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Reminder: Cardinality of the Power Set

Let S be a finite set. Then |P(S)| = 2/3!.




Cantor’'s Theorem



Countable Sets

We already know:

m Sets with the same cardinality as Ny are called countably
infinite.

m A countable set is finite or countably infinite.
m Every subset of a countable set is countable.

m The union of countably many countable sets is countable.



Countable Sets

We already know:

m Sets with the same cardinality as Ny are called countably
infinite.

m A countable set is finite or countably infinite.
m Every subset of a countable set is countable.

m The union of countably many countable sets is countable.

Open questions (to be resolved today):
m Do all infinite sets have the same cardinality?

m Does the power set of an infinite set S
have the same cardinality as S7



Georg Cantor

German mathematician (1845-1918)

Proved that the rational numbers are
countable.
Proved that the real numbers are not
countable.

Cantor’s Theorem: For every set S
it holds that |S| < |P(S)].



Our Plan

m Understand Cantor's theorem

m Understand an important theoretical implication
for computer science



Cantor’'s Diagonal Argument lllustrated on a Finite Set

S ={a,b,c}.

Consider an arbitrary function from S to P(S).
For example:

a mapped to {a, c}
b mapped to {a, b}
¢ mapped to {b}
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Cantor's Diagonal Argument lllustrated on a Finite Set

S ={a,b,c}.

Consider an arbitrary function from S to P(S).
For example:

a b c¢
a 1 01 a mapped to {a,c}
b 1 1 0 b mapped to {a, b}
c 01 0 ¢ mapped to {b}
0 0 1 nothing was mapped to {c}.

We can identify an "“unused” element of P(S).
Complement the entries on the main diagonal.

Works with every function from S to P(S).
— there cannot be a surjective function from S to P(S).
— there cannot be a bijection from S to P(S).



Cantor’'s Diagonal Argument on a Countably Infinite Set

S =Np.

Consider an arbitrary function from Ny to P(Np).
For example:

0 1 2 3 4
01 01 01
111 0 1 0
2 01 010
311 .0 00
4 1 1 0 1 1



Cantor's Diagonal Argument on a Countably Infinite Set

S =Np.

Consider an arbitrary function from Ny to P(Np).
For example:

0 1 2 3 4
01 01 01
111 0 1 0
2 01 0 1 0
3110 0 0
4 1 1 0 1 1

0 01 1 0

Complementing the entries on the main diagonal
again results in an “unused” element of P(Np).
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Theorem (Cantor’s Theorem)
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Consider an arbitrary set S. We need to show that
@ There is an injective function from S to P(S).
@ There is no bijection from S to P(S).
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Cantor’'s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S| < |P(S)|.

Consider an arbitrary set S. We need to show that
@ There is an injective function from S to P(S).
@ There is no bijection from S to P(S).

For 1, consider function f : S — P(S) with f(x) = {x}.
It maps distinct elements of S to distinct elements of P(S).

.




Cantor’'s Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).
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Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).

Consider M = {x | x € §,x ¢ f(x)} and note that M € P(S).
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Assume there is a bijection f from S to P(S).
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Since f is bijective, it is surjective and there is an y € S with
f(y) = M. Consider this y in a case distinction:
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Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).
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definition of M we get that x € M. ~» contradiction
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Since all cases lead to a contradiction, there is no such x and thus
f is not surjective and consequently not a bijection.




Cantor’'s Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).

Consider M = {x | x € §,x ¢ f(x)} and note that M € P(S).
Since f is bijective, it is surjective and there is an y € S with

f(y) = M. Consider this y in a case distinction:

If y € M then y ¢ f(y) by the definition of M. Since f(y) = M
this implies y ¢ M. ~- contradiction

If y ¢ M, we conclude from f(y) = M that x ¢ f(x). Using the
definition of M we get that x € M. ~» contradiction

Since all cases lead to a contradiction, there is no such x and thus
f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no
bijection from S to P(S). O




Consequences of Cantor's Theorem



Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:
= [No| < [P(No))| < [P(P(No)))| <...
m |No| =Ro =23
= [P(No)| = J1(= [R])
= [P(P(No))| = 32



Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.
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Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?



Decision Problems

“Intuitive Definition:” Decision Problem

A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

m “Does the given binary tree have more than three leaves?”
m "Is the given integer odd?”

m “Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”
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® Input can be encoded as some finite string.

m Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes".



Decision Problems

“Intuitive Definition:” Decision Problem

A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

m “Does the given binary tree have more than three leaves?”
m "Is the given integer odd?”

m “Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”

® Input can be encoded as some finite string.

m Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes".

m A computer program solves a decision problem if it terminates
on every input and returns the correct answer.



More Problems than Programs |

m A computer program is given by a finite string.

m A decision problem corresponds to a set of strings.



More Problems than Programs Il

m Consider an arbitrary finite set of symbols (an alphabet) X.

m You can think of ¥ = {0,1}
as internally computers operate on binary representation.
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More

Problems than Programs I

Consider an arbitrary finite set of symbols (an alphabet) X.

You can think of ¥ = {0,1}
as internally computers operate on binary representation.

Let S be the set of all finite strings made from symbols in X.

m There are at most |S| computer programs with this alphabet.
m There are at least |P(S)| problems with this alphabet.

m every subset of S corresponds to a separate decision problem
By Cantor’s theorem |S| < |P(S)],
so there are more problems than programs.




Sets: Summary



Summary

m Cantor’s theorem: For all sets S it holds that |S| < [P(S)|.

m There are problems that cannot be solved by a computer
program.



Outlook: Finite Sets and Computer
Science



Enumerating all Subsets

Determine a one-to-one mapping between numbers 0, ..., 215l —1
and all subsets of finite set S:

S={ab,c}

m Consider the binary decimal  binary set
representation of numbers be
0,...,215—1. °

m Associate every bit with a (1) ? {3

i fS.
different element of S 5 10 (b}

m Every number is mapped to 3 11 {b,c}
the set that contains exactly 4 100 {a}
the elements associated with 5 101 {a,c}
the 1-bits. 6 110 {a, b}

7 111 {a, b, c}



Computer Representation as Bit String

Same representation as in enumeration of all subsets:
m Required: Fixed universe U of possible elements
m Represent sets as bitstrings of length |U]|
m Associate every bit with one object from the universe
[

Each bit is 1 iff the corresponding object is in the set
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m Required: Fixed universe U of possible elements
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m Associate every bit with one object from the universe
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m Associate the i-th bit (0-indexed, from left to right) with o;

m {02,04,05,09} is represented as:
0010110001



Computer Representation as Bit String

Same representation as in enumeration of all subsets:
m Required: Fixed universe U of possible elements
m Represent sets as bitstrings of length |U]|
m Associate every bit with one object from the universe
[

Each bit is 1 iff the corresponding object is in the set

Example:
L] U:{Oo,...,OQ}
m Associate the i-th bit (0-indexed, from left to right) with o;

m {02,04,05,09} is represented as:
0010110001

How can the set operations be implemented?



Questions

N

°? Questions?
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