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Subgraphs



Overview

We conclude our discussion of (di-) graphs by giving
a brief tour of some further topics in graph theory
that we do not have time to discuss in depth.

In the interest of brevity (and hence wider coverage of topics),
we do not give proofs for the results in this chapter.



Subgraphs

Definition (subgraph)

A subgraph of a graph (V ,E ) is a graph (V ′,E ′)
with V ′ ⊆ V and E ′ ⊆ E .

A subgraph of a digraph (N,A) is a digraph (N ′,A′)
with N ′ ⊆ N and A′ ⊆ A.

German: Teilgraph/Untergraph

Question: Can we choose V ′ and E ′ arbitrarily?

The subgraph relationship defines a partial order on graphs
(and on digraphs).



Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

subgraph (V ′,E ′)



Induced Subgraphs (1)

Definition (induced subgraph)

Let G = (V ,E ) be a graph, and let V ′ ⊆ V .
The subgraph of G induced by V ′ is the graph (V ′,E ′)
with E ′ = {{u, v} ∈ E | u, v ∈ V ′}.
We say that G ′ is an induced subgraph of G = (V ,E ) if G ′ is
the subgraph of G induced by V ′ for any set of vertices V ′ ⊆ V .

German: induzierter Teilgraph (eines Graphen)



Induced Subgraphs (2)

Definition (induced subgraph)

Let G = (N,A) be a digraph, and let N ′ ⊆ N.
The subgraph of G induced by N ′ is the digraph (N ′,A′)
with A′ = {(u, v) ∈ A | u, v ∈ N ′}.
We say that G ′ is an induced subgraph of G = (N,A) if G ′ is
the subgraph of G induced by N ′ for any set of nodes N ′ ⊆ N.

German: induzierter Teilgraph (eines gerichteten Graphen)



Induced Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

Is this an induced subgraph?



Induced Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

This is an induced subgraph.



Induced Subgraphs – Discussion

Induced subgraphs are subgraphs.

They are the largest (in terms of the set of edges) subgraphs
with any given set of vertices.

A typical example is a subgraph induced by
one connected component of a graph.

The subgraphs induced by the connected components
of a forest are trees.



Counting Subgraphs

How many subgraphs does a graph (V ,E ) have?

How many induced subgraph does a graph (V ,E ) have?

For the second question, the answer is 2|V |.

The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible
(n
2

)
edges)

has
∑n

k=0

(n
k

)
2(

k
2) subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs



Counting Subgraphs

How many subgraphs does a graph (V ,E ) have?

How many induced subgraph does a graph (V ,E ) have?

For the second question, the answer is 2|V |.

The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible
(n
2

)
edges)

has
∑n

k=0

(n
k

)
2(

k
2) subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs



Isomorphism



Motivation

A B

C D

E
FG

graph (V ,E )

1 2

3 4

5
67

graph (V ′,E ′)

What is the difference between these graphs?



Isomorphism

In many cases, the “names” of the vertices of a graph
do not have any particular semantic meaning.

Often, we care about the structure of the graph,
i.e., the relationship between the vertices and edges,
but not what we call the different vertices.

This is captured by the concept of isomorphism.



Isomorphism – Definition

Definition (Isomorphism)

Let G = (V ,E ) and G ′ = (V ′,E ′) be graphs.

An isomorphism from G to G ′ is a bijective function
σ : V → V ′ such that for all u, v ∈ V :

{u, v} ∈ E iff {σ(u), σ(v)} ∈ E ′.

If there exists an isomorphism from G to G ′,
we say that they are isomorphic, in symbols G ∼= G ′.

German: Isomorphismus, isomorph

derives from Ancient Greek for “equally shaped/formed”

analogous definition for digraphs omitted



Isomorphism – Example

A B

C D

E
FG

graph (V ,E )

1 2

3 4

5
67

graph (V ′,E ′)

σ = {A 7→ 1,B 7→ 2,C 7→ 3,D 7→ 4,E 7→ 5,F 7→ 6,G 7→ 7}
for example: {A,B} ∈ E and {σ(A), σ(B)} = {1, 2} ∈ E ′

for example: {A,D} /∈ E and {σ(A), σ(D)} = {1, 4} /∈ E ′



Isomorphism – Discussion

The identity function is an isomorphism.

The inverse of an isomorphism is an isomorphism.

The composition of two isomorphisms is an isomorphism
(when defined over matching sets of vertices)

It follows that being isomorphic is an equivalence relation.



Isomorphic or Not? (1)

A

B

C

D

E

1

2

3

4

5

isomorphic
σ = {A 7→ 1,B 7→ 3,C 7→ 5,D 7→ 2,E 7→ 4}



Isomorphic or Not? (1)

A

B

C

D

E

1

2

3

4

5

isomorphic
σ = {A 7→ 1,B 7→ 3,C 7→ 5,D 7→ 2,E 7→ 4}



Isomorphic or Not? (2)

A B

C D

A B

C

D

isomorphic
⇝ in fact, the same graph!

σ = {A 7→ A,B 7→ B,C 7→ C,D 7→ D}



Isomorphic or Not? (2)

A B

C D

A B

C

D

isomorphic
⇝ in fact, the same graph!

σ = {A 7→ A,B 7→ B,C 7→ C,D 7→ D}



Isomorphic or Not? (3)

A

B

C

D

E A B

C

D

not isomorphic
There does not even exist a bijection between the vertices.



Isomorphic or Not? (3)
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not isomorphic
There does not even exist a bijection between the vertices.



Isomorphic or Not? (4)

A
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C
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E
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G
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I
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C
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H

I

J

isomorphic or not?



Proving and Disproving Isomorphism

To prove that two graphs are isomorphic, it suffices to state
an isomorphism and verify that it has the required properties.

To prove that two graphs are not isomorphic,
we must rule out all possible bijections.

With n vertices, there are n! bijections.
example n = 10: 10! = 3628800

A common disproof idea is to identify a graph invariant,
i.e., a property of a graph that must be the same
in isomorphic graphs, and show that it differs.

examples: number of vertices, number of edges,
maximum/minimum degree, sorted sequence of all degrees,
number of connected components



Isomorphic or Not? (5)

A
B

C
D

E

F

G

H

I

J

A
B

C
D

E

F

G

H

I

J

not isomorphic

The left graph has cycles of length 4 (e.g., ⟨A,B,G ,F ,A⟩).
The right graph does not.

Having a cycle of a given length is an invariant.



Scientific Pop Culture

Determining if two graphs are isomorphic
is an algorithmic problem that has been famously resistant
to studying its complexity.

For more than 40 years, we have not known if polynomial
algorithms exist, and we also do not know if it belongs to
the famous class of NP-complete problems.

In 2015, László Babai announced an algorithm
with quasi-polynomial (worse than polynomial,
better than exponential) runtime.

Further Reading

Martin Grohe, Pascal Schweitzer.
The Graph Isomorphism Problem.
Communications of the ACM 63(11):128–134, November 2020.
https://dl.acm.org/doi/10.1145/3372123

https://dl.acm.org/doi/10.1145/3372123


Symmetries, Automorphisms and Group Theory

An isomorphism σ between a graph G and itself
is called an automorphism or symmetry of G .

For every graph, its symmetries are permutations of its vertices
that form a mathematical structure called a group:

the identity function is a symmetry
the composition of two symmetries is a symmetry
the inverse of a symmetry is a symmetry



Automorphism Group of a Graph

1

2

3

4

5

What are the symmetries?

one example is the rotation
σ1 = {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1}
another example is the reflection
σ2 = {1 7→ 5, 2 7→ 4, 3 7→ 3, 4 7→ 2, 5 7→ 1}
There are 10 symmetries in total, and they are all
generated by (= can be composed from) σ1 and σ2.



Automorphism Group of a Graph

1

2

3

4

5

What are the symmetries?

one example is the rotation
σ1 = {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1}
another example is the reflection
σ2 = {1 7→ 5, 2 7→ 4, 3 7→ 3, 4 7→ 2, 5 7→ 1}
There are 10 symmetries in total, and they are all
generated by (= can be composed from) σ1 and σ2.



Planarity and Minors



Planarity

We often draw graphs as 2-dimensional pictures.

When we do so, we usually try to draw them
in such a way that different edges do not cross.

This often makes the picture neater
and the edges easier to visualize.

A picture of a graph with no edge crossings
is called a planar embedding.

A graph for which a planar embedding exists is called planar.



Planar Embeddings – Example

A B

C D

not a planar embedding

A B

C

D

planar embedding

The complete graph over 4 vertices is planar.



Planar Graphs

Definition (planar)

A graph G = (V ,E ) is called planar if there exists
a planar embedding of G , i.e., a picture of G
in the Euclidean plane in which no two edges intersect.

German: planar

Notes:

We do not formally define planar embeddings,
as this is nontrivial and not necessary for our discussion.

In general, we may draw edges as arbitrary curves.

However, it is possible to show that a graph
has a planar embedding iff it has a planar embedding
where all edges are straight lines.



Planar Graphs – Discussion

Planar graphs arise in many practical applications.

Many computational problems are easier for planar graphs.

For example, every planar graph can be coloured with at most
4 colours (i.e., we can assign one of four colours to each vertex
such that two neighbours always have different colours).

For this reason, planarity is of great practical interest.

How can we recognize that a graph is planar?

How can we prove that a graph is not planar?



Planar Graphs – Counterexample (1)

A

B

C

D

E

The complete graph K5 over 5 vertices is not planar.
(We do not prove this result.)



Planar Graphs – Counterexample (2)

A

B

C

1

2

3

The complete bipartite graph K3,3 over 3 + 3 vertices is not planar.
(We do not prove this result.)



Non-Planarity in General

The two non-planar graphs K5 and K3,3 are special:
they are the smallest non-planar graphs.

In fact, something much more powerful holds:
a graph is planar iff it does not contain K5 or K3,3.

The notion of containment we need here is related
to the notion of subgraphs that we introduced,
but a bit more complex. We will discuss it next.



Edge Contraction

We say that G ′ = (V ′,E ′) can be obtained from graph G = (V ,E )
by contracting the edge {u, v} ∈ E if

V ′ = (V \ {u, v}) ∪ {uv}, where uv /∈ V is a new vertex

E ′ = {e ∈ E | e ∩ {u, v} = ∅} ∪
{{uv ,w} | w ∈ V \ {u, v}, {u,w} ∈ E or {v ,w} ∈ E}.

In words, we combine the vertices u and v
(which must be connected by an edge) into a single vertex uv .

The neighbours of uv are the union of the neighbours of u
and the neighbours of v (excluding u and v themselves).



Edge Contraction – Example

A B

C D

E
FG

graph (V ,E )

A B

CD

E
G F

after contracting {C,D}



Minor

Definition (minor)

We say that a graph G ′ is a minor of a graph G
if it can be obtained from G through a sequence
of transformations of the following kind:

1 remove a vertex (of degree 0) from the graph

2 remove an edge from the graph

3 contract an edge in the graph

German: Minor (plural: Minoren)

Notes:

If we only allowed the first two transformations,
we would obtain the regular subgraph relationship.

It follows that every subgraph is a minor,
but the opposite is not true in general.



Wagner’s Theorem

Theorem (Wagner’s Theorem)

A graph is planar iff it does not contain K5 or K3,3 as a minor.

German: Satz von Wagner

Note: There exist linear algorithms for testing planarity.



Minor-Hereditary Properties

Being planar is what is called a minor-hereditary property:
if G is planar, then all its minors are also planar.

There exist many other important such properties.

One example is acyclicity.

How could one prove that a property is minor-hereditary?



The Graph Minor Theorem

Theorem (Graph minor theorem)

Let Π be a minor-hereditary property of graphs.

Then there exists a finite set of forbidden minors F (Π)
such that the following result holds:

A graph has property Π iff it does not have any graph
from F (Π) as a minor.

German: Minorentheorem

Examples:

the forbidden minors for planarity are K5 and K3,3

the (only) forbidden minor for acyclicity is K3,
the complete graph with 3 vertices (a.k.a. the 3-cycle graph)



Remarks on the Graph Minor Theorem (1)

The graph minor theorem is also known as the
Robertson-Seymour theorem.

It was proved by Robertson and Seymour in a series
of 20 papers between 1983–2004, totalling 500+ pages.

It is one of the most important results in graph theory.



Remarks on the Graph Minor Theorem (2)

In principle, for every fixed graph H, we can test if H is
a minor of a graph G in polynomial time in the size of G .

This implies that every minor-hereditary property
can be tested in polynomial time.

However, the constant factors involved in the known general
algorithms for testing minors (which depend on |H|) are so
astronomically huge as to make them infeasible in practice.
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