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Important Building Blocks of Discrete Mathematics

Important building blocks:
m sets
m relations

m functions

In principle, functions are just a special kind of relations:
m f: Ny — Ng with f(x) = x?
m relation R over Ng with R = {(x,x?) | x € Ng}.



Functional Relations

Definition

A binary relation R over sets A and B is functional
if for every a € A there is at most one b € B with (a, b) € R.

functional not functional



Functions — Examples

m Ny — Np with f(x) =x%+1
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m Ny — Np with f(x) =x%+1
m abs: 7 — Ny with

bs(x) X if x>0
abs(x) =
—x otherwise



Functions — Examples

m Ny — Np with f(x) =x%+1
m abs: 7 — Ny with
ifx>0
abs(x) = {X s _
—x otherwise

m distance : R? x R2 — R with

distance((x1, y1), (x2, y2)) = \/(Xz —x1)? + (2 — y1)?



Partial Function — Example

Partial function r : Z x Z - Q with

r(nd){g if d #0

undefined otherwise



Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A+ B)
is given by a functional relation G over A and B.




Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A+ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f.




Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A+ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f.

We write f(x) = y for (x,y) € G and say
y is the image of x under f.

If there is no y € B with (x,y) € G, then f(x) is undefined.




Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A+ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f.

We write f(x) = y for (x,y) € G and say
y is the image of x under f.

If there is no y € B with (x,y) € G, then f(x) is undefined.

Partial function r : Z x Z - Q with

r(n’d):{g if d #0

undefined otherwise

has graph {((n,d), 5) | n€ Z,d € Z\ {0}} C Z* x Q.



Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A-» B be a partial function.

Set A is called the domain of f, set B is its codomain.
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Definition (Domain of definition, codomain, image)

Let f : A-» B be a partial function.

Set A is called the domain of f, set B is its codomain.

f:{ab,c,d, e} » {1,2,3,4}
f(a)=4,f(b)=2,f(c)=1,f(e) =4
domain {a, b, c,d, e}

codomain {1,2,3,4}
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Definition (Domain of definition, codomain, image)

Let f : A-» B be a partial function.
Set A is called the domain of f, set B is its codomain.

The domain of definition of f is the set
dom(f) = {x € A|thereis a y € B with f(x) = y}.

f:{ab,c,d e} » {1,234}

f(a) =4,f(b) =2,f(c)=1,f(e) =4
domain {a, b, c,d, e}

codomain {1,2,3,4}

domain of definition dom(f) = {a, b, c, e}




Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A-» B be a partial function.

Set A is called the domain of f, set B is its codomain.
The domain of definition of f is the set

dom(f) = {x € A|thereis a y € B with f(x) = y}.
The image (or range) of f is the set

img(f) = {y | there is an x € A with f(x) = y}.

f:{ab,c,d e} » {1,234}

f(a) =4,f(b) =2,f(c)=1,f(e) =4
domain {a, b, c,d, e}

codomain {1,2,3,4}

domain of definition dom(f) = {a, b, c, e}
image img(f) = {1,2,4}




Preimage

The preimage contains all elements of the domain that are mapped
to given elements of the codomain.

Definition (Preimage)

Let f : A-» B be a partial function and let Y C B.

The preimage of Y under f is the set
f Y] ={xe€ A| f(x) e Y}.




Preimage

The preimage contains all elements of the domain that are mapped
to given elements of the codomain.

Definition (Preimage)

Let f : A-» B be a partial function and let Y C B.

The preimage of Y under f is the set
f Y] ={xe€ A| f(x) e Y}.

F{1}] =
FH{3} =
F{4}] =
F{1,2}] =




Total Functions

Definition (Total function)

A (total) function f : A — B from set A to set B is a partial
function from A to B such that f(x) is defined for all x € A.




Total Functions

Definition (Total function)

A (total) function f : A — B from set A to set B is a partial
function from A to B such that f(x) is defined for all x € A.

— no difference between the domain and the domain of definition



Total Functions

Definition (Total function)

A (total) function f : A — B from set A to set B is a partial
function from A to B such that f(x) is defined for all x € A.

— no difference between the domain and the domain of definition




Specifying a Function

Some common ways of specifying a function:
m Listing the mapping explicitly, e. g.

f(a) =4,f(b)=2,f(c)=1,f(e) =4 or
f={a—4,b—2c—1ler— 4}
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Specifying a Function

Some common ways of specifying a function:

m Listing the mapping explicitly, e. g.
f(a)=4,f(b)=2,f(c)=1,f(e) =4 or
f={a—4,b—2c—1ler— 4}

m By a formula, e.g. f(x) = x> +1

m By recurrence, e. g.
0!'=1and
nl'=n(n—1)! forn>0

m In terms of other functions, e. g. inverse, composition



Relationship to Functions in Programming

def factorial(m):
if n ==
return 1
else:
return n * factorial(n-1)

— Relationship between recursion and recurrence



Relationship to Functions in Programming

def foo(n):
value = ...
while <some condition>:

value = ...
return value

— Does possibly not terminate on all inputs.
— Value is undefined for such inputs.
— Theoretical computer science: partial function



Relationship to Functions in Programming

import random
counter = 0

def bar(n):
print("Hi! I got input", n)
global counter
counter += 1
return random.choice([1,2,n])

— Functions in programming don't always compute
mathematical functions (except purely functional languages).
— In addition, not all mathematical functions are computable.



Questions

N

°? Questions?



Operations on Partial Functions



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A-» B be a partial function and let X C A.

The restriction of f to X is the partial function f|x : X - B
with f|x(x) = f(x) for all x € X.
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Definition (Restriction and extension)

Let f : A-» B be a partial function and let X C A.

The restriction of f to X is the partial function f|x : X - B
with f|x(x) = f(x) for all x € X.

A function f’ : A’ - B is called an extension of f
if AC A" and f'|4 = f.
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The restriction of f to X is the partial function f|x : X - B
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A function f’ : A’ - B is called an extension of f
if AC A" and f'|4 = f.

The restriction of f to its domain of definition is a total function.
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Definition (Restriction and extension)

Let f : A-» B be a partial function and let X C A.

The restriction of f to X is the partial function f|x : X - B
with f|x(x) = f(x) for all x € X.

A function f’ : A’ - B is called an extension of f
if AC A" and f'|4 = f.

The restriction of f to its domain of definition is a total function.

What's the graph of the restriction?



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A-» B be a partial function and let X C A.

The restriction of f to X is the partial function f|x : X - B
with f|x(x) = f(x) for all x € X.

A function f’ : A’ - B is called an extension of f
if AC A" and f'|4 = f.

The restriction of f to its domain of definition is a total function.
What's the graph of the restriction?
What's the restriction of f to its domain?



Function Composition

Definition (Composition of partial functions)

Let f : A-» B and g : B -+ C be partial functions.
The composition of f and gis gof : A C with

g(f(x))  if f is defined for x and
(gof)(x)= g is defined for f(x)
undefined otherwise
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Definition (Composition of partial functions)

Let f : A-» B and g : B -+ C be partial functions.
The composition of f and gis gof : A C with

g(f(x))  if f is defined for x and
(gof)(x)= g is defined for f(x)
undefined otherwise

Corresponds to relation composition of the graphs.



Function Composition

Definition (Composition of partial functions)

Let f : A-» B and g : B -+ C be partial functions.
The composition of f and gis gof : A C with

g(f(x))  if f is defined for x and
(gof)(x)= g is defined for f(x)
undefined otherwise

Corresponds to relation composition of the graphs.
If f and g are functions, their composition is a function.



Function Composition

Definition (Composition of partial functions)

Let f : A-» B and g : B -+ C be partial functions.
The composition of f and gis gof : A C with

g(f(x))  if f is defined for x and
(gof)(x)= g is defined for f(x)
undefined otherwise

Corresponds to relation composition of the graphs.
If f and g are functions, their composition is a function.
Example:
f:No— Ny with f(x) = x?
g :No — Np with g(x) =x+3
(gof)(x)=



Properties of Function Composition

Function composition is
m not commutative:
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Function composition is
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m f: Ny — Np with f(x) = x?
m g Ng — Ny with g(x) =x+3
m(gof)(x)=x2>+3



Properties of Function Composition

Function composition is
®m not commutative:
m f: Ny — Np with f(x) = x?
m g Ng — Ny with g(x) =x+3
m(gof)(x)=x2>+3
m (fog)(x)=(x+3)?



Properties of Function Composition

Function composition is

®m not commutative:
m f: Ny — Np with f(x) = x?
m g Ng — Ny with g(x) =x+3
m(gof)(x)=x2>+3
m (fog)(x)=(x+3)?

m associative, i.e. ho(gof)=(hog)of

— analogous to associativity of relation composition



Function Composition in Programming

We implicitly compose functions all the time. ..
def foo(n):

somefunction(n)
someotherfunction(x)

< XN
o



Function Composition in Programming

We implicitly compose functions all the time. ..
def foo(n):

somefunction(n)
someotherfunction(x)

< X
o

Many languages also allow explicit composition of functions,
e.g. in Haskell:

incr x = x + 1

square X = X * X

squareplusone = incr . square



Questions

N

°? Questions?



Properties of Functions



Properties of Functions

m Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.
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Properties of Functions

m Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.
m Different elements of the domain can have the same image.

m There can be values of the codomain
that aren't the image of any element of the domain.



Properties of Functions

m Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.

m Different elements of the domain can have the same image.

m There can be values of the codomain
that aren't the image of any element of the domain.

m We often want to exclude such cases
— define additional properties to say this quickly



Injective Functions

An injective function maps distinct elements of its domain to
distinct elements of its co-domain.

Definition (Injective function)

A function f : A — B is injective (also one-to-one or an injection)
if for all x,y € A with x # y it holds that f(x) # f(y).

-3 B

Y,

injective not injective




Injective Functions — Examples

Which of these functions are injective?
m f:Z — Ng with f(x) = |x|
m g : Nyg — Np with g(x) = x?

x—1 if xis odd

= h:No — No with h(X):{X—i-l if x is even



Composition of Injective Functions

If f: A— B and g : B — C are injective functions
then also g o f is injective.




Composition of Injective Functions

If f: A— B and g : B — C are injective functions
then also g o f is injective.

Consider arbitrary elements x, y € A with x # y.
Since f is injective, we know that f(x) # f(y).

As g is injective, this implies that g(f(x)) # g(f(y))-
With the definition of g o f, we conclude that

(gof)(x) # (g of)(y).

Overall, this shows that g o f is injective. Ol




Surjective Functions

A surjective function maps at least one elements to every element
of its co-domain.

Definition (Surjective function)

A function f : A — B is surjective (also onto or a surjection)
if its image is equal to its codomain,
i.e. for all y € B there is an x € A with f(x) = y.

surjective not surjective



Surjective Functions — Examples

Which of these functions are surjective?
m f:Z — Ng with f(x) = |x|
m g : Nyg — Np with g(x) = x?

x—1 if xis odd

= h:No — No with h(X):{X—i-l if x is even



Composition of Surjective Functions

If f: A— B and g : B — C are surjective functions
then also g o f is surjective.




Composition of Surjective Functions

If f: A— B and g : B — C are surjective functions
then also g o f is surjective.

Consider an arbitary element z € C.

Since g is surjective, there is a y € B with g(y) = z.

As f is surjective, for such a y there is an x € A with f(x) =y
and thus g(f(x)) = z.

Overall, for every z € C there is an x € A with
(gof)(x)=g(f(x)) =2z so gof is surjective. O




Questions

N

°? Questions?



Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.




Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.

bijection



Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.

The composition of two bijective
functions is bijective.

bijection



Bijective Functions — Examples

Which of these functions are bijective?
m f:Z — Ng with f(x) = |x|
m g : Nyg — Np with g(x) = x?

x—1 if xis odd

= h:No — No with h(X):{X—i-l if x is even



Inverse Function

Definition

Let f : A — B be a bijection.

The inverse function of f is the function f~1: B — A with
f~Y(y) = x iff f(x) = y.




Inverse Function

Definition

Let f : A — B be a bijection.

The inverse function of f is the function f~1: B — A with
f~Y(y) = x iff f(x) = y.




Inverse Function and Composition

Let f : A— B be a bijection.
@ For all x € A it holds that f~1(f(x)) = x
@ For all y € B it holds that f(f~(y)) =y.
Q@ rlisa bijection from B to A.
Q(FYH)y!t=rf




Inverse Function and Composition

Let f : A— B be a bijection.
@ For all x € A it holds that f~1(f(x
@ For all y € B it holds that f(f~*(y
@ ! is a bijection from B to A.
Q@ (FhH)y?t=r

Proof sketch.

© For x € Alety = f(x). Then f~(f(x)) =
@ For y € B there is exactly one x with y =
it holds that f~1(y) = x and overall f(f~!

.




Inverse Function and Composition

Let f : A— B be a bijection.
@ For all x € A it holds that f~1(f(x)
@ For all y € B it holds that f(f~1(y)
@ ! is a bijection from B to A.
Q@ (FhH)y?t=r )

Proof sketch.

Q For x € Alety = f(x). Then f~1(f(x)) = f1(y) = x
@ For y € B there is exactly one x with y = f(x). With this x
it holds that f~1(y) = x and overall f(f~1(y)) = f(x) = y.

© Surjective: for all x € A, f~! maps f(x) to x (cf. (1)).
Injective: if F~1(y) = f=1(y') then f(F~1(y)) = F(F1(y")),
so with (2) we have y = y'.

.




Inverse Function and Composition

Let f : A— B be a bijection.
@ For all x € A it holds that f~1(f(x)
@ For all y € B it holds that f(f~1(y)
@ ! is a bijection from B to A.
Q@ (FhH)y?t=r )

Proof sketch.

Q For x € Alety = f(x). Then f~1(f(x)) = f1(y) = x
@ For y € B there is exactly one x with y = f(x). With this x
it holds that f~1(y) = x and overall f(f~1(y)) = f(x) = y.

© Surjective: for all x € A, =1 maps f(x) to x (cf. (1)).
Injective: if f=1(y) = f=1(y’) then f(f~1(y)) = F(F1(y)),
so with (2) we have y = y'.

@ Def. of inverse: (f~1)71(x) = y iff f~1(y) = x iff f(x) = y.

.




Inverse Function

Let f: A— B and g : B — C be bijections.
Then (gof)t=flog™L




Inverse Function

Let f: A— B and g : B — C be bijections.
Then (gof)t=flog™L

We need to show that for all x € C it holds that

(gof)7Hx) = (Ftog h)(x).

Consider an arbitrary x € C and let y = (g o f)~1(x).

By the definition of the inverse (g o f)(y) = g(f(y)) = x.

Let z = f(y).

From x = g(f(y)), we know that x = g(z) and thus g~1(x) = z.
From z = f(y )wegetf Yz)=y.

This gives (f Log ) (x) = fF (g7 (x)) = f1(z) = y. O




Questions

N

°? Questions?



Permutations

faeo Low
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ool ole




Permutation — Definition

Definition (Permutation)

Let S be a set. A bijection 7: S — S is called a permutation of S.
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Definition (Permutation)

Let S be a set. A bijection 7: S — S is called a permutation of S.

How many permutations are there for a finite set S7

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S. Why?



Permutation — Definition

Definition (Permutation)
Let S be a set. A bijection 7: S — S is called a permutation of S.

How many permutations are there for a finite set S7

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S. Why?

The inverse of a permutation is again a permutation.



Permutations as Functions on Positions

m A permutation can be used to describe the rearrangement of
objects.
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m Consider for example sequence oy, 01, 03, 04
m Let's rearrange the objects, e. g. to 03,01, 04, 0o.
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Permutations as Functions on Positions

m A permutation can be used to describe the rearrangement of
objects.
m Consider for example sequence oy, 01, 03, 04
m Let's rearrange the objects, e. g. to 03,01, 04, 0o.
m The object at position 1 was moved to position 4,
the one from position 3 to position 1,

|
m the one from position 4 to position 3 and
m the one at position 2 stayed where it was.



Permutations as Functions on Positions

m A permutation can be used to describe the rearrangement of
objects.

m Consider for example sequence 07, 01, 03, 04
m Let's rearrange the objects, e. g. to 03,01, 04, 0o.
m The object at position 1 was moved to position 4,
m the one from position 3 to position 1,
m the one from position 4 to position 3 and
m the one at position 2 stayed where it was.
m This corresponds to the permutation
o:4{1,2,3,4} — {1,2,3,4} with
o(l)=4,02)=2,03)=1,0(4) =3



Permutation: Example |

Determine the arrangement of some objects after applying a
permutation that operates on the locations.
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Determine the arrangement of some objects after applying a
permutation that operates on the locations.

/‘q,
D@® and 7 permutation of {1,2,3}.

Define f with f( j’) =1, (@) =2 (@) =3

to describe the initial configuration.



Permutation: Example |

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

/‘Q’
D@® and 7 permutation of {1,2,3}.

€1 -
Define £ with ([)) = 1, (@) = 2. f(@) =3
to describe the initial configuration.

Then 7o f describes the resulting configuration.



Permutation: Example |l

Describe what fruit is moved to the place of what fruit,
independent of the positions.
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Permutation: Example |l

Describe what fruit is moved to the place of what fruit,
independent of the positions.

£ - 4 -
Swap the j and the ‘ with permutation f of {J, ‘, @} with
€Q

(b)-@@-6re-0

If g maps locations to fruits then f~! o g describes the mapping
from locations to fruits after the swap.



Permutation: Example |l

Describe what fruit is moved to the place of what fruit,
independent of the positions.

Swap the ‘° and the ‘ with permutation f of {‘n, 6, @} with
b-@r@-0re-0

If g maps locations to fruits then f~! o g describes the mapping
from locations to fruits after the swap.

For example g(1) = ‘° g(2) =@ g(3) = @ for ‘Q“.
Then (F 1o g)(1) = @ (Fog)2) =& (Fog)3) = @
o IQ

representing C 3



Permutation: Example [ll

Determine the permutation of locations that leads from one
configuration to the other.
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Permutation: Example [l

Determine the permutation of locations that leads from one
configuration to the other.

‘Q‘Q =>“0-

Define f with f("’) =1,f(@ =2 f(@) =3

to describe the initial configuration and

function g with g(‘,) =2, g(‘) =1 g(@)=3

for the final configuration.



Permutation: Example [ll

Determine the permutation of locations that leads from one
configuration to the other.

£Q.-, - KQ
D00 -000.

£ -
Define £ with £([)) = 1, /(@) = 2. f(@) =3
to describe the initial configuration and

£ -
function g with g( J) =2, g(@=1¢g@)=3
for the final configuration.

Then g o f~1 describes the permutation of locations.



Questions

N

°? Questions?



Summary

m injective function: maps distinct elements of its domain to
distinct elements of its co-domain.

m surjective function: maps at least one element to every
element of its co-domain.

m bijective function: injective and surjective
— one-to-one correspondence

m Bijective functions are invertible. The inverse function of f
maps the image of x under f to x.

m Permutations are bijections from a set to itself. They can be
used to describe rearrangements of objects.
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