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Divisibility



Divisibility

Can we equally share n muffins among m persons
without cutting a muffin?

If yes then n is a multiple of m and m divides n.

We consider a generalization of this concept to the integers.
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Divisibility

Definition (divisor, multiple)

Let m, n ∈ Z. If there exists a k ∈ Z such that mk = n,
we say that m divides n, m is a divisor of n or n is a multiple of m
and write this as m | n.

Which of the following are true?

2 | 4
−2 | 4
2 | −4

4 | 2
3 | 4
Every integer divides 0.

German: teilt, Teiler, Vielfaches
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Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa+ yb.

Proof.

If d | a and d | b then there are k , k ′ ∈ Z
such that kd = a and k ′d = b.
It holds for all x , y ∈ Z that xa+ yb = xkd + yk ′d = (xk + yk ′)d .
As x , y , k , k ′ are integers, xk + yk ′ is integer, thus d | xa+ yb.

Some consequences:

d | a− b iff d | b − a

If d | a and d | b then d | a+ b and d | a− b.

If d | a then d | −8a.
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Multiplication and Exponentiation

Theorem

Let a, b, c ∈ Z and n ∈ N1.
If a | b then ac | bc and an | bn.

Proof.

If a | b there is a k ∈ Z such that ak = b.

Multiplying both sides with c, we get cak = cb and thus ca | cb.
From ak = b, we also get bn = (ak)n = ankn, so an | bn.
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Partial Order

If we consider only the natural numbers,
divisibility is a partial order:

Theorem

Divisibility | over N0 is a partial order.

Proof.

reflexivity: For all m ∈ N0 it holds that m · 1 = m, so m | m.

transitivity: If m | n and n | o there are k , k ′ ∈ Z
such that mk = n and nk ′ = o.
It holds that o = nk ′ = mkk ′ and kk ′ is an integer,
so we conclude m | o.

. . .
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Partial Order

Proof (continued).

antisymmetry: We show that if m | n and n | m then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.
If m | n and n | m then there are k, k ′ ∈ Z
such that mk = n and nk ′ = m.

Combining these, we get m = nk ′ = mkk ′, which implies
(with m ̸= 0) that kk ′ = 1.

Since k and k ′ are integers, this implies k = k ′ = 1 or
k = k ′ = −1. As mk = n, m is positive and n is non-negative,
we can conclude that k = 1 and m = n.
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Modular Arithmetic



Halloween

You have m sweets.

There are k kids showing up for
trick-or-treating.

To keep everything fair, every kid
gets the same amount of treats.

You may enjoy the rest. :-)

How much does every kid get,
how much do you get?



Euclid’s Division Lemma

Theorem (Euclid’s division lemma)

For all integers a and b with b ̸= 0
there are unique integers q and r
with a = qb + r and 0 ≤ r < |b|.
Number a is called the dividend, b the divisor, q is the quotient
and r the remainder.

Without proof.

Examples:

a = 18, b = 5

a = 5, b = 18

a = −18, b = 5

a = 18, b = −5

German: Division mit Rest, Dividend, Divisor, Ganzzahlquotient, Rest
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Modulo Operation

With a mod b we refer to the remainder of Euclidean division.

Most programming languages have a built-in operator
to compute a mod b (for positive integers):

int mod = 34 % 7;

// result 6 because 4 * 7 + 6 = 34

Common application: Determine whether
a natural number n is even.

n % 2 == 0

Languages behave differently with negative operands!
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Halloween

def share_sweets(no_kids, no_sweets):

print("Each kid gets",

no_sweets // no_kids,

"of the sweets.")

print("You may keep",

no_sweets % no_kids,

"of the sweets.")



Congruence Modulo n

We now are no longer interested in the value of the remainder
but will consider numbers a and a′ as equivalent
if the remainder with division by a given number b is equal.

Consider the clock:

It’s now 3 o’clock
In 12 hours its 3 o’clock
Same in 24, 36, 48, . . . hours.
15:00 and 3:00 are shown the same.
In the following, we will express this as 3 ≡ 15 (mod 12)
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Congruence Modulo n – Definition

Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo n if n | a− b.

We write this as a ≡ b (mod n).

Which of the following statements are true?

0 ≡ 5 (mod 5)

1 ≡ 6 (mod 5)

4 ≡ 14 (mod 5)

−8 ≡ 7 (mod 5)

2 ≡ −3 (mod 5)

Why is this the same concept as described in the clock example?!?

German: kongruent modulo n
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Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer n > 1 it holds that
a ≡ b (mod n) iff there are q, q′, r ∈ Z with

a = qn + r

b = q′n + r .

Proof sketch.

“⇒”: If n | a− b then there is a k ∈ Z with kn = a− b.

As n ̸= 0, by Euclid’s lemma there are q, q′, r , r ′ ∈ Z with
a = qn + r and b = q′n + r ′, where 0 ≤ r < |n| and 0 ≤ r ′ < |n|.
Together, we get that kn = qn + r − (q′n + r ′), which is the case
iff kn + r ′ = (q − q′)n + r . By Euclid’s lemma, quotients and
remainders are unique, so in particular r ′ = r .

“⇐”: If we subtract the equations, we get a− b = (q − q′)n,
so n | a− b and a ≡ b (mod n).
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Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: a ≡ a (mod n) because every integer divides 0.

Symmetric: a ≡ b (mod n) iff n | a− b iff n | b − a
iff b ≡ a (mod n).

Transitive: If a ≡ b (mod n) and b ≡ c (mod n) then n | a− b
and n | b − c . Together, these imply that n | a− b + b − c .
From n | a− c we get a ≡ c (mod n).

For modulus n, the equivalence class of a is
ān = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . }.
Set ān is called the congruence class or residue of a modulo n.
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From n | a− c we get a ≡ c (mod n).

For modulus n, the equivalence class of a is
ān = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . }.
Set ān is called the congruence class or residue of a modulo n.

German: Restklasse



Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
if a ≡ b (mod n) and a′ ≡ b′ (mod n) then

a+ a′ ≡ b + b′ (mod n),

a− a′ ≡ b − b′ (mod n),

aa′ ≡ bb′ (mod n),

a+ k ≡ b + k (mod n) for all k ∈ Z,
ak ≡ bk (mod n) for all k ∈ Z, and
ak ≡ bk (mod n) for all k ∈ N0.

Congruence modulo n is a so-called congruence relation
(= equivalence relation compatible with operations).

German: kompatibel mit Addition, Subtraktion, Multiplikation,
Translation, Skalierung, Exponentiation
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Summary

m divides n (written m | n) if n is a multiple of m,
i.e. there is an integer k with n = mk .

Divisibility is compatible with multiplication and
exponentiation.

Divisibility over the natural numbers is a partial order.

The modulo operation a mod b corresponds to the remainder
of Euclidean division.

Congruence modulo n considers integers equivalent if they
have with divisor n the same remainder.

Congurence modulo n is an equivalence relation that is
compatible with the arithmetic operations.
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