Discrete Mathematics in Computer Science C2. Paths and Connectivity

Malte Helmert, Gabriele Röger

University of Basel

November 10, 2025

Walks, Paths, Tours and Cycles

Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Examples:

- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Walks

Definition (Walk)

A walk of length n in a graph (V, E) is a tuple $\langle v_0, v_1, \dots, v_n \rangle \in V^{n+1}$ s.t. $\{v_i, v_{i+1}\} \in E$ for all $0 \le i < n$.

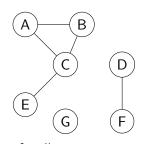
A walk of length n in a digraph (N, A) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in N^{n+1}$ s.t. $(v_i, v_{i+1}) \in A$ for all $0 \le i < n$.

German: Wanderung

Notes:

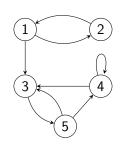
- The length of the walk does not equal the length of the tuple!
- The case n = 0 is allowed.
- Vertices may repeat along a walk.

Walks – Example



examples of walks:

- ⟨B, C, A⟩
- ${\color{red} \blacksquare} \ \langle \mathsf{B}, \mathsf{C}, \mathsf{A}, \mathsf{B} \rangle$
- ${\color{red} \blacksquare} \ \langle \mathsf{D}, \mathsf{F}, \mathsf{D} \rangle$
- ${\color{red} \blacksquare} \ \langle \mathsf{B}, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{E} \rangle$
- ⟨B⟩



examples of walks:

- ⟨4, 4, 4, 4⟩ ■ ⟨2, 5, 2, 5⟩
- ⟨3,5,3,5⟩
- **■** ⟨2, 1, 3⟩
- 4
- (4, 4)

Walks – Terminology

Definition

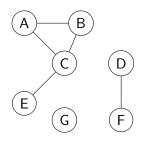
Let $\pi = \langle v_0, \dots, v_n \rangle$ be a walk in a graph or digraph G.

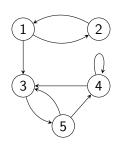
- We say π is a walk from v_0 to v_n .
- A walk with $v_i \neq v_j$ for all $0 \leq i < j \leq n$ is called a path.
- A walk of length 0 is called an empty walk/path.
- A walk with $v_0 = v_n$ is called a tour.
- A tour with $n \ge 1$ (digraphs) or $n \ge 3$ (graphs) and $v_i \ne v_j$ for all $1 \le i < j \le n$ is called a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus

Note: Terminology is not very consistent in the literature.

Walks, Paths, Tours, Cycles - Example





Which walks are paths, tours, cycles?

- lacksquare $\langle \mathsf{B},\mathsf{C},\mathsf{A} \rangle$
- $\blacksquare \langle \mathsf{B}, \mathsf{C}, \mathsf{A}, \mathsf{B} \rangle$
- \blacksquare $\langle D, F, D \rangle$
- lacksquare $\langle \mathsf{B}, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{E} \rangle$
- (B)

- (4, 4, 4, 4)
- ⟨3,5,3,5⟩
- **■** ⟨2, 1, 3⟩
 - 4
 - **■** ⟨4, 4⟩

Reachability

Definition (successor and reachability)

Let G be a graph (digraph).

The successor relation S_G and reachability relation R_G are relations over the vertices/nodes of G defined as follows:

- $(u, v) \in S_G$ iff $\{u, v\}$ is an edge ((u, v) is an arc) of G
- $(u, v) \in R_G$ iff there exists a walk from u to v

If $(u, v) \in R_G$, we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

Reachability as Closure

Recall the *n*-fold composition R_n of a relation R over set S (Chapter B4):

- $R_0 = \{(x, x) \mid x \in S\}$
- Arr $R_n = R \circ R_{n-1}$ for $n \ge 1$

Theorem

Let G be a graph or digraph. Then:

 $(u,v) \in (S_G)_n$ iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then $R_G = \bigcup_{n=0}^{\infty} (S_G)_n$.

In other words, the reachability relation is the reflexive transitive closure of the successor relation.

Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph.

Graphs are analogous.

Proof by induction over n.

. . .

Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph.

Graphs are analogous.

Proof by induction over *n*.

induction base (n = 0):

By definition of the 0-fold composition, we have $(u, v) \in (S_G)_0$ iff u = v, and a walk of length 0 from u to v exists iff u = v.

Hence, the two conditions are equivalent.

Reachability as Closure - Proof (2)

Proof (continued). induction step $(n \rightarrow n+1)$:

Reachability as Closure – Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

$$(\Rightarrow)$$
: Let $(u,v) \in (S_G)_{n+1}$.

By definition of S_{n+1} , we get $(u, v) \in S_G \circ (S_G)_n$.

By definition of \circ there exists w with $(u, w) \in (S_G)_n$ and $(w, v) \in S_G$.

From the induction hypothesis, there exists a length-n walk $\langle x_0, \ldots, x_n \rangle$ with $x_0 = u$ and $x_n = w$.

Then $\langle x_0, \ldots, x_n, v \rangle$ is a length-(n+1) walk from u to v.

Reachability as Closure – Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

$$(\Rightarrow)$$
: Let $(u,v) \in (S_G)_{n+1}$.

By definition of S_{n+1} , we get $(u, v) \in S_G \circ (S_G)_n$.

By definition of \circ there exists w with $(u, w) \in (S_G)_n$ and $(w, v) \in S_G$.

From the induction hypothesis, there exists a length-n walk $\langle x_0,\ldots,x_n\rangle$ with $x_0=u$ and $x_n=w$.

Then $\langle x_0, \ldots, x_n, v \rangle$ is a length-(n+1) walk from u to v.

$$(\Leftarrow)$$
: Let $\langle x_0, \dots, x_{n+1} \rangle$ be a length- $(n+1)$ walk from u to v $(x_0 = u, x_{n+1} = v)$. Then $(x_n, x_{n+1}) = (x_n, v) \in A$.

Also, $\langle x_0, \ldots, x_n \rangle$ is a length-*n* walk from x_0 to x_n .

From the IH we get $(u, x_n) = (x_0, x_n) \in (S_G)_n$.

Together with $(x_n, v) \in S_G$ this shows $(u, v) \in S_G \circ (S_G)_n = (S_G)_{n+1}$.

Connected Components

Overview

- In this section, we study reachability of graphs in more depth.
- We show that it makes no difference whether we define reachability in terms of walks or paths, and that reachability in graphs is an equivalence relation.
- This leads to the connected components of a graph.
- In digraphs, reachability is not always an equivalence relation.
- However, we can define two variants of reachability that give rise to weakly or strongly connected components.

Walks vs. Paths

Theorem

Let G be a graph or digraph.

There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Walks vs. Paths

Theorem

Let G be a graph or digraph.

There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

- (\Rightarrow) : obvious because paths are special cases of walks
- (\Leftarrow): Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi = \langle w_0, \dots, w_n \rangle$ be such a counterexample walk of minimal length.

Because π is not a path, some vertex/node must repeat.

Select i and j with i < j and $w_i = w_j$.

Then $\pi' = \langle w_0, \dots, w_i, w_{j+1}, \dots, w_n \rangle$ also is a walk from u to v. If π' is a path, we have a contradiction.

If not, it is a shorter counterexample: also a contradiction.

Reachability in Graphs is an Equivalence Relation

$\mathsf{Theorem}$

For every graph G, the reachability relation R_G is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive. To prove symmetry:

$$(u, v) \in R_G$$

 \Rightarrow there is a walk $\langle w_0, \dots, w_n \rangle$ from u to v
 $\Rightarrow \langle w_n, \dots, w_0 \rangle$ is a walk from v to u
 $\Rightarrow (v, u) \in R_G$

Connected Components

Definition (connected components, connected)

In a graph G, the equivalence classes of the reachability relation of G are called the connected components of G.

A graph is called connected if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (\emptyset, \emptyset) has 0 connected components.

It is the only such graph.

Weakly Connected Components

Definition (weakly connected components, weakly connected)

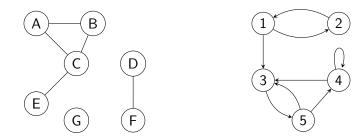
In a digraph G, the equivalence classes of the reachability relation of the induced graph of G are called the weakly connected components of G.

A digraph is called weakly connected if it has at most 1 weakly connected component.

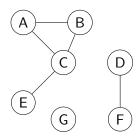
German: schwache Zshk., schwach zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 weakly connected components. It is the only such digraph.

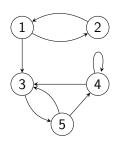
(Weakly) Connected Components – Example



(Weakly) Connected Components – Example



- {A, B, C, E}
- {D, F}
- {G}



weakly connected components:

1 {1, 2, 3, 4, 5}

Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph.

Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v.

We write M_G for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, $M_G = R_G$. (Why?)

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

■ reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.
- transitivity: Let $(u, v) \in M_G$ and $(v, w) \in M_G$. Then: $(u, v) \in R_G$, $(v, u) \in R_G$, $(v, w) \in R_G$, $(w, v) \in R_G$. Transitivity of R_G yields $(u, w) \in R_G$ and $(w, u) \in R_G$, and hence $(u, w) \in M_G$.

Strongly Connected Components

Definition (strongly connected components, strongly connected)

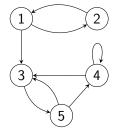
In a digraph G, the equivalence classes of the mutual reachability relation are called the strongly connected components of G.

A digraph is called strongly connected if it has at most 1 strongly connected component.

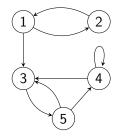
German: starke Zshk., stark zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 strongly connected components. It is the only such digraph.

Strongly Connected Components – Example



Strongly Connected Components – Example



strongly connected components:

- **1** {1, 2}
- **3**,4,5