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Graphs

Graphs (of various kinds) are ubiquitous in Computer Science
and its applications.
Some examples:
» Boolean circuits in hardware design
control flow graphs in compilers
pathfinding in video games
computer networks

neural networks
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social networks
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Graph Theory

» Graph theory was founded in 1736 by Leonhard Euler’s study
of the Seven Bridges of Konigsberg problem.

Graphs and Directed Graphs

» [t remains one of the main areas of discrete mathematics
to this day.

More on Euler and the Seven Bridges of Konigsberg:

The Seven Bridges of Kénigsberg - Numberphile
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» The Seven Bridges of Konigsberg — Numberphile.
https://youtu.be/W18FDEA1jRQ
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C1. Introduction to Graphs

Graphs and Directed Graphs — Definitions

Definition (Graph)

A graph (also: undirected graph) is a pair G = (V/, E), where
> V is a finite set called the set of vertices, and
» E C {{u,v} C V |u# v} is called the set of edges.

German: Graph, ungerichteter Graph, Knoten, Kanten

Definition (Directed Graph)

A directed graph (also: digraph) is a pair G = (N, A), where
» N is a finite set called the set of nodes, and
» AC N x N is called the set of arcs.

German: gerichteter Graph, Digraph, Knoten, Kanten/Pfeile
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Graphs and Directed Graphs — Pictorially

often described pictorially:
G‘G
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graph (V,E) directed graph (N, A)

» V={A,B,C,D,E,F,G}
» E={{A,B},{A C},{B,C},
{C,E},{D,F}}

> N=1{1,2,3,4,5}
> A={(1,2),(1,3),(2,1),(3,5),
(4,3),(4,4),(5,3),(5,4)}
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Relationship to Relations

graphs vs. directed graphs:
> edges are sets of two elements, arcs are pairs
» arcs can be self-loops (v, v); edges cannot (why not?)

(di-)graphs vs. relations:

> A directed graph (N, A) is essentially identical to
(= contains the same information as)
an arbitrary relation R over the finite set N:
uRp v iff (u,v) € A
» A graph (V, E) is essentially identical to
an irreflexive symmetric relation Rg over the finite set V:
uRgviff {u,v} €E
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https://youtu.be/W18FDEA1jRQ

C1. Introduction to Graphs

Other Kinds of Graphs

many variations exist, for example:

> self-loops may be allowed in edges (“non-simple”

Graphs and Directed Graphs

graphs)

> labeled graphs: additional information associated with

vertices and/or edges

weighted graphs: numbers associated with edges

mixed graphs: both edges and arcs allowed
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hypergraphs: edges can involve more than 2 vertices

infinite graphs: may have infinitely many vertices/edges
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Graph Terminology

Definition (Graph Terminology)
Let (V, E) be a graph.
» u and v are the endpoints of the edge {u,v} € E
» wu and v are incident to the edge {u,v} € E
» uand v are adjacent if {u,v} € E
> the vertices adjacent with v € V are its neighbours neigh(v):
neigh(v) ={w e V |{v,w} € E}
» the number of neighbours of v € V is its degree deg(v):
deg(v) = [neigh(v)|

German: Endknoten, inzident, adjazent/benachbart, Nachbarn,

C1. Introduction to Graphs

Graph Terminology — Examples

(ny—(®)
© @

Yo ®

Graphs and Directed Graphs

endpoints, incident, adjacent, neighbours, degree
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Directed Graph Terminology

Definition (Directed Graph Terminology)
Let (N, A) be a directed graph.
» u is the tail and v is the head of the arc (u,v) € A;
we say (u, v) is an arc from u to v
» u and v are incident to the arc (u,v) € A
» uis a predecessor of v and v is a successor of u if (u,v) € A

» the predecessors and successor of v are written as
pred(v) ={u e N | (u,v) € A} and
succ(v) ={we N|(v,w) € A}

» the number of predecessors/successors of v € N is its
indegree/outdegree: indeg(v) = |pred(v)],
outdeg(v) = [succ(v)|

German: Fuss, Kopf, inzident, Vorganger, Nachfolger,
Eingangs-/Ausgangsgrad
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Directed Graph Terminology — Examples

5

head, tail, predecessors, successors, indegree, outdegree
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C1.2 Induced Graphs and Degree
Lemma
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C1. Introduction to Graphs

Induced Graph of a Directed Graph

Induced Graphs and Degree Lemma

Definition (undirected graph induced by a directed graph)
Let G = (N, A) be a directed graph.
The (undirected) graph induced by G is the graph (N, E) with
E={{uv}|(uv)eAu#v}
German: induziert
Questions:
» Why require u # v?

» If [N| = n and |A| = m, how many vertices and edges
does the induced graph have?

» How does the answer change if G has no self-loops?

M. Helmert, G. Réger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 15 / 20
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Induced Graph of a Directed Graph — Example

> N=1{1,2,3,4,5}
> A={(1,2),(1,3),(2,1),(3,5),
(4,3),(4,4).(5,3),(5,4)}

> V ={1,2,3,45}

» E={{1,2},{1,3},{3,4},
{3,5},{4,5}}
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Degree Lemma

Lemma (degree lemma for directed graphs)
Let (N, A) be a directed graph.
Then ) pyindeg(v) = > poutdeg(v) = |A|.

Intuitively: every arc contributes 1 to the indegree of one node
and 1 to the outdegree of one node.

Lemma (degree lemma for undirected graphs)
Let (V,E) be a graph.
Then ) .\ deg(v) = 2|E|.

Induced Graphs and Degree Lemma

Intuitively: every edge contributes 1 to the degree of two vertices.

Corollary
Every graph has an even number of vertices with odd degree.
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Degree Lemma — Example
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Z deg(v)

vev
= deg(A) + deg(B) + deg(C) + deg(D) + deg(E) + deg(F) + deg(G)
=24+2+3+1+1+1+40
—10=2-5=2|F|

4 vertices with odd degree
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Degree Lemma — Proof (1)

Proof of degree lemma for directed graphs.

Z indeg(v) = Z |pred(v)|

veN velN

=Y HulueN,(uv)eA}

veN

= > H(u,v)|ue N, (uv)e A}

veN

= Ul v) [ue N, (uv) € A}

veN
= [{(u,v) |ue N,veN,(uv)e A}
= |A|.

> ven outdeg(v) = |A] is analogous.
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Degree Lemma — Proof (2)

We omit the proof for undirected graphs,
which can be conducted similarly.

One possible proof strategy that reuses the result we proved:
» Define directed graph (V, A) from the graph (V/, E)
by orienting each edge into an arc arbitrarily.

» Observe deg(v) = indeg(v) + outdeg(v), where deg refers to
the graph and indeg/outdeg to the directed graph.

» Use the degree lemma for directed graphs:

> ey deg(v) = > oy (indeg(v) + outdeg(v)) =
Y vevindeg(v) 4+ >\ outdeg(v) = |A] + |A| = 2|A| = 2|E]
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