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Acyclic (Di-) Graphs



Acyclic

Similarly to connectedness, the presence or absence of cycles
is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G.

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG



Acyclic (Di-) Graphs — Example
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Trees

Definition (tree)

A connected forest is called a tree.

German: Baum

m Tree is also a word for a recursive data structure,
which consists of either a leaf or a parent node
with one or more children, which are themselves trees.
m This other kind of tree is also called a rooted tree
to distinguish it from a tree as a graph.

m The two meanings of “tree” are distinct but closely related.



Tree Graphs vs. Rooted Trees — Example (1)

tree graph rooted tree with root A



Tree Graphs vs. Rooted Trees — Example (2)
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tree graph rooted tree with root C



Tree Graphs vs. Rooted Trees — Example (3)

tree graph rooted tree with root F



From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:
m Select any vertex v. Make v the root of the tree.

m Initially, v is the only pending vertex,
and there are no processed vertices.
m As long as there are pending vertices:
m Select any pending vertex u.
m Make all neighbours v of u that are not yet processed
children of u and mark them as pending.
m Change u from pending to processed.

We do not prove that this procedure always works. A proof of
correctness can be given based on the results we show next.



Unique Paths in Trees



Unique Paths in Trees

Let G = (V,E) be a graph.
Then G is a tree iff there exists exactly one path
from any vertex u € V to any vertex v € V.




Unique Paths In Trees — Proof (1)

(=): Gisatree. Letu,veV.

We must show that there exists exactly one path from v to v.
We know that at least one path exists because G is connected.
It remains to show that there cannot be two paths from u to v.

If u= v, there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from v to v
(u # v) and derive a contradiction.




Unique Paths In Trees — Proof (2)

Proof (continued).

Let 7 = (vo, vi,...,Va) and @’ = (v}, v{,...,V},) be the two paths
(with vo = v§ = v and v, = v}, = v).

Let i be the smallest index with v; # v/, which must exist because
the two paths are different, and neither can be a prefix of the other
(else v would be repeated in the longer path).

We have i > 1 because vy = v{.

Let j > i be the smallest index such that v; = v,’( for some k > i.
Such an index must exist because v, = v/,

Then (vi—1,...,Vj—1,V,,...,V/_;) is a cycle,

which contradicts the requirement that G is a tree.




Unique Paths In Trees — Proof (3)

Proof (continued).

(«): For all u,v € V, there exists exactly one path from u to v.
We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all v to all v, G is connected.

Proof by contradiction: assume that there exists a cycle in G,
m={(u,vi,...,Vp,u) with n > 2.

(Note that all cycles have length at least 3.)

From the definition of cycles, we have v; # v,,.

Then (u,v1) and (u, vy, ..., vi) are two different paths
from u to vy, contradicting that there exists exactly one path
from every vertex to every vertex. Hence G must be acyclic. D)




Leaves and Edge Counts in Trees and
Forests



Leaves in Trees

Definition

Let G = (V, E) be a tree.
A leaf of G is a vertex v € V with deg(v) < 1.

Note: The case deg(v) = 0 only occurs in single-vertex trees
(|lV] =1). In trees with at least two vertices, vertices with degree
0 cannot exist because this would make the graph unconnected.

Let G = (V,E) be a tree with |V| > 2.
Then G has at least two leaves.




Leaves in Trees — Proof

Let 7 = (vp, ..., Vv,) be path in G with maximal length
among all paths in G.
Because |V| > 2, we have n > 1 (else G would not be connected).
We show that vertex v, has degree 1: v,_; is a neighbour in G.
Assume that it were not the only neighbour of v, in G,
so u is another neighbour of v,. Then:
m If uis not on the path, then (v, ..., vy, u)
is a longer path: contradiction.
m If uis on the path, then u = v; for some i # nand i # n— 1.
Then (v;, ..., vn, Vi) is a cycle: contradiction.

By reversing ™ we can show deg(vp) = 1 in the same way. O
v




Edges in Trees

Let G = (V,E) be a tree with V # ().
Then |[E| = |V| - 1.




Edges in Trees — Proof (1)

Proof by induction over n = |V/|.




Edges in Trees — Proof (1)

Proof by induction over n = |V/|.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |[E|=0=1-1=|V|-1.




Edges in Trees — Proof (1)

Proof by induction over n = |V/|.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |[E|=0=1-1=|V|-1.

Induction step (n — n+1):

Let G = (V, E) be a tree with n+ 1 vertices (n > 1).
From the previous result, G has a leaf u.

Let v be the only neighbour of u.

Let e = {u, v} be the connecting edge.




Edges in Trees — Proof (2)

Proof (continued).
Consider the graph G’ = (V'  E')
with V/' =V \ {u} and E' = E \ {e}.
m G’ is acyclic: every cycle in G’ would also be present in G
(contradiction).

m G’ is connected: for all vertices w # u and w’ # u,
G has a path 7 from w to w’ because G is connected.
Path 7 cannot include u because u has only one neighbour, so
traversing u requires repeating v. Hence 7 is also a path in G'.

Hence G’ is a tree with n vertices, and we can apply

the induction hypothesis, which gives |E’| = |V'| — 1.

It follows that
|E|=|E'|+1=(V-1)+1=(V|+1)—-1=|V|-1. O]

V.




Edges in Forests

Let G = (V,E) be a forest.
Let C be the set of connected components of G.
Then |E| = |V|—|C]|.

This result generalizes the previous one.



Edges in Forests — Proof

Let C ={G,..., G}

For 1 < i<k, let G; =(C;, E;) be G restricted to G, i.e.,
the graph whose vertices are C;

and whose edges are the edges e € E with e C C;.

We have |V| = Zf'(:1 |Ci| because the connected components
form a partition of V.
We have |E| = Zf-‘zl |E;| because every edge belongs to exactly
one connected component. (Note that there cannot be edges
between different connected components.)
Every graph G; is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is acyclic. This implies |E;| = |G| — 1.
Putting this together, we get

k k k
El =2 i |Eil = Xica (1G] =1) = 205 |G =k = [V[=[C]. [T




Characterizations of Trees



Characterizations of Trees

Let G = (V,E) be a graph with V # ).
The following statements are equivalent:

Q G is a tree.

@ G is acyclic and connected.

@ G is acyclic and |E| = |V| — 1.

Q G is connected and |E| = |V| — 1.

© For all u,v € V there exists exactly one path from u to v.




Characterizations of Trees — Proof (1)

Reminder:

) G is acyclic and connected.

) G is acyclic and |E| = |V| — 1.

) G is connected and |E| = |V| — 1.
)

We know already:
m (1) and (2) are equivalent by definition of trees.
m We have shown that (1) and (5) are equivalent.
m We have shown that (1) implies (3) and (4).
We complete the proof by showing (3) = (2) and (4) = (2).




Characterizations of Trees — Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E| =|V|—1.

Proof (continued).

(3) = (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E| = |V| —|C],

where C are the connected components of G.




Characterizations of Trees — Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E| =|V|—1.

Proof (continued).

(3) = (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E| = |V| —|C],

where C are the connected components of G.
But we also know |E| = |V/| — 1. This implies |C| = 1.
Hence G is connected and therefore a tree.




Characterizations of Trees — Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E| = |V]| — 1.

Proof (continued).

(4) = (2):

In graphs that are not acyclic, we can remove an edge without
changing the connected components: if (v, ..., vy, vo) (n > 2)
is a cycle, remove the edge {vy, v1} from the graph.

Every walk using this edge can substitute (vi, ..., vp, vp)

(or the reverse path) for it.




Characterizations of Trees — Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E| = |V]| — 1.

Proof (continued).

(4) = (2):

In graphs that are not acyclic, we can remove an edge without
changing the connected components: if (v, ..., vy, v) (n > 2)
is a cycle, remove the edge {vy, v1} from the graph.

Every walk using this edge can substitute (vi, ..., vp, vp)

(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V, E") is acyclic and connected and therefore a tree.




Characterizations of Trees — Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E| = |V]| — 1.

Proof (continued).

(4) = (2):

In graphs that are not acyclic, we can remove an edge without
changing the connected components: if (v, ..., vy, v) (n > 2)
is a cycle, remove the edge {vy, v1} from the graph.

Every walk using this edge can substitute (vi, ..., vp, vp)

(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V, E") is acyclic and connected and therefore a tree.

This implies |E’| = |V| — 1, but we also have |E| =|V|— 1.

This yields |E| = |E’| and hence E’ = E: the number of edges
removable in this way must be 0. Hence G is already acyclic. D)
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