and ensure that we keep the finite representation. In
other words, the methods used in Corollary 3 can be applied here
with finitely many exceptions. On the other hand, regional reachabil-
ity for non-conic IPFR can be modeled as a SNP problem with one
numeric and a finite number of propositional variables because one
of the numeric variables is bounded.

6 Arithmetic Progression Mining

If all paths are finite, reachability is decidable. Therefore, we must
find methods to prune the search if an infinite path is discovered. We
call an infinite path (si)i∈N minimal iff for all i < j ∈ N, si ̸= sj .
With this definition, notice that any minimal infinite path, must even-
tually leave all finite PFRs and: (1) remain in exactly one IPFR or
(2) visit the exiting lines infinitely often. Since regional reachabil-
ity is established as decidable, if we are searching for a goal state
in some IPFR, we can prune all infinite paths of type (1) because:
(1.1) If the goal state is in the same IPFR where the path remains,
regional reachability should suffice to find out whether it is reach-
able or not. (1.2) Otherwise, the path remains in a region different
than that of the goal state. We can therefore focus the search on paths
of type (2). In other words, focusing on paths that keep visiting the
exiting lines is sufficient. We can do the same for any goal state sg by
finding all states on exiting lines from which sg is reachable. Even
for goal conditions G ⊂ LC(V), where R(G) is infinite, we can
find an equivalent SNP with a finite number of goal states. We can,
therefore, design a search algorithm that abstracts from the PFRs
by applying projections to exit the current PFR with one iteration.
Given an initial state s ∈ Rγ for some γ : CA → {0, 1}, remember
that for all t ∈ Reachγ(s)\R(c), t is on some c-exiting line of Rγ .
Similar to the restricted domain, we define:

Projγc (s, v, n) :=

n⋃
i=0

(
Reachγ(s+ iv) ∩ c-EX

)
For any c ∈ Cγ , the reachable c-exits from some AP AP(s, v, n),
denoted Projγc (s, v, n), can be partitioned into a finite number of
APs. For any R ⊆ Z2 we define ⌊R⌋ as the minimal partition of
R into arithmetic progressions, each being contained in some PFR.
This is possible because all states in an AP are contained in a line
and all PFRs are convex.

Algorithm 1: Arithmetic Progression Mining (APM)

Input: Initial state s0 ∈ Z2

1 Found← {AP(s0, 0, 0)}; Covered← ∅;
2 while there exists AP(s, v, n) ∈ Found \ Covered do
3 Covered← Covered ∪ {AP(s, v, n)};
4 Let γ : CA → {0, 1} s.t. s ∈ Rγ ;
5 for c ∈ Cγ do
6 Found← Found ∪ ⌊Projγc (s, v, n)⌋;
7 reduce(Found)

We will demonstrate APM with the example in Fig. 3. We start at
the state s0 = ⟨0, 0⟩: (1) We project from s0 ∈ R10 onto R11 using
A10 = {a} and get one reachable state s1 = ⟨0, 1⟩. (2) Afterwards,
we project from s1 using A11 = {a, b} and get AP(s2, v,∞) which
is located in the [x ≤ 0]-exiting line L1 of R11, where v := ⟨0, 1⟩.
This indeed corresponds to reachable states, specifically, since a is a
repetition in R11, we get s2+nv = s0+vwn with wn := an+1b for
all n ∈ N. We partition AP(s2, v,∞) = {s2} ∪ AP(s3, v,∞)
by its intersection with the PFRs R01 and R00. (3) Finally, we
project AP(s3, v,∞) onto the [y ≥ 1]-exiting line L2 of R01, and
get AP(s4, u,∞), where u = ⟨1, 0⟩. This again corresponds to
reachable states, since for all n ∈ N, s4 + nu = s0 + vwn with
wn := an+2bn+2. After that, APM terminates since no more pro-
jections that lead to new states are available. Given a goal state sg

in some exiting line, we can determine if sg is reachable by check-
ing whether sg is in any of the reachable APs. This is a decidable
problem.

Definition 13. AP(s1, v1, n1) collides with AP(s2, v2, n2) iff
AP(s1, v1, n1) ∩AP(s2, v2, n2) ̸= ∅.

6.1 Reductions

To prove termination of APM, let us consider the function reduce in
command line 7 of Alg. 1. The goal is to decrease the size of Found.
We define the following reductions:

• Inclusion Reduction: Let v ∈ Z2 \ {0}, and let AP(s1, v, n1)
collide with AP(s2, kv, n2) for k ∈ N, s1, s2 ∈ Z2, n1, n2 ∈
N. If (s2 − s1) · v > 0 and (s1 + n1v − (s2 + n2kv)) > 0,
then AP(s2, kv, n2) ⊆ AP(s1, v, n1). We can safely remove
AP(s2, kv, n2) from Found in that case.

• Collision Reduction: Let v ∈ Z2 \ {0}, and let AP(s1, v, n1)
collide with AP(s2, v, n2). Assume w.l.o.g. that (s2−s1)·v ≥ ¸0.
Then, there must exist i ∈ {0, ..., n1} s.t. s1 + iv = s2 denoting
the first collision. We can safely replace both APs in Found with
AP(s1, v, n2 + i) = AP(s1, v, n1) ∪AP(s2, v, n2). If we can
prove that an infinite number of different arithmetic progressions
AP(si, v, ni); i ∈ N can be found s.t. AP(si, v, ni) collides
with AP(si+1, v, ni+1) for all i ∈ N, then, we can replace all
with AP(s0, v,∞). This is important because, when using the
same pair of actions within some region a, b, the projection vector
ua,b is fixed, i.e., all APs found by projection using these actions
will have a fixed update vector v = ua,b.

6.2 Completion

Remember that all states visited by APM should be on exiting lines,
except for the first one, and that any goal conditions can be trans-
lated into a finite number of goal states sg that are on exiting lines.
Let ⌈Found⌉ := {t ∈ AP(s, v, n) : AP(s, v, n) ∈ Found}. If
the goal state sg ∈ ⌈Found⌉, we can terminate APM. Otherwise,
specifically when sg is not reachable, we need ways to prove that the
search has been completed.

Definition 14. Given an initial state s0 ∈ Z2, and an exiting line L
of some IPFRRj ; j ∈ {0, ..., 2|CA|−1}, we say that L is completed
from the side of Rj iff all reachable states in L that are reachable
from Rj were found, i.e., iff for all s ∈ Reach(s0) ∩L, if s− va ∈
Reach(s0) ∩Rj for some a ∈ Aj , then, s ∈ ⌈Found⌉.

An exiting line L is completed once all the exiting lines, from
which L is reachable, are completed. The reason is that all reachable
paths towards L will be discovered. APM terminates if all exiting
lines are completed. If all infinite exiting lines are completed, the
finite exiting lines will be eventually completed. Therefore, we will
focus on the infinite exiting lines of IPFRs.

Remember that levelL(s) is an encoding of all states s ∈ L. There-
fore, for all AP(s, v, n) in Found, some exiting line L exists s.t.
AP(s, v, n) ⊆ L. We can define a corresponding one-dimensional
AP over the levels of L by AP(ls, δv, n) for some ls, δv ∈ N. This
will make later arguments easier to understand.

Theorem 6. Let Rj be some IPFR where a repetition is applicable
and let L be some infinite exiting line of Rj . Any exiting line of Rj

can be completed from the side of Rj with a finite number of itera-
tions of APM.

Proof. If Reach(s0) ∩Rj is empty, we are done. Otherwise, some
state s ∈ Reach(s0) ∩ Rγ will be found. Having some repetition
a ∈ A∗

γ and crossing b ∈ Aγ means that AP(t, ua,b,∞) ⊆ L will
be in Found in the next iteration of the while-loop for t ∈ L. Let
AP(lt, δa,b,∞) be the corresponding level AP with lt = levelL(t)
and δa,b ∈ N. We partition the levels of L, into the classes modulo
δa,b, Mi; i ∈ {0, ..., δa,b − 1}. Each such class is an AP itself, i.e.:

N =

δa,b−1⋃
i=0

Mi =

δa,b−1⋃
i=0

AP(i, δa,b,∞)

With each new visit to some state s′ ∈ Rj , Rj can be exited again
in the next iteration. If L is reachable from s′, then, there exists
i ∈ {0, ..., δa,b − 1} and t′ ∈ Mi s.t. t′ is visited in the next step.
Here again, AP(t′, ua,b,∞) will be in Found because #s′ [a] =∞.
Additionally, n ∈ N exists s.t. l′t = nδa,b+ i for t′ to be in Mi. After
that, only the sub-AP AP(i, δa,b, n−1) of Mi is left, i.e., Mi will be
visited at most n extra times after t′. The other cases will be covered
by the inclusion reduction and would not increase the size of Found.
In other words, we partitioned L into a finite number of subsets, each
of which will be visited a finite number of times only.

The last theorem has an important impact on the ease of solving the
problem because it clears out many cases. Notice that, by Lemma 1,
if two unparallel crossings with different directions are applicable in
some IPFRRj , a repetition or co-repetition can be constructed. The
case for repetition has been covered in the last theorem. For the case
of co-repetition, we can ensure that, when starting from the goal state
sg and considering co-reachability, the co-repetition has the same
function as repetition has with reachability. Therefore, by running
APM for co-reachability, if an IPFR contains a co-repetition, its ex-
iting lines will eventually be completed from its side. If all crossings
in all IPFRs have one direction only, w.l.o.g. positive, each IPFR
Rj has infinite exiting lines on one side only, here, cj1-EX is finite
for all j ∈ {0, ..., 2|CA|−1}. In this case, all paths within the IPFRs
follow a clockwise direction (check Fig. 6 for an example).

6.3 Infinite Path Pruning

When considering both reachability and co-reachability for APM,
we reach, after a finite number of iterations, some state s0 in some
exiting line L0 that is reachable from the initial state, and a goal
state sg in some other exiting line Lg that is co-reachable from the
goal state. By studying the crossing directions between L0 and Lg ,
including any intermediate exiting lines, we can know whether at
least some path between L0 and Lg exists, and construct one if that
is the case. If no paths between L0 and Lg exist, clearly, sg is not
reachable from s0 and we can terminate the search. Otherwise, we
can ensure that both s0 and sg are on the same exiting line L and
terminate whenever L is completed from all sides, of which there are
two in 2D. Having done that, we can prove the decidability of SNP
with exactly two numeric variables.

Theorem 7. Any SNP (A, {x, y}, s0, G) is decidable.

Proof. (Sketch) Remember that each of s0 and sg correspond to
some levels l0, lg ∈ N of L, resp. Therefore, we can focus on paths
from and to L and study the increase or decrease in levels they pro-
duce. We call such a path odd iff it visits L from the same side, and
even otherwise (check Fig. 5). The existence of an odd path implies
that it passes through some IPFR where a repetition or a co-repetition
can be constructed, meaning that the side of L, from which the odd

Figure 5. We show three partitions of the state space by 3 linear
constraints (black). (1) On the left is a picture of an odd path. (2) In the
middle is a picture of an even path. (3) On the right, an example of the

collision in s between two even paths, one that increases the level (green)
and another that decreases it (blue).

path visits L, will be eventually completed. Finally, all even paths
can be classified into a finite number of classes s.t.:

• If all paths from and to L increase/decrease the level, then, af-
ter reaching any state with a level higher/lower than lg , resp., the
search can be pruned (Check Fig. 6 for an example).

• If an even path that increases the level, and another that decreases
it, exist, then, L will be eventually completed, specifically since
an infinite number of pair-wise colliding APs will be found within
L (check Fig. 5, right).

Figure 6. An example where all paths from and to some exiting line L
(red) increase the level. Each action of A = {a, b, c, d}(colored) is

applicable at the region colored with the same color as its effect vector.
Notice that, starting at s0, once s3 is reached, the search for a goal state like

s2 can be pruned.

7 Conclusion
Remember that the arguments given in this paper work only for the
2-variable case. Specifically, although precondition-free regions can
be defined equivalently for any number of variables, their exits can-
not be partitioned into a finite number of lines. However, regional
reachability, i.e., reachability within any specific PFR is generally
decidable.

In [4], it is shown that two numeric and one propositional variable
can model any Collatz function, e.g., given n ∈ N, if n is divisible
by 2, then, n 7→ n/2, otherwise, n 7→ 3n+ 1. We can model linear
functions such as n 7→ n/2 and n 7→ 3n+1 with two numeric vari-
ables. However, with exactly two numeric variables, we do not have
enough expressiveness to precondition any action based on the re-
sulting multiplication value, because both variables are required for
the expressiveness of linear functions to arise. The additional propo-
sitional variable in that paper determines whether to apply n 7→ n/2
or n 7→ 3n + 1. Having both within one 2D state space implies
the existence of even paths that increase the level and others that
decrease it, ultimately leading to AP collisions. The propositional
variable is therefore used to separate the discovered APs into two
different planes and avoid collision.

Finally, the APM algorithm can reduce the search space exten-
sively, specifically when repetitions can be discovered. It is therefore
a powerful, correct but not necessarily complete, search tool that can
be used for any number of numeric variables.

8 Acknowledgment
The authors gratefully acknowledge the funding by the BMBF in
Germany for the project AIStudyBuddy (No. 16DHBKI016), and the
EU ICT-48 2020 project TAILOR (No. 952215).

References
[1] F. Bacchus and Q. Yang. Downward refinement and the efficiency of hi-

erarchical problem solving. Artificial Intelligence, 71(1):43–100, 1994.
[2] G. S. Boolos and R. C. Jeffrey. Computability and logic, 1989.
[3] C. Domshlak and R. I. Brafman. Structure and complexity in planning

with unary operators. In AIPS, pages 34–43, 2002.
[4] D. Gnad, M. Helmert, P. Jonsson, and A. Shleyfman. Planning over

integers: Compilations and undecidability. ICAPS, 2023.
[5] H. Helal and G. Lakemeyer. An analysis of the decidability and com-

plexity of numeric additive planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, volume 34,
pages 267–275, 2024.

[6] M. Helmert. Decidability and undecidability results for planning with
numerical state variables. In AIPS, pages 44–53, 2002.

[7] M. Helmert. A planning heuristic based on causal graph analysis. In
ICAPS, volume 16, pages 161–170, 2004.

[8] J. Hoffmann. The metric-ff planning system: Translating“ignoring
delete lists”to numeric state variables. Journal of artificial intelligence
research, 20:291–341, 2003.

[9] C. A. Knoblock. Automatically generating abstractions for planning.
Artificial intelligence, 68(2):243–302, 1994.

[10] E. Scala, P. Haslum, S. Thiébaux, et al. Heuristics for numeric planning
via subgoaling. 2016.

[11] A. Shleyfman, D. Gnad, and P. Jonsson. New complexity results for
structurally restricted numeric planning. In ICAPS 2022 Workshop on
Heuristics and Search for Domain-independent Planning, 2022.

