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Organizational Matters



People

Lecturers

Malte Helmert

email: malte.helmert@unibas.ch

office: room 06.004, Spiegelgasse 1

Gabi Röger

email: gabriele.roeger@unibas.ch

office: room 04.005, Spiegelgasse 1

Assistant

David Speck

email: davidjakob.speck@unibas.ch

office: room 04.003, Spiegelgasse 5



People

Tutors

Maria Desteffani (maria.desteffani@unibas.ch)

Pascal von Fellenberg (pascal.vonfellenberg@unibas.ch)

Carina Schrenk (carina.schrenk@unibas.ch)

Carina Fehr (carina.fehr@unibas.ch)



Target Audience

target audience:

this is an introductory course on the Bachelor’s level

we cover mathematical foundations that are
particularly useful for the computer science curriculum

main target audience: B.Sc. Computer Science,
1st semester

all other students welcome



Enrolment

https://services.unibas.ch/

official deadline: October 13

better today, so that you get all relevant emails
and access to the ADAM workspace

https://services.unibas.ch/


Discrete Mathematics Course on ADAM

ADAM

https://adam.unibas.ch/

link to website with slides

submission of exercise sheets

model solutions for exercise sheets

link to Discord server (for interaction among participants,
but you also get answers from lecturers, assistant and tutors)

additional material

https://adam.unibas.ch/


Language

The course is taught in English.

All lecture material is in English.

We (lecturers, assistant, tutors) speak German and English.

You are also welcome to ask questions in German.

Also exercise submissions can be in English or German.



Lectures

Mon 16:15–18:00, Hörsaal U1.131, Biozentrum
Wed 16:15–17:00, Hörsaal 1, Pharmazentrum

first half of the course taught by Gabi Röger,
second half by Malte Helmert

on December 17: Q&A session for exam preparation



Exercises

Exercise sheets (homework assignments):

mostly theoretical exercises

exercise sheets on ADAM every Monday after the lecture

must be solved in groups of two or three
(not alone or in larger groups)

due on the following Sunday (23:59)
(upload to ADAM at https://adam.unibas.ch/)

we only accept readable PDFs
→ with a bonus point per sheet created with LATEX

(template, cheat sheet and intro on ADAM)

Question: Who has experience with LATEX?

https://adam.unibas.ch/


Exercise Sessions With Tutors

Exercise Sessions (starting September 24/25/27)

Wed 17:15–18:00 Alte Universität, Seminarraum −201
with Carina S.

Wed 17:15–18:00 Spiegelgasse 1, Computer-Labor U1.001
with Pascal

Thu 17:15–18:00 Spiegelgasse 1, Seminarraum 00.003
with Maria

Fri 17:15–18:00 Pharmazentrum, Labor U1075
with Carina F.

common mistakes/misconceptions
(full model solutions on ADAM)

questions about exercise sheets and the course

as time permits, support while you solve the exercises

important: please fill in the survey on ADAM for the group
important: allocation until Friday 12:00 (September 19).



Exam

Written exam

6 ECTS credits

Monday, January 19, 2026, 16:00-18:00

Maurice E. Müller Saal, Biozentrum

admission to exam: 50% of the exercise marks

grade for course determined exclusively by the exam



Required Time

Official calculation

1 CP ≈ 30 hours

The course has 6 CP.

You need to invest about 180 hours.

With 40 hours for exam preparation,
this leaves 10–11 hours/week during the teaching period.

Alternative calculation

A full-time student achieves 30 CP per semester.

The course corresponds to 1/5 of 30 CP.

With a 42h week, this still corresponds to 8.4 hours/week.
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Plagiarism

Plagiarism

Plagiarism is presenting someone else’s work, ideas, or words
as your own, without proper attribution.

For example:

Using someone’s text without citation

Paraphrasing too closely

Using information from a source without attribution

Passing off AI-generated content as your own original work

Long-term impact:

You undermine your own learning.

You start to lose confidence in your ability to think, write,
and solve problems independently.

Damage to academic reputation and professional
consequences in future careers
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Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!
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Special Needs?

We (and the university) strive for equality of students
with disabilities or chronic illnesses.

Contact the lecturers for small adaptations.

Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.



Questions on Organization

Questions?



About this Course



Content: Discrete Mathematics in Computer Science

mathematical thinking and proof techniques

sets and relations

group theory and permutations

modular arithmetic

graphs and trees

formal logic



Learning Goals

proficiency in abstract thinking

ability to formalize mathematical ideas and arguments

knowledge of common mathematical tools in computer science



Questions about the Course

Questions?
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Sets



Important Building Blocks of Discrete Mathematics

sets

relations

functions

These topics will mainly be the content of part B of the course.

We cover some foundations on sets already now because we will
use them for illustrating proof techniques.
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Sets

Definition

A set is an unordered collection of distinct objects.

unorderd: no notion of a “first” or “second” object,
e. g. {Alice,Bob,Charly} = {Charly,Bob,Alice}
distinct: each object contained at most once,
e. g. {Alice,Bob,Charly} = {Alice,Charly,Bob,Alice}

German: Menge
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Notation

Specification of sets

explicit, listing all elements, e. g. A = {1, 2, 3}
implicit with set-builder notation,
specifying a property characterizing all elements,
e. g. A = {x | x ∈ N0 and 1 ≤ x ≤ 3},
e. g. B = {n2 | n ∈ N0}
implicit, as a sequence with dots,
e. g. Z = {. . . ,−2,−1, 0, 1, 2, . . . }
implicit with an inductive definition

e ∈ M: e is in set M (an element of the set)

e /∈ M: e is not in set M

empty set ∅ = {}

Question: Is it true that 1 ∈ {{1, 2}, 3}?

German: Element

, leere Menge
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Special Sets

Natural numbers N0 = {0, 1, 2, . . . }
Integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }
Positive integers Z+ = N1 = {1, 2, . . . }
Rational numbers Q = {n/d | n ∈ Z, d ∈ N1}
Real numbers R = (−∞,∞)
Why do we use interval notation?
Why didn’t we introduce it before?

German: Natürliche (N0), ganze (Z), rationale (Q), reelle (R) Zahlen
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Questions

Questions?



Russell’s Paradox



Excursus: Barber Paradox

Barber Paradox

In a town there is only one barber, who is male.

The barber shaves all men in the town,
and only those, who do not shave themselves.

Who shaves the barber?

We can exploit the self-reference to derive a contradiction.
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Russell’s Paradox

Bertrand Russell

Question

Is the collection of all sets that do not contain
themselves as a member a set?

Is S = {M | M is a set and M /∈ M} a set?

Assume that S is a set.
If S /∈ S then S ∈ S ⇝ Contradiction
If S ∈ S then S /∈ S ⇝ Contradiction
Hence, there is no such set S .

→ Not every property used in set-builder notation defines a set.
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Relations on Sets



Equality

Definition (Axiom of Extensionality)

Two sets A and B are equal (written A = B)
if every element of A is an element of B and vice versa.

Two sets are equal if they contain the same elements.

We write A ̸= B to indicate that A and B are not equal.
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Subsets and Supersets

A ⊆ B: A is a subset of B,
i. e., every element of A is an element of B

A ⊂ B: A is a strict subset of B,
i. e., A ⊆ B and A ̸= B.

A ⊇ B: A is a superset of B if B ⊆ A.

A ⊃ B: A is a strict superset of B if B ⊂ A.

We write A ⊈ B to indicate that A is not a subset of B.

Analogously: ̸⊂, ⊉, ̸⊃

German: Teilmenge, echte Teilmenge, Obermenge, echte Obermenge
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Power Set

Definition (Power Set)

The power set P(S) of a set S is the set of all subsets of S .
That is,

P(S) = {M | M ⊆ S}.

Example: P({a, b}) =

German: Potenzmenge
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Questions?



Set Operations



Set Operations

Set operations allow us to express sets in terms of other sets

intersection A ∩ B = {x | x ∈ A and x ∈ B}

A B

If A ∩ B = ∅ then A and B are disjoint.

union A ∪ B = {x | x ∈ A or x ∈ B}

A B

set difference A \ B = {x | x ∈ A and x /∈ B}

A B

complement A = B \ A, where A ⊆ B and
B is the set of all considered objects (in a given context)

A
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Differenz, Komplement
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Properties of Set Operations: Commutativity

Theorem (Commutativity of ∪ and ∩)
For all sets A and B it holds that

A ∪ B = B ∪ A and

A ∩ B = B ∩ A.

Question: Is the set difference also commutative,
Question: i. e. is A \ B = B \ A for all sets A and B?

German: Kommutativität
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Properties of Set Operations: Associativity

Theorem (Associativity of ∪ and ∩)
For all sets A,B and C it holds that

(A ∪ B) ∪ C = A ∪ (B ∪ C ) and

(A ∩ B) ∩ C = A ∩ (B ∩ C ).

German: Assoziativität



Properties of Set Operations: Distributivity

Theorem (Union distributes over intersection and vice versa)

For all sets A,B and C it holds that

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) and

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

German: Distributivität



Properties of Set Operations: De Morgan’s Law

Augustus De Morgan

British mathematician (1806-1871)

Theorem (De Morgan’s Law)

For all sets A and B it holds that

A ∪ B = A ∩ B and

A ∩ B = A ∪ B.



Questions

Questions?



Cardinality of Finite Sets



Cardinality of Sets

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

Definition (Cardinality)

The cardinality of a finite set is the number of elements it contains.

|∅| =
|{x | x ∈ N0 and 2 ≤ x < 5}| =
|{3, 0, {1, 3}}| =
|P({1, 2})| =

German: Kardinalität oder Mächtigkeit
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Cardinality of the Union of Sets

Theorem

For finite sets A and B it holds that |A ∪ B| = |A|+ |B| − |A ∩ B|.

Corollary

If finite sets A and B are disjoint then |A ∪ B| = |A|+ |B|.



Cardinality of the Union of Sets

Theorem

For finite sets A and B it holds that |A ∪ B| = |A|+ |B| − |A ∩ B|.

Corollary

If finite sets A and B are disjoint then |A ∪ B| = |A|+ |B|.



Cardinality of the Power Set

Theorem

Let S be a finite set. Then |P(S)| = 2|S |.

Proof sketch.

We can construct a subset S ′ by iterating over all elements e of S
and deciding whether e becomes a member of S ′ or not.

We make |S | independent decisions, each between two options.
Hence, there are 2|S | possible outcomes.

Every subset of S can be constructed this way and different
choices lead to different sets. Thus, |P(S)| = 2|S|.
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Questions?



Summary



Summary

Sets are unordered collections of distinct objects.

Important set relations: equality (=), subset (⊆),
superset (⊇) and strict variants (⊂ and ⊃)

The power set of a set S is the set of all subsets of S .

Important set operations are intersection, union, set difference
and complement.

Union and intersection are commutative and associative.
Union distributes over intersection and vice versa.
De Morgan’s law for complement of union or intersection.

The number of elements in a finite set is called its cardinality.
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A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

What is a statement?
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Mathematical Statements

Mathematical Statement

A mathematical statement is a declarative sentence that is either
true or false (but not both).

Examples (some true, some false):

Let p ∈ N0 be a prime number. Then p is odd.

There exists an even prime number.

The equation ak + bk = ck has infinitely many solutions
with a, b, c, k ∈ N1 and k ≥ 2.

German: Mathematische Aussage



Mathematical Statements: Quantification

Statements often use quantification.

Universal quantification:
“For all x in set S it holds that 〈sub-statement on x〉.”
This is true if the sub-statement is true for every x in S .

Existential quantification:
“There is an x in set S such that 〈sub-statement on x〉.”
This is true if there exists at least one x in S for which the
sub-statement is true.

Examples (some true, some false):

For all x ∈ N1 it holds that x + 1 is in N1.

For all x ∈ N1 it holds that x − 1 is in N1.

There is an x ∈ N1 such that x =
√
x .



Mathematical Statements: Preconditions and Conclusions

We can identify preconditions and conclusions.

“If 〈preconditions〉 then 〈conclusions〉.”
The statement is true if the conclusions are true
whenever the preconditions are true.

Not every statement has preconditions. Preconditions are often
used in universally quantified sub-statements.

Examples (some true, some false):

If 4 is a prime number then 2 · 3 = 4.

If n is a prime number with n > 2 then n is odd.

For all p ∈ N1 it holds that if p is a prime number then p is
odd.



Different Statements with the same Meaning

The following statements have the same meaning, we just move
preconditions into the quantification, make some aspects implicit,
and change the structure.

For all p ∈ N1 it holds that if p is a prime number with p > 2
then p is odd.

For all prime numbers p it holds that if p > 2 then p is odd.

Let p be a natural number with p > 2.
Then p is prime if p is odd.

If p is a prime number with p > 2 then p is odd.

All prime numbers p > 2 are odd.

A single mathematical statement can be expressed in different
ways, as long as the meaning stays the same.

Like paraphrasing a sentence in everyday language.
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On what Statements can we Build the Proof?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

We can use:

axioms: statements that are assumed to always be true
in the current context

theorems and lemmas: statements that were already proven

lemma: an intermediate tool
theorem: itself a relevant result

premises: assumptions we make
to see what consequences they have

German: Axiom, Theorem/Satz, Lemma, Prämisse/Annahme



What is a Logical Step?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

Each step directly follows

from the axioms,

premises,

previously proven statements and

the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.
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The Role of Definitions

Definition

A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is
said to contain its elements.

We write x ∈ S to indicate that x is an element of set S , and
x /∈ S to indicate that S does not contain x .

The set that does not contain any objects is the empty set ∅.

A definition introduces an abbreviation.

Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

Definitions can also introduce notation.

German: Definition
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Disproofs

A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

Example (False statement)

“If p ∈ N0 is a prime number then p is odd.”

Refutation.

Consider natural number 2 as a counter example. It is prime
because it has exactly 2 divisors, 1 and itself. It is not odd,
because it is divisible by 2.

German: Widerlegung
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A Word on Style

A proof should help the reader to see why the result must be true.

A proof should be easy to follow.

Omit unnecessary information.

Move self-contained parts into separate lemmas.

In complicated proofs, reveal the overall structure in advance.

Have a clear line of argument.

→ Writing a proof is like writing an essay.

Recommended reading (ADAM additional ressources):

“Some Remarks on Writing Mathematical Proofs” (John M. Lee)

“§1. Minicourse on technical writing” of “Mathematical Writing”
(Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts)
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Questions

Questions?



Summary



Summary

A proof should convince the reader by logical steps of the truth of
some mathematical statement.
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Proof Strategies



Common Forms of Statements

Many statements have one of these forms:

1 “All x ∈ S with the property P also have the property Q.”

2 “A is a subset of B.”

3 “For all x ∈ S : x has property P iff x has property Q.”
(“iff”: “if and only if”)

4 “A = B”, where A and B are sets.

In the following, we will discuss some typical proof/disproof
strategies for such statements.
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Proof Strategies

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”

To prove, assume you are given an arbitrary x ∈ S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.
To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.



Proof Strategies

2 “A is a subset of B.”

To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.
To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.



Proof Strategies

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)

To prove, separately prove “if P then Q” and “if Q then P”.
To disprove, disprove “if P then Q” or disprove “if Q then P”.



Proof Strategies

4 “A = B”, where A and B are sets.

To prove, separately prove “A ⊆ B” and “B ⊆ A”.
To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.



Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Direct Proof



Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis



Direct Proof: Example

Theorem

For all sets A, B and C it holds that

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

Let A, B and C be arbitrary sets.

We will show separately that

A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that

(A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . .
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Direct Proof: Example cont.

Proof (continued).

We first show that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ):

If A ∩ (B ∪ C ) is empty, the statement is trivially true. Otherwise
consider an arbitrary x ∈ A ∩ (B ∪ C ). By the definition of the
intersection it holds that x ∈ A and that x ∈ (B ∪ C ).
We make a case distinction between x ∈ B and x /∈ B:

Case 1 (x ∈ B): As x ∈ A is true, it holds in this case that
x ∈ (A ∩ B).

Case 2 (x /∈ B): From x ∈ (B ∪ C ) it follows for this case that
x ∈ C . With x ∈ A we conclude that x ∈ (A∩C ).

In both cases it holds that x ∈ A ∩ B or x ∈ A ∩ C , and we
conclude that x ∈ (A ∩ B) ∪ (A ∩ C ).

As x was chosen arbitrarily from A ∩ (B ∪ C ), we have shown that
every element of A ∩ (B ∪ C ) is an element of (A ∩ B) ∪ (A ∩ C ),
so it holds that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ). . . .
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Direct Proof: Example cont.

Proof (continued).

We will now show that (A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . . [Homework assignment] . . .

Overall we have shown for arbitrary sets A,B and C that
A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that
(A∩B)∪ (A∩C ) ⊆ A∩ (B ∪C ), which concludes the proof of the
theorem.



Indirect Proof



Indirect Proof

Indirect Proof (Proof by Contradiction)

Make an assumption that the statement is false.

Use the assumption to derive a contradiction.

This shows that the assumption must be false
and hence the original statement must be true.

German: Indirekter Beweis, Beweis durch Widerspruch



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.
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Proof by Contrapositive



Contrapositive

(Proof by) Contrapositive

Prove “If A, then B” by proving “If not B, then not A.”

Examples:

Prove “For all n ∈ N0: if n
2 is odd, then n is odd”

by proving “For all n ∈ N0, if n is even, then n2 is even.”

Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”

German: Kontraposition
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Contrapositive: Example

Theorem

For any sets A and B: If A ⊆ B then A \ B = ∅.

Proof.

We prove the theorem by contrapositive, showing for any sets A
and B that if A \ B ̸= ∅ then A ̸⊆ B.

Let A and B be arbitrary sets with A \ B ̸= ∅.
As the set difference is not empty, there is at least one x with
x ∈ A \ B. By the definition of the set difference (\), it holds for
such x that x ∈ A and x /∈ B.

Hence, not all elements of A are elements of B, so it does not hold
that A ⊆ B.
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x ∈ A \ B. By the definition of the set difference (\), it holds for
such x that x ∈ A and x /∈ B.

Hence, not all elements of A are elements of B, so it does not hold
that A ⊆ B.
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Questions?



Summary



Summary

There are standard strategies for proving some common forms
of statements, e.g. some property of all elements of a set.

Direct proof: derive statement by deducing or rewriting.

Indirect proof: derive contradiction from the assumption that
the statement is false.

Proof by contrapositive: Prove “If A, then B” by proving “If
not B, then not A.”.
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Mathematical Induction



Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)

Mathematical induction proves that

we can climb as high as we like on a ladder,

by proving that we can climb onto the bottom rung (the basis)

and that

from each rung we can climb up to the next one (the step).



Propositions

Consider a statement on all natural numbers n with n ≥ m.

E.g. “Every natural number n ≥ 2 can be written as a product
of prime numbers.”

P(2): “2 can be written as a product of prime numbers.”
P(3): “3 can be written as a product of prime numbers.”
P(4): “4 can be written as a product of prime numbers.”
. . .
P(n): “n can be written as a product of prime numbers.”
For every natural number n ≥ 2 proposition P(n) is true.

Proposition P(n) is a mathematical statement that is defined in
terms of natural number n.



Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition P(n)
for all natural numbers n with n ≥ m:

basis: proof of P(m)

induction hypothesis (IH):
suppose that P(k) is true for all k with m ≤ k ≤ n

inductive step: proof of P(n + 1)
using the induction hypothesis

German: Vollständige Induktion, Induktionsanfang,
Induktionsannahme oder Induktionsvoraussetzung,
Induktionsschritt



Mathematical Induction: Example I

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.
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Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers.

. . .



Mathematical Induction: Example I

Theorem
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Mathematical Induction: Example I

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n → n + 1:

Case 1: n + 1 is a prime number ⇝ trivial

Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using the IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .
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Mathematical Induction: Example II

Theorem

Let S be a finite set. Then |P(S)| = 2|S |.

What proposition can we use to prove this
with mathematical induction?



Proof by Induction

Proof.

By induction over |S |.
Basis (|S | = 0): Then S = ∅ and |P(S)| = |{∅}| = 1 = 20.

IH: For all sets S with |S | ≤ n, it holds that |P(S)| = 2|S |.

Inductive Step (n → n + 1):

Let S ′ be an arbitrary set with |S ′| = n + 1 and
let e be an arbitrary member of S ′.

Let further S = S ′ \ {e} and X = {S ′′ ∪ {e} | S ′′ ∈ P(S)}.
Then P(S ′) = P(S) ∪ X . As P(S) and X are disjoint and
|X | = |P(S)|, it holds that |P(S ′)| = 2|P(S)|.
Since |S | = n, we can use the IH and get

|P(S ′)| = 2 · 2|S | = 2 · 2n = 2n+1 = 2|S
′|.
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Weak vs. Strong Induction

Weak induction: Induction hypothesis only supposes
that P(k) is true for k = n

Strong induction: Induction hypothesis supposes
that P(k) is true for all k ∈ N0 with m ≤ k ≤ n

also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?
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Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction
but not with weak induction?

We can always use a stronger proposition:

“Every n ∈ N0 with n ≥ 2 can be written as a product of
prime numbers.”

P(n): “n can be written as a product of prime numbers.”

P ′(n): “all k ∈ N0 with 2 ≤ k ≤ n can be written
P ′(n) “ as a product of prime numbers.”
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Questions
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Structural Induction



Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

□ is a binary tree (a leaf)

If L and R are binary trees, then ⟨L,⃝,R⟩ is a binary tree
(with inner node ⃝).

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules

German: Binärbaum, Blatt, innerer Knoten
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Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

□ is a binary tree (a leaf)

If L and R are binary trees, then ⟨L,⃝,R⟩ is a binary tree
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Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: Induktive Definition, Basiselemente, Konstruktionsregeln



Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

basis: proof of the statement for the basic elements

induction hypothesis (IH):
suppose that the statement is true for some elements M

inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: Strukturelle Induktion



Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(□) = 1

leaves(⟨L,⃝,R⟩) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(□) = 0

inner(⟨L,⃝,R⟩) = inner(L) + inner(R) + 1



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(□) = 0 = 1− 1 = leaves(□)− 1

⇝ statement is true for base case . . .



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(□) = 0 = 1− 1 = leaves(□)− 1

⇝ statement is true for base case . . .



Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree ⟨L,⃝,R⟩,
we may use that it is true for the subtrees L and R.

inductive step for B = ⟨L,⃝,R⟩:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1



Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree ⟨L,⃝,R⟩,
we may use that it is true for the subtrees L and R.
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Example: Tarradiddles

Example (Tarradiddles)

The set of tarradiddles is inductively defined as follows:

✈ is a tarradiddle.

♥ is a tarradiddle.

If x and y are tarradiddles, then x✿✿y is a tarradiddle.

If x and y are tarradiddles, then ✿x✈y✿ is a tarradiddle.

How do you prove with structural induction that every tarradiddle
contains an even number of flowers?
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Questions?



Excursus: Computer-assisted
Theorem Proving



Computer-assisted Proofs

Computers can help proving theorems.

Computer-aided proofs have for example been used for
proving theorems by exhaustion.

Example: Four color theorem



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean
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Example

⇝ Demo



Summary



Summary

Mathematical induction is used to prove a proposition P for
all natural numbers ≥ m.

Prove P(m).
Make hypothesis that P(k) is true for m ≤ k ≤ n.
Establish P(n + 1) using the hypothesis.

Structural induction applies the same general concept to prove
a proposition P for all elements of an inductively defined set.
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Tuples and the Cartesian Product



Motivation

A set is an unordered collection of distinct objects.

We often need a more structured way of representation.

A person is associated with a name, address, phone number.
A set of persons makes sense in many contexts.
Representing the associated data as a set rather not.

We could for example want to

directly access the name of a person, or
have a separate billing and delivery address for some order,
but in general, these can be the same.

Tuples are mathematical building blocks that support this.



Sets vs. Tuples

A set is an unordered collection of distinct objects.

A tuple is an ordered sequence of objects.



Sets vs. Tuples

A set is an unordered collection of distinct objects.

A tuple is an ordered sequence of objects.



Tuples

k-tuple: ordered sequence of k objects (k ∈ N0)

written (o1, . . . , ok) or ⟨o1, . . . , ok⟩
unlike sets, order matters (⟨1, 2⟩ ≠ ⟨2, 1⟩)
objects may occur multiple times in a tuple

objects contained in tuples are called components

terminology:

k = 2: (ordered) pair
k = 3: triple
more rarely: quadruple, quintuple, sextuple, septuple, . . .

if k is clear from context (or does not matter),
often just called tuple

German: k-Tupel, Komponente, (geordnetes) Paar, Tripel, Quadrupel
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Equality of Tuples

Definition (Equality of Tuples)

Two n-tuples t = ⟨o1, . . . , on⟩ and t ′ = ⟨o ′1, . . . , o ′n⟩
are equal (t = t ′) if for i ∈ {1, . . . , n} it holds that oi = o ′i .



Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S1, . . . ,Sn be sets. The Cartesian product S1 × · · · × Sn is
the following set of n-tuples:

S1 × · · · × Sn = {⟨x1, . . . , xn⟩ | x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn}.

The k-ary Cartesian power of a set S (with k ∈ N1) is the set
Sk = {⟨o1, . . . , ok⟩ | oi ∈ S for all i ∈ {1, . . . , k}} = S × · · · × S︸ ︷︷ ︸

k times

.

René Descartes: French mathematician and philosopher (1596–1650)

Example: A = {a, b}, B = {1, 2, 3}

A× B =

A2 =

German: Kartesisches Produkt
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(Non-)properties of the Cartesian Product

The Cartesian product is

not commutative, in most cases A× B ̸= B × A.

not associative, in most cases (A× B)× C ̸= A× (B × C )

Why? Exceptions?
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Summary



Summary

A k-tuple is an ordered sequence of k objects, called the
components of the tuple.

2-tuples are also called pairs and 3-tuples triples.

The Cartesian Product S1 × · · · × Sn of set S1, . . . ,Sn is the
set of all tuples ⟨o1, . . . , on⟩, where for all i ∈ {1, . . . , n}
component oi is an element of Si .
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Relations: Informally

Intuitively, a mathematical relation connects elements from
several (possibly different) sets by specifying related groupings.

We already know some relations, e. g.

⊆ relation for sets
≤ relation for natural numbers

These are examples of binary relations,
considering pairs of objects.

There are also relations of higher arity, e. g.

“x + y = z” for integers x , y , z .
“The name, address and office number
belong to the same person.”

Relations are for example important for relational databases,
semantic networks or knowledge representation and reasoning.
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Relations

Definition (Relation)

Let S1, . . . ,Sn be sets.

A relation over S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

The arity of R is n.

A relation of arity n is a set of n-tuples.

German: Relation, Stelligkeit



Relations: Examples

⊆ = {(S , S ′) | S and S ′ are sets and
for every x ∈ S it holds that x ∈ S ′}

≤ = {(x , y) | x , y ∈ N0 and x < y or x = y}
R = {(x , y , z) | x , y , z ∈ Z and x + y = z}
R ′ = {(Gabi Röger,Spiegelgasse 1, 04.005),

(Malte Helmert, Spiegelgasse 1, 06.004),
(David Speck,Spiegelgasse 5, 04.003)}
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Properties of Binary Relations



Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

Instead of (x , y) ∈ R, we also write xRy , e. g.
x ≤ y instead of (x , y) ∈ ≤
If the sets are equal, we say “R is a binary relation over A”
instead of “R is a binary relation over A and A”.

Such a relation over a set is also called
a homogeneous relation or an endorelation.

German: zweistellige Relation, homogene Relation
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Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive
if for all a ∈ A it holds that (a, a) ∈ R.

Which of these relations are reflexive?

R = {(a, a), (a, b), (a, c), (b, a), (b, c), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: reflexiv
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Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive
if for all a ∈ A it holds that (a, a) /∈ R.

Which of these relations are irreflexive?
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Symmetry

Definition (symmetric)

A binary relation R over set A is symmetric
if for all a, b ∈ A it holds that (a, b) ∈ R iff (b, a) ∈ R.

Which of these relations are symmetric?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: symmetrisch
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Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if
for all a, b ∈ A it holds that if (a, b) ∈ R then (b, a) /∈ R.

Relation R is antisymmetric if for all a, b ∈ A with a ̸= b it holds
that if (a, b) ∈ R then (b, a) /∈ R.

Which of these relations are asymmetric/antisymmetric?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

How do these

properties relate

to irreflexivity?

German: asymmetrisch, antisymmetrisch
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Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all a, b, c ∈ A that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

Which of these relations are transitive?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: transitiv
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Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all a, b, c ∈ A that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
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Summary

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

A binary relation is a relation over two sets.

A binary relation over set S is a relation R ⊆ S × S and also
called a homogeneous relation.

A binary relation R over A is

reflexive if (a, a) ∈ R for all a ∈ A,
irreflexive if (a, a) /∈ R for all a ∈ A,
symmetric if for all a, b ∈ A it holds that
(a, b) ∈ R iff (b, a) ∈ R,
asymmetric if for all a, b ∈ A it holds that
if (a, b) ∈ R then (b, a) /∈ R,
antisymmetric if for all a, b ∈ A with a ̸= b it holds that
if (a, b) ∈ R then (b, a) /∈ R,
transitive if for all a, b, c ∈ A it holds that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
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Special Classes of Relations

Some important classes of relations are defined in terms of
these properties.

Equivalence relation: reflexive, symmetric, transitive
Partial order: reflexive, antisymmetric, transitive
Strict order: irreflexive, asymmetric, transitive
. . .

We will consider these and other classes in detail.
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Equivalence Relations



Motivation

Think of any attribute that two objects can have in common,
e. g. their color.

We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

We also can define a relation ∼ such that x ∼ y iff
x and y share the attribute, e. g.have the same color.

Would this relation be

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Equivalence Relation

Definition (Equivalence Relation)

A binary relation ∼ over set S is an equivalence relation
if ∼ is reflexive, symmetric and transitive.

Examples:

{(x , y) | x and y have the same place of origin}
over the set of all Swiss citizens

{(x , y) | x and y have the same parity} over N0

{(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),
(2, 2), (2, 3), (3, 2), (3, 3)} over {1, 2, . . . , 5}

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one “bucket” for all objects that share a specific color)?

German: Äquivalenzrelation
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Equivalence Classes

Definition (Equivalence Class)

Let ∼ be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]∼ = {y ∈ S | x ∼ y}.

Consider
∼= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]∼ =

German: Äquivalenzklasse



Equivalence Classes

Definition (Equivalence Class)

Let ∼ be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]∼ = {y ∈ S | x ∼ y}.

Consider
∼= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]∼ =
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Equivalence Classes: Properties

Let ∼ be an equivalence relation over set S and
E = {[x ]∼ | x ∈ S} the set of all equivalence classes.

Every element of S is in some equivalence class in E .

Every element of S is in at most one equivalence class in E .
⇝ homework assignment

⇒ Equivalence relations induce partitions
(not covered in this course).
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Order Relations



Order Relations

We now consider other combinations of properties,
that allow us to describe a consistent order of the objects.

“Number x is not larger than number y .”
“Set S is a subset of set T .”
“Jerry runs at least as fast as Tom.”
“Pasta tastes better than Potatoes.”

German: Ordnungsrelation
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Partial Orders

We begin with partial orders.

Example partial order relations are ≤ over N0 or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Partial Orders

We begin with partial orders.

Example partial order relations are ≤ over N0 or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Partial Orders

We begin with partial orders.

Example partial order relations are ≤ over N0 or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Partial Orders – Definition

Definition (Partial order)

A binary relation ⪯ over set S is a partial order
if ⪯ is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

strict subset relation ⊂ for sets

not-less-than relation ≥ over N0

R = {(a, a), (a, b), (b, b), (b, c), (c , c)} over {a, b, c}

German: Halbordnung oder partielle Ordnung
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Least and Greatest Element

Definition (Least and greatest element)

Let ⪯ be a partial order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S it holds that x ⪯ y .

It is the greatest element of S if for all y ∈ S , y ⪯ x .

Is there a least/greatest element? Which one?

S = {1, 2, 3} and ⪯ = {(x , y) | x , y ∈ S and x ≤ y}
relation ≤ over N0

relation ≤ over Z
Why can we say the least element instead of a least element?

German: kleinstes/grösstes Element
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Uniqueness of Least Element

Theorem

Let ⪯ be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x , y are least elements of S with x ̸= y .

Since x is a least element, x ⪯ y is true.
Since y is a least element, y ⪯ x is true.
As a partial order is antisymmetric, this implies that x = y .  

Analogously: If there is a greatest element then is unique.
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Proof.

By contradiction: Assume x , y are least elements of S with x ̸= y .
Since x is a least element, x ⪯ y is true.
Since y is a least element, y ⪯ x is true.
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Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let ⪯ be a partial order over set S .
An element x ∈ S is a minimal element of S
if there is no y ∈ S with y ⪯ x and x ̸= y .

An element x ∈ S is a maximal element of S
if there is no y ∈ S with x ⪯ y and x ̸= y .

A set can have several minimal elements and no least element.
Example?

German: minimales/maximales Element
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Total Orders

Relations ≤ over N0 and ⊆ for sets are partial orders.

Can we compare every object against every object?

For all x , y ∈ N0 it holds that x ≤ y or that y ≤ x (or both).
{1, 2} ⊈ {2, 3} and {2, 3} ⊈ {1, 2}

Relation ≤ is a total order, relation ⊆ is not.
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Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

German: totale Relation

, (schwache) Totalordnung oder totale Ordnung
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Strict Orders

A partial order is reflexive, antisymmetric and transitive.

We now consider strict orders.

Example strict order relations are < over N0 or ⊂ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?
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We now consider strict orders.

Example strict order relations are < over N0 or ⊂ for sets.

Are these relations

reflexive?
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symmetric?
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Strict Orders – Definition

Definition (Strict (partial) order)

A binary relation ≺ over set S is a strict (partial) order
if ≺ is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

subset relation ⊆ for sets

strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict (partial) order?

We can omit irreflexivity or asymmetry from the definition
(but not both). Why?

German: strenge (Halb-)ordnung
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Strict Total Orders

As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

Example 1 (personal preferences):
“Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.”
“Rice tastes better than potato.”

Pasta

Potato Bread

Rice

This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

Example 2: ⊂ relation for sets

It doesn’t work to simply require that the strict order is total.
Why?
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Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.

Attention: a non-empty strict total order is never a total order.

German: trichotom

, strenge Totalordnung
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Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let ≺ be a strict order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S where y ̸= x it holds that x ≺ y .

It is the greatest element of S if for all y ∈ S where y ̸= x , y ≺ x .

Element x ∈ S is a minimal element of S
if there is no y ∈ S with y ≺ x .

It is a maximal element of S
if there is no y ∈ S with x ≺ y .



Special Elements – Example

Consider again the previous example:

S = {Pasta,Potato,Bread,Rice}
≺ = {(Pasta,Potato), (Bread,Potato),

(Rice,Potato), (Rice,Bread)}

Pasta

Potato Bread

Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?
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Questions?



Summary

An equivalence relation is reflexive, symmetric and transitive.

A partial order x ⪯ y is reflexive, antisymmetric and
transitive.

If x is the greatest element of a set S , it is greater than every
element: for all y ∈ S it holds that y ⪯ x .
If x is a maximal element of set S then it is not smaller than
any other element y : there is no y ∈ S with x ⪯ y and x ̸= y .
A total order is a partial order without incomparable objects.

A strict order is irreflexive, asymmetric and transitive.

Strict total orders and special elements are analogously defined
as for partial orders but with a special treatment of equal
elements.
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Relations: Recap

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

A binary relation is a relation over two sets.

A homogeneous relation R over set S is a binary relation
R ⊆ S × S .
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Set Operations

Relations are sets of tuples, so we can build their union,
intersection, complement, . . . .

Let R be a relation over S1, . . . ,Sn and R ′ a relation over
S ′
1, . . . ,S

′
n. Then R ∪R ′ is a relation over S1 ∪S ′

1, . . . ,Sn ∪S ′
n.

With the standard relations <,= and ≤ for N0,
relation ≤ corresponds to the union of relations < and =.

Let R and R ′ be relations over n sets.
Then R ∩ R ′ is a relation.
Over which sets?

With the standard relations ≤,= and ≥ for N0,
relation = corresponds to the intersection of ≤ and ≥.

If R is a relation over S1, . . . ,Sn
then so is the complementary relation R̄ = (S1 × · · · × Sn) \R.

With the standard relations for N0, relation = is the
complementary relation of ̸= and > the one of ≤.
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Inverse of a Relation

Definition

Let R ⊆ A× B be a binary relation over A and B.

The inverse relation of R is the relation R−1 ⊆ B × A given by
R−1 = {(b, a) | (a, b) ∈ R}.

The inverse of the < relation over N0 is the > relation.

Relation R with xRy iff person x has a key for y .
Inverse: Q with aQb iff lock a can be openened by person b.

German: inverse Relation oder Umkehrrelation
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Composition of Relations

Definition (Composition of relations)

Let R1 be a relation over A and B and R2 a relation over B and C .

The composition of R1 and R2 is the relation R2 ◦R1 over A and C
with:

R2 ◦ R1 = {(a, c) | there is a b ∈ B with

(a, b) ∈ R1 and (b, c) ∈ R2}

How can we illustrate this graphically?

German: Komposition oder Rückwärtsverkettung
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Composition of Relations: Example

S1 = {1, 2, 3, 4}
S2 = {A,B,C ,D,E}
S3 = {a, b, c, d}

R1 = {(1,A), (1,B), (3,B), (4,D)} over S1 and S2

R2 = {(B, a), (C , c), (D, a), (D, d)} over S2 and S3

R2 ◦ R1 =



Composition is Associative

Theorem (Associativity of composition)

Let S1, . . . ,S4 be sets and R1,R2,R3 relations with Ri ⊆ Si × Si+1.
Then

R3 ◦ (R2 ◦ R1) = (R3 ◦ R2) ◦ R1.

Proof.

It holds that (x1, x4) ∈ R3 ◦ (R2 ◦ R1) iff there is an x3 with
(x1, x3) ∈ R2 ◦ R1 and (x3, x4) ∈ R3.

As (x1, x3) ∈ R2 ◦ R1 iff there is an x2 with (x1, x2) ∈ R1 and
(x2, x3) ∈ R2, we have overall that (x1, x4) ∈ R3 ◦ (R2 ◦ R1) iff
there are x2, x3 with (x1, x2) ∈ R1, (x2, x3) ∈ R2 and (x3, x4) ∈ R3.

This is the case iff there is an x2 with (x1, x2) ∈ R1 and
(x2, x4) ∈ R3 ◦ R2, which holds iff (x1, x4) ∈ (R3 ◦ R2) ◦ R1.
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Questions

Questions?



(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S .

The transitive closure R+ of R is the smallest relation over S
that is transitive and has R as a subset.

The reflexive transitive closure R∗ of R is the smallest relation over
S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b,
what do R+ and R∗ express?

German: (reflexive) transitive Hülle



(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S .

The transitive closure R+ of R is the smallest relation over S
that is transitive and has R as a subset.

The reflexive transitive closure R∗ of R is the smallest relation over
S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b,
what do R+ and R∗ express?

German: (reflexive) transitive Hülle



(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S .

The transitive closure R+ of R is the smallest relation over S
that is transitive and has R as a subset.

The reflexive transitive closure R∗ of R is the smallest relation over
S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b,
what do R+ and R∗ express?

German: (reflexive) transitive Hülle



Transitive Closure and n-fold Composition

Define the n-fold composition of a relation R over S as

R0 = {(x , x) | x ∈ S} and

Ri = R ◦ Ri−1 for i ≥ 1.

Theorem

Let R be a relation over set S.
Then R+ =

⋃∞
i=1 Ri and R∗ =

⋃∞
i=0 Ri .

Without proof.

German: n-fache Komposition
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Other Operators

There are many more operators, also for general relations.

Highly relevant for queries over relational databases.

For example, join operators combine relations based on
common entries.

Example for a natural join:
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Summary

Relations: general, binary, homogeneous

Properties: reflexivity, symmetry, transitivity
(and related properties)

Special relations: equivalence relations, order relations

Operations: inverse, composition, transitive closure
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Partial and Total Functions



Important Building Blocks of Discrete Mathematics

Important building blocks:

sets

relations

functions

In principle, functions are just a special kind of relations:

f : N0 → N0 with f (x) = x2

relation R over N0 with R = {(x , x2) | x ∈ N0}.
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Functional Relations

Definition

A binary relation R over sets A and B is functional
if for every a ∈ A there is at most one b ∈ B with (a, b) ∈ R.
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B
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4
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Functions – Examples

f : N0 → N0 with f (x) = x2 + 1

abs : Z → N0 with

abs(x) =

{
x if x ≥ 0

−x otherwise

distance : R2 × R2 → R with
distance((x1, y1), (x2, y2)) =

√
(x2 − x1)2 + (y2 − y1)2
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Partial Function – Example

Partial function r : Z× Z ↛ Q with

r(n, d) =

{
n
d if d ̸= 0

undefined otherwise



Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A ↛ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f .

We write f (x) = y for (x , y) ∈ G and say
y is the image of x under f .

If there is no y ∈ B with (x , y) ∈ G , then f (x) is undefined.

Partial function r : Z× Z ↛ Q with

r(n, d) =

{
n
d if d ̸= 0

undefined otherwise

has graph {((n, d), n
d ) | n ∈ Z, d ∈ Z \ {0}} ⊆ Z2 ×Q.
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Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A ↛ B be a partial function.

Set A is called the domain of f , set B is its codomain.

The domain of definition of f is the set
dom(f ) = {x ∈ A | there is a y ∈ B with f (x) = y}.
The image (or range) of f is the set
img(f ) = {y | there is an x ∈ A with f (x) = y}.

a
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d

e
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3

4

A

B

f : {a, b, c , d , e} ↛ {1, 2, 3, 4}
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4
domain {a, b, c , d , e}
codomain {1, 2, 3, 4}
domain of definition dom(f ) = {a, b, c, e}
image img(f ) = {1, 2, 4}
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domain {a, b, c , d , e}
codomain {1, 2, 3, 4}
domain of definition dom(f ) = {a, b, c, e}
image img(f ) = {1, 2, 4}



Preimage

The preimage contains all elements of the domain that are mapped
to given elements of the codomain.

Definition (Preimage)

Let f : A ↛ B be a partial function and let Y ⊆ B.

The preimage of Y under f is the set
f −1[Y ] = {x ∈ A | f (x) ∈ Y }.
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f −1[{1}] =

f −1[{3}] =

f −1[{4}] =

f −1[{1, 2}] =
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Total Functions

Definition (Total function)

A (total) function f : A → B from set A to set B is a partial
function from A to B such that f (x) is defined for all x ∈ A.

→ no difference between the domain and the domain of definition
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Specifying a Function

Some common ways of specifying a function:

Listing the mapping explicitly, e. g.
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4 or
f = {a 7→ 4, b 7→ 2, c 7→ 1, e 7→ 4}
By a formula, e. g. f (x) = x2 + 1

By recurrence, e. g.
0! = 1 and
n! = n(n − 1)! for n > 0

In terms of other functions, e. g. inverse, composition
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Relationship to Functions in Programming

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n-1)

→ Relationship between recursion and recurrence



Relationship to Functions in Programming

def foo(n):

value = ...

while <some condition>:

...

value = ...

return value

→ Does possibly not terminate on all inputs.
→ Value is undefined for such inputs.
→ Theoretical computer science: partial function



Relationship to Functions in Programming

import random

counter = 0

def bar(n):

print("Hi! I got input", n)

global counter

counter += 1

return random.choice([1,2,n])

→ Functions in programming don’t always compute
mathematical functions (except purely functional languages).

→ In addition, not all mathematical functions are computable.



Questions

Questions?



Operations on Partial Functions



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?



Function Composition

Definition (Composition of partial functions)

Let f : A ↛ B and g : B ↛ C be partial functions.

The composition of f and g is g ◦ f : A ↛ C with

(g ◦ f )(x) =


g(f (x)) if f is defined for x and

g is defined for f (x)

undefined otherwise

Corresponds to relation composition of the graphs.

If f and g are functions, their composition is a function.

Example:

f : N0 → N0 with f (x) = x2

g : N0 → N0 with g(x) = x + 3

(g ◦ f )(x) =
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Properties of Function Composition

Function composition is

not commutative:

f : N0 → N0 with f (x) = x2

g : N0 → N0 with g(x) = x + 3
(g ◦ f )(x) = x2 + 3
(f ◦ g)(x) = (x + 3)2

associative, i. e. h ◦ (g ◦ f ) = (h ◦ g) ◦ f
→ analogous to associativity of relation composition
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Function Composition in Programming

We implicitly compose functions all the time. . .

def foo(n):

...

x = somefunction(n)

y = someotherfunction(x)

...

Many languages also allow explicit composition of functions,
e. g. in Haskell:

incr x = x + 1

square x = x * x

squareplusone = incr . square
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Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.

Different elements of the domain can have the same image.

There can be values of the codomain
that aren’t the image of any element of the domain.

We often want to exclude such cases
→ define additional properties to say this quickly
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Injective Functions

An injective function maps distinct elements of its domain to
distinct elements of its co-domain.

Definition (Injective function)

A function f : A → B is injective (also one-to-one or an injection)
if for all x , y ∈ A with x ̸= y it holds that f (x) ̸= f (y).
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Injective Functions – Examples

Which of these functions are injective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Composition of Injective Functions

Theorem

If f : A → B and g : B → C are injective functions
then also g ◦ f is injective.

Proof.

Consider arbitrary elements x , y ∈ A with x ̸= y .
Since f is injective, we know that f (x) ̸= f (y).
As g is injective, this implies that g(f (x)) ̸= g(f (y)).
With the definition of g ◦ f , we conclude that
(g ◦ f )(x) ̸= (g ◦ f )(y).
Overall, this shows that g ◦ f is injective.
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Surjective Functions

A surjective function maps at least one elements to every element
of its co-domain.

Definition (Surjective function)

A function f : A → B is surjective (also onto or a surjection)
if its image is equal to its codomain,
i. e. for all y ∈ B there is an x ∈ A with f (x) = y .
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Surjective Functions – Examples

Which of these functions are surjective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Composition of Surjective Functions

Theorem

If f : A → B and g : B → C are surjective functions
then also g ◦ f is surjective.

Proof.

Consider an arbitary element z ∈ C .
Since g is surjective, there is a y ∈ B with g(y) = z .
As f is surjective, for such a y there is an x ∈ A with f (x) = y
and thus g(f (x)) = z .
Overall, for every z ∈ C there is an x ∈ A with
(g ◦ f )(x) = g(f (x)) = z , so g ◦ f is surjective.
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Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.
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Corollary

The composition of two bijective
functions is bijective.
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Bijective Functions – Examples

Which of these functions are bijective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Inverse Function

Definition

Let f : A → B be a bijection.
The inverse function of f is the function f −1 : B → A with
f −1(y) = x iff f (x) = y .
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Inverse Function

Definition

Let f : A → B be a bijection.
The inverse function of f is the function f −1 : B → A with
f −1(y) = x iff f (x) = y .
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Inverse Function and Composition

Theorem

Let f : A → B be a bijection.

1 For all x ∈ A it holds that f −1(f (x)) = x.

2 For all y ∈ B it holds that f (f −1(y)) = y.

3 f −1 is a bijection from B to A.

4 (f −1)−1 = f

Proof sketch.

1 For x ∈ A let y = f (x). Then f −1(f (x)) = f −1(y) = x

2 For y ∈ B there is exactly one x with y = f (x). With this x
it holds that f −1(y) = x and overall f (f −1(y)) = f (x) = y .

3 Surjective: for all x ∈ A, f −1 maps f (x) to x (cf. (1)).
Injective: if f −1(y) = f −1(y ′) then f (f −1(y)) = f (f −1(y ′)),
so with (2) we have y = y ′.

4 Def. of inverse: (f −1)−1(x) = y iff f −1(y) = x iff f (x) = y .
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Inverse Function

Theorem

Let f : A → B and g : B → C be bijections.

Then (g ◦ f )−1 = f −1 ◦ g−1.

Proof.

We need to show that for all x ∈ C it holds that
(g ◦ f )−1(x) = (f −1 ◦ g−1)(x).

Consider an arbitrary x ∈ C and let y = (g ◦ f )−1(x).
By the definition of the inverse (g ◦ f )(y) = g(f (y)) = x .

Let z = f (y).
From x = g(f (y)), we know that x = g(z) and thus g−1(x) = z .
From z = f (y) we get f −1(z) = y .

This gives (f −1 ◦ g−1)(x) = f −1(g−1(x)) = f −1(z) = y .
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Consider an arbitrary x ∈ C and let y = (g ◦ f )−1(x).
By the definition of the inverse (g ◦ f )(y) = g(f (y)) = x .

Let z = f (y).
From x = g(f (y)), we know that x = g(z) and thus g−1(x) = z .
From z = f (y) we get f −1(z) = y .

This gives (f −1 ◦ g−1)(x) = f −1(g−1(x)) = f −1(z) = y .
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Permutations



Permutation – Definition

Definition (Permutation)

Let S be a set. A bijection π : S → S is called a permutation of S .

How many permutations are there for a finite set S?

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S . Why?

The inverse of a permutation is again a permutation.
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Definition (Permutation)

Let S be a set. A bijection π : S → S is called a permutation of S .

How many permutations are there for a finite set S?

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S . Why?
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Permutations as Functions on Positions

A permutation can be used to describe the rearrangement of
objects.

Consider for example sequence o2, o1, o3, o4
Let’s rearrange the objects, e. g. to o3, o1, o4, o2.

The object at position 1 was moved to position 4,
the one from position 3 to position 1,
the one from position 4 to position 3 and
the one at position 2 stayed where it was.

This corresponds to the permutation
σ : {1, 2, 3, 4} → {1, 2, 3, 4} with
σ(1) = 4, σ(2) = 2, σ(3) = 1, σ(4) = 3
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Permutation: Example I

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

and π permutation of {1, 2, 3}.

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration.

Then π ◦ f describes the resulting configuration.
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Permutation: Example II

Describe what fruit is moved to the place of what fruit,
independent of the positions.

Swap the and the with permutation f of { , , } with

f ( ) = , f ( ) = , f ( ) = .

If g maps locations to fruits then f −1 ◦ g describes the mapping
from locations to fruits after the swap.

For example g(1) = , g(2) = , g(3) = for .

Then (f −1 ◦ g)(1) = , (f −1 ◦ g)(2) = , (f −1 ◦ g)(3) =

representing .
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Permutation: Example III

Determine the permutation of locations that leads from one
configuration to the other.

⇒ .

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration and

function g with g( ) = 2, g( ) = 1, g( ) = 3
for the final configuration.

Then g ◦ f −1 describes the permutation of locations.
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Permutation: Example III

Determine the permutation of locations that leads from one
configuration to the other.

⇒ .

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration and
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Summary

injective function: maps distinct elements of its domain to
distinct elements of its co-domain.

surjective function: maps at least one element to every
element of its co-domain.

bijective function: injective and surjective
→ one-to-one correspondence

Bijective functions are invertible. The inverse function of f
maps the image of x under f to x .

Permutations are bijections from a set to itself. They can be
used to describe rearrangements of objects.
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Comparing Cardinality



Finite Sets Revisited

We already know:

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

The cardinality of a finite set
is the number of elements it contains.

A set is infinite if it has an infinite number of elements.

Do all infinite sets have the same cardinality?



Finite Sets Revisited

We already know:

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

The cardinality of a finite set
is the number of elements it contains.

A set is infinite if it has an infinite number of elements.

Do all infinite sets have the same cardinality?



Finite Sets Revisited

We already know:

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

The cardinality of a finite set
is the number of elements it contains.

A set is infinite if it has an infinite number of elements.

Do all infinite sets have the same cardinality?



Comparing the Cardinality of Sets

Consider A = {1, 2} and B = {dog, cat,mouse}.
We can map distinct elements of A to distinct elements of B,
e.g.

1 7→ dog

2 7→ cat

This is an injective function from A to B:

every element of A is mapped to an element of B;
different elements of A are mapped to different elements of B.
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Comparing Cardinality

Definition (cardinality not larger)

Set A has cardinality less than or equal to the cardinality of set B
(|A| ≤ |B|), if there is an injective function from A to B.



Comparing the Cardinality of Sets

A = {1, 2, 3} and B = {dog, cat,mouse} have cardinality 3.

We can pair their elements by a bijection from A to B:

1 ↔ dog

2 ↔ cat

3 ↔ mouse

This is a bijection from A to B.

Each element of A is paired with exactly one element of set B.
Each element of B is paired with exactly one element of A.

If there is a bijection from A to B there is one from B to A
(the inverse function).
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Equinumerous Sets

We use the existence of a bijection also as criterion for infinite sets:

Definition (equinumerous sets)

Two sets A and B have the same cardinality (|A| = |B|)
if there exists a bijection from A to B.

Such sets are called equinumerous.

Definition (strictly smaller cardinality)

Set A has cardinality strictly less than the cardinality of set B
(|A| < |B|), if |A| ≤ |B| and |A| ≠ |B|.

Consider set A and object e /∈ A. Is |A| < |A ∪ {e}|?
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Hilbert’s Hotel



Hilbert’s Hotel

Our intuition for finite sets does not always work for infinite sets.

If in a hotel all rooms are occupied
then it cannot accomodate
additional guests.

But Hilbert’s Grand Hotel has
infinitely many rooms.

All these rooms are occupied.
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One More Guest Arrives

Every guest moves from her current room n to room n + 1.

Room 1 is then free.

The new guest gets room 1.



Four More Guests Arrive

Every guest moves from her current room n to room n + 4.

Rooms 1 to 4 are no longer occupied and
can be used for the new guests.

→ Works for any finite number of additional guests.
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An Infinite Number of Guests Arrives

Every guest moves from her current room n to room 2n.

The infinitely many rooms with odd numbers are now
available.

The new guests fit into these rooms.
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Can we Go further?

What if . . .

infinitely many coaches, each with an infinite number of guests

infinitely many ferries, each with an infinite number of
coaches, each with infinitely many guests

. . .

. . . arrive?

There are strategies for all these situations
as long as with “infinite” we mean “countably infinite”

and there is a finite number of layers.
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Summary

Set A has cardinality less than or equal the cardinality of set
B (|A| ≤ |B|), if there is an injective function from A to B.

Sets A and B have the same cardinality (|A| = |B|) if there
exists a bijection from A to B.

Our intuition for finite sets does not always work
for infinite sets.
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Countable Sets



Comparing Cardinality

Two sets A and B have the same cardinality
if their elements can be paired
(i.e. there is a bijection from A to B).

Set A has a strictly smaller cardinality than set B if

we can map distinct elements of A to distinct elements of B
(i.e. there is an injective function from A to B), and
|A| ≠ |B|.

This clearly makes sense for finite sets.

What about infinite sets?
Do they even have different cardinalities?
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Countable and Countably Infinite Sets

Definition (countably infinite and countable)

A set A is countably infinite if |A| = |N0|.

A set A is countable if |A| ≤ |N0|.

A set is countable if it is finite or countably infinite.

We can count the elements of a countable set one at a time.

The objects are “discrete” (in contrast to “continuous”).

Discrete mathematics deals with all kinds of countable sets.
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Set of Even Numbers

even = {n | n ∈ N0 and n is even}
Obviously: even ⊂ N0

Intuitively, there are twice as many natural numbers
as even numbers — no?

Is |even| < |N0|?



Set of Even Numbers

Theorem (set of even numbers is countably infinite)

The set of all even natural numbers is countably infinite,
i. e. |{n | n ∈ N0 and n is even}| = |N0|.

Proof Sketch.

We can pair every even number 2n with natural number n.
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Set of Perfect Squares

Theorem (set of perfect squares is countably infinite)

The set of all perfect squares is countably infinite,
i. e. |{n2 | n ∈ N0}| = |N0|.

Proof Sketch.

We can pair every square number n2 with natural number n.
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Subsets of Countable Sets are Countable

In general:

Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with B ⊆ A is countable.

Proof.

Since A is countable there is an injective function f from A to N0.
The restriction of f to B is an injective function from B to N0.
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Set of the Positive Rationals

Theorem (set of positive rationals is countably infinite)

Set Q+ = {n | n ∈ Q and n > 0} = {p/q | p, q ∈ N1}
is countably infinite.

Proof idea.
1
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2 (1)
1
3 (4) → 1

4 (5)
1
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2
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2
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Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable)

Let A and B be countable sets. Then A ∪ B is countable.

Proof sketch.

As A and B are countable there is an injective function fA from A
to N0, analogously fB from B to N0.

We define function fA∪B from A ∪ B to N0 as

fA∪B(e) =

{
2fA(e) if e ∈ A

2fB(e) + 1 otherwise

This fA∪B is an injective function from A ∪ B to N0.



Integers and Rationals

Theorem (sets of integers and rationals are countably infinite)

The sets Z and Q are countably infinite.

Without proof (⇝ exercises)



Union of More than Two Sets

Definition (arbitrary unions)

Let M be a set of sets. The union
⋃

S∈M S is the set with

x ∈
⋃
S∈M

S iff exists S ∈ M with x ∈ S .



Countable Union of Countable Sets

Theorem

Let M be a countable set of countable sets.

Then
⋃

S∈M S is countable.

Proof sketch.

With M = {S1,S2, S3, . . . } (possibly finite) and each
Si = {xi1, xi2, . . . } (possibly finite), we can use an analogous idea
as for the countability of Q+ (skipping duplicates):

S1 : x11 → x12 x13 → x14 x15 →
↙ ↗ ↙ ↗

S2 : x21 x22 x23 x24 x25 · · ·
↓ ↗ ↙ ↗

S3 : x31 x32 x33 x34 x35 · · ·
↙ ↗

S4 : x41 x42 x43 x44 x45 · · ·
↓ ↗

S5 : x51 x52 x53 x54 x55 · · ·
...

...
...

...
...



Set of all Binary Trees is Countable

Theorem (set of all binary trees is countable)

The set B = {b | b is a binary tree} is countable.

Proof.

For n ∈ N0 the set Bn of all binary trees with n leaves is finite.

With M = {Bi | i ∈ N0} the set of all binary trees is
B =

⋃
B′∈M B ′.

Since M is a countable set of countable sets, B is countable.



And Now?

We have seen several countably infinite sets.

What about our original questions?

Do all infinite sets have the same cardinality?

Are they all countably infinite?
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Summary



Summary

A set is countable if it has at most cardinality |N0|.
If a set is countable and infinite, it is countably infinite.

Sets Z and Q are countably infinite.

Every subset of a countable set is countable.

Every countable union of countable sets is countable, in
particular, the union of two countable sets is countable.
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Reminder: Cardinality of the Power Set

Theorem

Let S be a finite set. Then |P(S)| = 2|S |.



Cantor’s Theorem



Countable Sets

We already know:

Sets with the same cardinality as N0 are called countably
infinite.

A countable set is finite or countably infinite.

Every subset of a countable set is countable.

The union of countably many countable sets is countable.

Open questions (to be resolved today):

Do all infinite sets have the same cardinality?

Does the power set of an infinite set S
have the same cardinality as S?
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Georg Cantor

German mathematician (1845–1918)

Proved that the rational numbers are
countable.

Proved that the real numbers are not
countable.

Cantor’s Theorem: For every set S
it holds that |S | < |P(S)|.



Our Plan

Understand Cantor’s theorem

Understand an important theoretical implication
for computer science



Cantor’s Diagonal Argument Illustrated on a Finite Set

S = {a, b, c}.

Consider an arbitrary function from S to P(S).
For example:

a b c

a 1 0 1 a mapped to {a, c}
b 1 1 0 b mapped to {a, b}
c 0 1 0 c mapped to {b}

0 0 1 nothing was mapped to {c}.

We can identify an “unused” element of P(S).
Complement the entries on the main diagonal.

Works with every function from S to P(S).
→ there cannot be a surjective function from S to P(S).
→ there cannot be a bijection from S to P(S).
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Cantor’s Diagonal Argument on a Countably Infinite Set

S = N0.

Consider an arbitrary function from N0 to P(N0).
For example:

0 1 2 3 4 . . .
0 1 0 1 0 1 . . .
1 1 1 0 1 0 . . .
2 0 1 0 1 0 . . .
3 1 1 0 0 0 . . .
4 1 1 0 1 1 . . .
...

...
...

...
...

...
. . .

0 0 1 1 0 . . .

Complementing the entries on the main diagonal
again results in an “unused” element of P(N0).
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Cantor’s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S | < |P(S)|.

Proof.

Consider an arbitrary set S . We need to show that

1 There is an injective function from S to P(S).

2 There is no bijection from S to P(S).

For 1, consider function f : S → P(S) with f (x) = {x}.
It maps distinct elements of S to distinct elements of P(S).

. . .



Cantor’s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S | < |P(S)|.

Proof.

Consider an arbitrary set S . We need to show that

1 There is an injective function from S to P(S).

2 There is no bijection from S to P(S).

For 1, consider function f : S → P(S) with f (x) = {x}.
It maps distinct elements of S to distinct elements of P(S).

. . .



Cantor’s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S | < |P(S)|.

Proof.

Consider an arbitrary set S . We need to show that
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2 There is no bijection from S to P(S).

For 1, consider function f : S → P(S) with f (x) = {x}.
It maps distinct elements of S to distinct elements of P(S). . . .



Cantor’s Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).

Consider M = {x | x ∈ S , x /∈ f (x)} and note that M ∈ P(S).

Since f is bijective, it is surjective and there is an y ∈ S with
f (y) = M. Consider this y in a case distinction:

If y ∈ M then y /∈ f (y) by the definition of M. Since f (y) = M
this implies y /∈ M. ⇝ contradiction

If y /∈ M, we conclude from f (y) = M that y /∈ f (y). Using the
definition of M we get that y ∈ M. ⇝ contradiction

Since all cases lead to a contradiction, there is no such y and thus
f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no
bijection from S to P(S).
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Consequences of Cantor’s Theorem



Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

|N0| < |P(N0))| < |P(P(N0)))| < . . .

|N0| = ℵ0 = ℶ0

|P(N0)| = ℶ1(= |R|)
|P(P(N0))| = ℶ2

. . .



Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?
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Decision Problems

“Intuitive Definition:” Decision Problem

A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

“Does the given binary tree have more than three leaves?”

“Is the given integer odd?”

“Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”

Input can be encoded as some finite string.

Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes”.

A computer program solves a decision problem if it terminates
on every input and returns the correct answer.
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“Is the given integer odd?”

“Given a train schedule, is there a connection from Basel to
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Input can be encoded as some finite string.

Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes”.

A computer program solves a decision problem if it terminates
on every input and returns the correct answer.



More Problems than Programs I

A computer program is given by a finite string.

A decision problem corresponds to a set of strings.



More Problems than Programs II

Consider an arbitrary finite set of symbols (an alphabet) Σ.

You can think of Σ = {0, 1}
as internally computers operate on binary representation.

Let S be the set of all finite strings made from symbols in Σ.

There are at most |S | computer programs with this alphabet.

There are at least |P(S)| problems with this alphabet.

every subset of S corresponds to a separate decision problem

By Cantor’s theorem |S | < |P(S)|,
so there are more problems than programs.
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Let S be the set of all finite strings made from symbols in Σ.
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Sets: Summary



Summary

Cantor’s theorem: For all sets S it holds that |S | < |P(S)|.
There are problems that cannot be solved by a computer
program.



Outlook: Finite Sets and Computer
Science



Enumerating all Subsets

Determine a one-to-one mapping between numbers 0, . . . , 2|S| − 1
and all subsets of finite set S :

Consider the binary
representation of numbers
0, . . . , 2|S| − 1.

Associate every bit with a
different element of S .

Every number is mapped to
the set that contains exactly
the elements associated with
the 1-bits.

S = {a, b, c}

decimal binary set
abc

0 000 {}
1 001 {c}
2 010 {b}
3 011 {b, c}
4 100 {a}
5 101 {a, c}
6 110 {a, b}
7 111 {a, b, c}



Computer Representation as Bit String

Same representation as in enumeration of all subsets:

Required: Fixed universe U of possible elements

Represent sets as bitstrings of length |U|
Associate every bit with one object from the universe

Each bit is 1 iff the corresponding object is in the set

Example:

U = {o0, . . . , o9}
Associate the i-th bit (0-indexed, from left to right) with oi

{o2, o4, o5, o9} is represented as:
0010110001

How can the set operations be implemented?
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Questions

Questions?
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Divisibility



Divisibility

Can we equally share n muffins among m persons
without cutting a muffin?

If yes then n is a multiple of m and m divides n.

We consider a generalization of this concept to the integers.
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If yes then n is a multiple of m and m divides n.

We consider a generalization of this concept to the integers.



Divisibility

Definition (divisor, multiple)

Let m, n ∈ Z. If there exists a k ∈ Z such that mk = n,
we say that m divides n, m is a divisor of n or n is a multiple of m
and write this as m | n.

Which of the following are true?

2 | 4
−2 | 4
2 | −4

4 | 2
3 | 4
Every integer divides 0.

German: teilt, Teiler, Vielfaches
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Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa+ yb.

Proof.

If d | a and d | b then there are k , k ′ ∈ Z
such that kd = a and k ′d = b.
It holds for all x , y ∈ Z that xa+ yb = xkd + yk ′d = (xk + yk ′)d .
As x , y , k , k ′ are integers, xk + yk ′ is integer, thus d | xa+ yb.

Some consequences:

d | a− b iff d | b − a

If d | a and d | b then d | a+ b and d | a− b.

If d | a then d | −8a.
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Multiplication and Exponentiation

Theorem

Let a, b, c ∈ Z and n ∈ N1.
If a | b then ac | bc and an | bn.

Proof.

If a | b there is a k ∈ Z such that ak = b.

Multiplying both sides with c, we get cak = cb and thus ca | cb.
From ak = b, we also get bn = (ak)n = ankn, so an | bn.
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Partial Order

If we consider only the natural numbers,
divisibility is a partial order:

Theorem

Divisibility | over N0 is a partial order.

Proof.

reflexivity: For all m ∈ N0 it holds that m · 1 = m, so m | m.

transitivity: If m | n and n | o there are k , k ′ ∈ Z
such that mk = n and nk ′ = o.
It holds that o = nk ′ = mkk ′ and kk ′ is an integer,
so we conclude m | o.

. . .
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so we conclude m | o.

. . .



Partial Order

Proof (continued).

antisymmetry: We show that if m | n and n | m then m = n.

If m = n = 0, there is nothing to show.

Otherwise, at least one of m and n is positive.

Let this w.l.o.g. (without loss of generality) be m.
If m | n and n | m then there are k, k ′ ∈ Z
such that mk = n and nk ′ = m.

Combining these, we get m = nk ′ = mkk ′, which implies
(with m ̸= 0) that kk ′ = 1.

Since k and k ′ are integers, this implies k = k ′ = 1 or
k = k ′ = −1. As mk = n, m is positive and n is non-negative,
we can conclude that k = 1 and m = n.
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Modular Arithmetic



Halloween

You have m sweets.

There are k kids showing up for
trick-or-treating.

To keep everything fair, every kid
gets the same amount of treats.

You may enjoy the rest. :-)

How much does every kid get,
how much do you get?



Euclid’s Division Lemma

Theorem (Euclid’s division lemma)

For all integers a and b with b ̸= 0
there are unique integers q and r
with a = qb + r and 0 ≤ r < |b|.
Number a is called the dividend, b the divisor, q is the quotient
and r the remainder.

Without proof.

Examples:

a = 18, b = 5

a = 5, b = 18

a = −18, b = 5

a = 18, b = −5

German: Division mit Rest, Dividend, Divisor, Ganzzahlquotient, Rest
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Modulo Operation

With a mod b we refer to the remainder of Euclidean division.

Most programming languages have a built-in operator
to compute a mod b (for positive integers):

int mod = 34 % 7;

// result 6 because 4 * 7 + 6 = 34

Common application: Determine whether
a natural number n is even.

n % 2 == 0

Languages behave differently with negative operands!
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Halloween

def share_sweets(no_kids, no_sweets):

print("Each kid gets",

no_sweets // no_kids,

"of the sweets.")

print("You may keep",

no_sweets % no_kids,

"of the sweets.")



Congruence Modulo n

We now are no longer interested in the value of the remainder
but will consider numbers a and a′ as equivalent
if the remainder with division by a given number b is equal.

Consider the clock:

It’s now 3 o’clock
In 12 hours its 3 o’clock
Same in 24, 36, 48, . . . hours.
15:00 and 3:00 are shown the same.
In the following, we will express this as 3 ≡ 15 (mod 12)
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Congruence Modulo n – Definition

Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo n if n | a− b.

We write this as a ≡ b (mod n).

Which of the following statements are true?

0 ≡ 5 (mod 5)

1 ≡ 6 (mod 5)

4 ≡ 14 (mod 5)

−8 ≡ 7 (mod 5)

2 ≡ −3 (mod 5)

Why is this the same concept as described in the clock example?!?

German: kongruent modulo n
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Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer n > 1 it holds that
a ≡ b (mod n) iff there are q, q′, r ∈ Z with

a = qn + r

b = q′n + r .

Proof sketch.

“⇒”: If n | a− b then there is a k ∈ Z with kn = a− b.

As n ̸= 0, by Euclid’s lemma there are q, q′, r , r ′ ∈ Z with
a = qn + r and b = q′n + r ′, where 0 ≤ r < |n| and 0 ≤ r ′ < |n|.
Together, we get that kn = qn + r − (q′n + r ′), which is the case
iff kn + r ′ = (q − q′)n + r . By Euclid’s lemma, quotients and
remainders are unique, so in particular r ′ = r .

“⇐”: If we subtract the equations, we get a− b = (q − q′)n,
so n | a− b and a ≡ b (mod n).
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Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: a ≡ a (mod n) because every integer divides 0.

Symmetric: a ≡ b (mod n) iff n | a− b iff n | b − a
iff b ≡ a (mod n).

Transitive: If a ≡ b (mod n) and b ≡ c (mod n) then n | a− b
and n | b − c . Together, these imply that n | a− b + b − c .
From n | a− c we get a ≡ c (mod n).

For modulus n, the equivalence class of a is
ān = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, . . . }.
Set ān is called the congruence class or residue of a modulo n.
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German: Restklasse



Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
if a ≡ b (mod n) and a′ ≡ b′ (mod n) then

a+ a′ ≡ b + b′ (mod n),

a− a′ ≡ b − b′ (mod n),

aa′ ≡ bb′ (mod n),

a+ k ≡ b + k (mod n) for all k ∈ Z,
ak ≡ bk (mod n) for all k ∈ Z, and
ak ≡ bk (mod n) for all k ∈ N0.

Congruence modulo n is a so-called congruence relation
(= equivalence relation compatible with operations).

German: kompatibel mit Addition, Subtraktion, Multiplikation,
Translation, Skalierung, Exponentiation

; Kongurenzrelation
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Summary



Summary

m divides n (written m | n) if n is a multiple of m,
i.e. there is an integer k with n = mk .

Divisibility is compatible with multiplication and
exponentiation.

Divisibility over the natural numbers is a partial order.

The modulo operation a mod b corresponds to the remainder
of Euclidean division.

Congruence modulo n considers integers equivalent if they
have with divisor n the same remainder.

Congurence modulo n is an equivalence relation that is
compatible with the arithmetic operations.
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Graphs and Directed Graphs



Graphs

Graphs (of various kinds) are ubiquitous in Computer Science
and its applications.

Some examples:

Boolean circuits in hardware design

control flow graphs in compilers

pathfinding in video games

computer networks

neural networks

social networks



Graph Theory

Graph theory was founded in 1736 by Leonhard Euler’s study
of the Seven Bridges of Königsberg problem.

It remains one of the main areas of discrete mathematics
to this day.

More on Euler and the Seven Bridges of Königsberg:

The Seven Bridges of Königsberg – Numberphile.
https://youtu.be/W18FDEA1jRQ

https://youtu.be/W18FDEA1jRQ


Graphs and Directed Graphs – Definitions

Definition (Graph)

A graph (also: undirected graph) is a pair G = (V ,E ), where

V is a finite set called the set of vertices, and

E ⊆ {{u, v} ⊆ V | u ̸= v} is called the set of edges.

German: Graph, ungerichteter Graph, Knoten, Kanten

Definition (Directed Graph)

A directed graph (also: digraph) is a pair G = (N,A), where

N is a finite set called the set of nodes, and

A ⊆ N × N is called the set of arcs.

German: gerichteter Graph, Digraph, Knoten, Kanten/Pfeile
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Graphs and Directed Graphs – Pictorially

often described pictorially:

A B

C D

E
FG

graph (V ,E )

1 2

3 4

5

directed graph (N,A)

V = {A,B,C,D,E,F,G}
E = {{A,B}, {A,C}, {B,C},

E = {

{C,E}, {D,F}}

N = {1, 2, 3, 4, 5}
A = {(1, 2), (1, 3), (2, 1), (3, 5),

A = {

(4, 3), (4, 4), (5, 3), (5, 4)}
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Relationship to Relations

graphs vs. directed graphs:

edges are sets of two elements, arcs are pairs

arcs can be self-loops (v , v); edges cannot (why not?)

(di-)graphs vs. relations:

A directed graph (N,A) is essentially identical to
(= contains the same information as)
an arbitrary relation RA over the finite set N:
u RA v iff (u, v) ∈ A

A graph (V ,E ) is essentially identical to
an irreflexive symmetric relation RE over the finite set V :
u RE v iff {u, v} ∈ E



Other Kinds of Graphs

many variations exist, for example:

self-loops may be allowed in edges (“non-simple” graphs)

labeled graphs: additional information associated with
vertices and/or edges

weighted graphs: numbers associated with edges

multigraphs: multiple edges between same vertices allowed

mixed graphs: both edges and arcs allowed

hypergraphs: edges can involve more than 2 vertices

infinite graphs: may have infinitely many vertices/edges



Graph Terminology

Definition (Graph Terminology)

Let (V ,E ) be a graph.

u and v are the endpoints of the edge {u, v} ∈ E

u and v are incident to the edge {u, v} ∈ E

u and v are adjacent if {u, v} ∈ E

the vertices adjacent with v ∈ V are its neighbours neigh(v):
neigh(v) = {w ∈ V | {v ,w} ∈ E}
the number of neighbours of v ∈ V is its degree deg(v):
deg(v) = |neigh(v)|

German: Endknoten, inzident, adjazent/benachbart, Nachbarn,
Grad



Graph Terminology – Examples

A B

C D

E
FG

endpoints, incident, adjacent, neighbours, degree



Directed Graph Terminology

Definition (Directed Graph Terminology)

Let (N,A) be a directed graph.

u is the tail and v is the head of the arc (u, v) ∈ A;
we say (u, v) is an arc from u to v

u and v are incident to the arc (u, v) ∈ A

u is a predecessor of v and v is a successor of u if (u, v) ∈ A

the predecessors and successor of v are written as
pred(v) = {u ∈ N | (u, v) ∈ A} and
succ(v) = {w ∈ N | (v ,w) ∈ A}
the number of predecessors/successors of v ∈ N is its
indegree/outdegree: indeg(v) = |pred(v)|,
outdeg(v) = |succ(v)|

German: Fuss, Kopf, inzident, Vorgänger, Nachfolger,
Eingangs-/Ausgangsgrad



Directed Graph Terminology – Examples

1 2

3 4

5

head, tail, predecessors, successors, indegree, outdegree



Induced Graphs and Degree Lemma



Induced Graph of a Directed Graph

Definition (undirected graph induced by a directed graph)

Let G = (N,A) be a directed graph.
The (undirected) graph induced by G is the graph (N,E ) with
E = {{u, v} | (u, v) ∈ A, u ̸= v}.

German: induziert

Questions:

Why require u ̸= v?

If |N| = n and |A| = m, how many vertices and edges
does the induced graph have?

How does the answer change if G has no self-loops?



Induced Graph of a Directed Graph – Example

1 2

3 4

5

1 2

3 4

5

N = {1, 2, 3, 4, 5}
A = {(1, 2), (1, 3), (2, 1), (3, 5),

A = {

(4, 3), (4, 4), (5, 3), (5, 4)}

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {3, 4},

E = {

{3, 5}, {4, 5}}



Induced Graph of a Directed Graph – Example

1 2

3 4

5

1 2

3 4

5

N = {1, 2, 3, 4, 5}
A = {(1, 2), (1, 3), (2, 1), (3, 5),

A = {

(4, 3), (4, 4), (5, 3), (5, 4)}

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {3, 4},

E = {

{3, 5}, {4, 5}}



Degree Lemma

Lemma (degree lemma for directed graphs)

Let (N,A) be a directed graph.
Then

∑
v∈N indeg(v) =

∑
v∈N outdeg(v) = |A|.

Intuitively: every arc contributes 1 to the indegree of one node

Intuitively:

and 1 to the outdegree of one node.

Lemma (degree lemma for undirected graphs)

Let (V ,E ) be a graph.
Then

∑
v∈V deg(v) = 2|E |.

Intuitively: every edge contributes 1 to the degree of two vertices.

Corollary

Every graph has an even number of vertices with odd degree.
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Degree Lemma – Example

A B

C D

E
FG

=

∑
v∈V

deg(v)

= deg(A) + deg(B) + deg(C) + deg(D) + deg(E) + deg(F) + deg(G)

= 2 + 2 + 3 + 1 + 1 + 1 + 0

= 10 = 2 · 5 = 2|E |

4 vertices with odd degree
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Degree Lemma – Proof (1)

Proof of degree lemma for directed graphs.

∑
v∈N

indeg(v) =
∑
v∈N

|pred(v)|

=
∑
v∈N

|{u | u ∈ N, (u, v) ∈ A}|

=
∑
v∈N

|{(u, v) | u ∈ N, (u, v) ∈ A}|

=

∣∣∣∣∣ ⋃
v∈N

{(u, v) | u ∈ N, (u, v) ∈ A}

∣∣∣∣∣
= |{(u, v) | u ∈ N, v ∈ N, (u, v) ∈ A}|
= |A|.∑

v∈N outdeg(v) = |A| is analogous.



Degree Lemma – Proof (2)

We omit the proof for undirected graphs,
which can be conducted similarly.

One possible proof strategy that reuses the result we proved:

Define directed graph (V ,A) from the graph (V ,E )
by orienting each edge into an arc arbitrarily.

Observe deg(v) = indeg(v) + outdeg(v), where deg refers to
the graph and indeg/outdeg to the directed graph.

Use the degree lemma for directed graphs:∑
v∈V deg(v) =

∑
v∈V (indeg(v) + outdeg(v)) =∑

v∈V indeg(v) +
∑

v∈V outdeg(v) = |A|+ |A| = 2|A| = 2|E |
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Walks, Paths, Tours and Cycles



Traversing Graphs

When dealing with graphs, we are often not just interested
in the neighbours, but also in the neighbours of neighbours,
the neighbours of neighbours of neighbours, etc.

Similarly, for digraphs we often want to follow longer chains
of successors (or chains of predecessors).

Examples:

circuits: follow predecessors of signals to identify
possible causes of faulty signals

pathfinding: follow edges/arcs to find paths

control flow graphs: follow arcs to identify dead code

computer networks: determine if part of the network
is unreachable



Traversing Graphs

When dealing with graphs, we are often not just interested
in the neighbours, but also in the neighbours of neighbours,
the neighbours of neighbours of neighbours, etc.

Similarly, for digraphs we often want to follow longer chains
of successors (or chains of predecessors).

Examples:

circuits: follow predecessors of signals to identify
possible causes of faulty signals

pathfinding: follow edges/arcs to find paths

control flow graphs: follow arcs to identify dead code

computer networks: determine if part of the network
is unreachable



Walks

Definition (Walk)

A walk of length n in a graph (V ,E ) is a tuple
⟨v0, v1, . . . , vn⟩ ∈ V n+1 s.t. {vi , vi+1} ∈ E for all 0 ≤ i < n.

A walk of length n in a digraph (N,A) is a tuple
⟨v0, v1, . . . , vn⟩ ∈ Nn+1 s.t. (vi , vi+1) ∈ A for all 0 ≤ i < n.

German: Wanderung

Notes:

The length of the walk does not equal the length of the tuple!

The case n = 0 is allowed.

Vertices may repeat along a walk.



Walks – Example

A B

C D

E
FG

1 2

3 4

5

examples of walks:

⟨B,C,A⟩
⟨B,C,A,B⟩
⟨D,F,D⟩
⟨B,A,B,C,E⟩
⟨B⟩

examples of walks:

⟨4, 4, 4, 4⟩
⟨3, 5, 3, 5⟩
⟨2, 1, 3⟩
⟨4⟩
⟨4, 4⟩



Walks – Terminology

Definition

Let π = ⟨v0, . . . , vn⟩ be a walk in a graph or digraph G .

We say π is a walk from v0 to vn.

A walk with vi ̸= vj for all 0 ≤ i < j ≤ n is called a path.

A walk of length 0 is called an empty walk/path.

A walk with v0 = vn is called a tour.

A tour with n ≥ 1 (digraphs) or n ≥ 3 (graphs)
and vi ̸= vj for all 1 ≤ i < j ≤ n is called a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus

Note: Terminology is not very consistent in the literature.



Walks, Paths, Tours, Cycles – Example

A B

C D

E
FG
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Which walks are paths, tours, cycles?

⟨B,C,A⟩
⟨B,C,A,B⟩
⟨D,F,D⟩
⟨B,A,B,C,E⟩
⟨B⟩

⟨4, 4, 4, 4⟩
⟨3, 5, 3, 5⟩
⟨2, 1, 3⟩
⟨4⟩
⟨4, 4⟩



Reachability



Reachability

Definition (successor and reachability)

Let G be a graph (digraph).
The successor relation SG and reachability relation RG

are relations over the vertices/nodes of G defined as follows:

(u, v) ∈ SG iff {u, v} is an edge ((u, v) is an arc) of G

(u, v) ∈ RG iff there exists a walk from u to v

If (u, v) ∈ RG , we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar



Reachability as Closure

Recall the n-fold composition Rn of a relation R over set S
(Chapter B4):

R0 = {(x , x) | x ∈ S}
Rn = R ◦ Rn−1 for n ≥ 1

Theorem

Let G be a graph or digraph. Then:
(u, v) ∈ (SG )n iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then RG =
⋃∞

n=0(SG )n.

In other words, the reachability relation is the reflexive transitive
closure of the successor relation.



Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N,A) is a digraph.
Graphs are analogous.
Proof by induction over n.

induction base (n = 0):
By definition of the 0-fold composition, we have (u, v) ∈ (SG )0 iff
u = v , and a walk of length 0 from u to v exists iff u = v .
Hence, the two conditions are equivalent.

. . .
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Graphs are analogous.
Proof by induction over n.
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Reachability as Closure – Proof (2)

Proof (continued).

induction step (n → n + 1):

(⇒) : Let (u, v) ∈ (SG )n+1.
By definition of Sn+1, we get (u, v) ∈ SG ◦ (SG )n.
By definition of ◦ there exists w with (u,w) ∈ (SG )n and
(w , v) ∈ SG .
From the induction hypothesis, there exists a length-n walk
⟨x0, . . . , xn⟩ with x0 = u and xn = w .
Then ⟨x0, . . . , xn, v⟩ is a length-(n + 1) walk from u to v .

(⇐) : Let ⟨x0, . . . , xn+1⟩ be a length-(n + 1) walk from u to v
(x0 = u, xn+1 = v). Then (xn, xn+1) = (xn, v) ∈ A.
Also, ⟨x0, . . . , xn⟩ is a length-n walk from x0 to xn.
From the IH we get (u, xn) = (x0, xn) ∈ (SG )n.
Together with (xn, v) ∈ SG this shows
(u, v) ∈ SG ◦ (SG )n = (SG )n+1.
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(⇒) : Let (u, v) ∈ (SG )n+1.
By definition of Sn+1, we get (u, v) ∈ SG ◦ (SG )n.
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Connected Components



Overview

In this section, we study reachability of graphs in more depth.

We show that it makes no difference whether we define
reachability in terms of walks or paths, and that reachability
in graphs is an equivalence relation.

This leads to the connected components of a graph.

In digraphs, reachability is not always an equivalence relation.

However, we can define two variants of reachability that
give rise to weakly or strongly connected components.



Walks vs. Paths

Theorem

Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

(⇒): obvious because paths are special cases of walks

(⇐): Proof by contradiction. Assume there exist u, v such that
there exists a walk from u to v , but no path. Let π = ⟨w0, . . . ,wn⟩
be such a counterexample walk of minimal length.
Because π is not a path, some vertex/node must repeat.
Select i and j with i < j and wi = wj .
Then π′ = ⟨w0, . . . ,wi ,wj+1, . . . ,wn⟩ also is a walk from u to v .
If π′ is a path, we have a contradiction.
If not, it is a shorter counterexample: also a contradiction.



Walks vs. Paths

Theorem

Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

(⇒): obvious because paths are special cases of walks

(⇐): Proof by contradiction. Assume there exist u, v such that
there exists a walk from u to v , but no path. Let π = ⟨w0, . . . ,wn⟩
be such a counterexample walk of minimal length.
Because π is not a path, some vertex/node must repeat.
Select i and j with i < j and wi = wj .
Then π′ = ⟨w0, . . . ,wi ,wj+1, . . . ,wn⟩ also is a walk from u to v .
If π′ is a path, we have a contradiction.
If not, it is a shorter counterexample: also a contradiction.



Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation RG

is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive.
To prove symmetry:

(u, v) ∈ RG

⇒ there is a walk ⟨w0, . . . ,wn⟩ from u to v

⇒ ⟨wn, . . . ,w0⟩ is a walk from v to u

⇒ (v , u) ∈ RG



Connected Components

Definition (connected components, connected)

In a graph G , the equivalence classes
of the reachability relation of G
are called the connected components of G .

A graph is called connected if it has at most 1
connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (∅, ∅) has 0 connected components.
It is the only such graph.



Weakly Connected Components

Definition (weakly connected components, weakly connected)

In a digraph G , the equivalence classes
of the reachability relation of the induced graph of G
are called the weakly connected components of G .

A digraph is called weakly connected if it has at most 1
weakly connected component.

German: schwache Zshk., schwach zusammenhängend

Remark: The digraph (∅, ∅) has 0 weakly connected components.
It is the only such digraph.



(Weakly) Connected Components – Example

A B

C D

E
FG

1 2

3 4

5

connected components:

{A,B,C,E}
{D,F}
{G}

weakly connected components:

{1, 2, 3, 4, 5}



(Weakly) Connected Components – Example

A B
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E
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connected components:

{A,B,C,E}
{D,F}
{G}

weakly connected components:

{1, 2, 3, 4, 5}



Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph.
Vertices/nodes u and v in G are called mutually reachable
if v is reachable from u and u is reachable from v .
We write MG for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, MG = RG . (Why?)



Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG

symmetry: Let (u, v) ∈ MG . Then (v , u) ∈ MG is obvious.

transitivity: Let (u, v) ∈ MG and (v ,w) ∈ MG .
Then: (u, v) ∈ RG , (v , u) ∈ RG , (v ,w) ∈ RG , (w , v) ∈ RG .
Transitivity of RG yields (u,w) ∈ RG and (w , u) ∈ RG ,
and hence (u,w) ∈ MG .
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Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG
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Strongly Connected Components

Definition (strongly connected components, strongly connected)

In a digraph G , the equivalence classes
of the mutual reachability relation
are called the strongly connected components of G .

A digraph is called strongly connected if it has at most 1
strongly connected component.

German: starke Zshk., stark zusammenhängend

Remark: The digraph (∅, ∅) has 0 strongly connected components.
It is the only such digraph.



Strongly Connected Components – Example
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strongly connected components:

{1, 2}
{3, 4, 5}
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Acyclic (Di-) Graphs



Acyclic

Similarly to connectedness, the presence or absence of cycles
is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G .

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG



Acyclic (Di-) Graphs – Example
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Trees

Definition (tree)

A connected forest is called a tree.

German: Baum

Tree is also a word for a recursive data structure,
which consists of either a leaf or a parent node
with one or more children, which are themselves trees.

This other kind of tree is also called a rooted tree
to distinguish it from a tree as a graph.

The two meanings of “tree” are distinct but closely related.



Tree Graphs vs. Rooted Trees – Example (1)

A B

C D

E
FG

tree graph

A

C

DB E

F G

rooted tree with root A



Tree Graphs vs. Rooted Trees – Example (2)

A B

C D

E
FG

tree graph

C

BA D E

F G

rooted tree with root C



Tree Graphs vs. Rooted Trees – Example (3)

A B

C D

E
FG

tree graph

F

D

C G

BA E

rooted tree with root F



From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

Select any vertex v . Make v the root of the tree.

Initially, v is the only pending vertex,
and there are no processed vertices.

As long as there are pending vertices:

Select any pending vertex u.
Make all neighbours v of u that are not yet processed
children of u and mark them as pending.
Change u from pending to processed.

We do not prove that this procedure always works. A proof of
correctness can be given based on the results we show next.



Unique Paths in Trees



Unique Paths in Trees

Theorem

Let G = (V ,E ) be a graph.
Then G is a tree iff there exists exactly one path
from any vertex u ∈ V to any vertex v ∈ V .



Unique Paths In Trees – Proof (1)

Proof.

(⇒): G is a tree. Let u, v ∈ V .
We must show that there exists exactly one path from u to v .

We know that at least one path exists because G is connected.

It remains to show that there cannot be two paths from u to v .
If u = v , there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from u to v
(u ̸= v) and derive a contradiction. . . .



Unique Paths In Trees – Proof (2)

Proof (continued).

Let π = ⟨v0, v1, . . . , vn⟩ and π′ = ⟨v ′0, v ′1, . . . , v ′m⟩ be the two paths
(with v0 = v ′0 = u and vn = v ′m = v).
Let i be the smallest index with vi ̸= v ′i , which must exist because
the two paths are different, and neither can be a prefix of the other
(else v would be repeated in the longer path).
We have i ≥ 1 because v0 = v ′0.
Let j ≥ i be the smallest index such that vj = v ′k for some k ≥ i .
Such an index must exist because vn = v ′m.
Then ⟨vi−1, . . . , vj−1, v

′
k , . . . , v

′
i−1⟩ is a cycle,

which contradicts the requirement that G is a tree. . . .



Unique Paths In Trees – Proof (3)

Proof (continued).

(⇐): For all u, v ∈ V , there exists exactly one path from u to v .
We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all u to all v , G is connected.

Proof by contradiction: assume that there exists a cycle in G ,
π = ⟨u, v1, . . . , vn, u⟩ with n ≥ 2.
(Note that all cycles have length at least 3.)
From the definition of cycles, we have v1 ̸= vn.

Then ⟨u, v1⟩ and ⟨u, vn, . . . , v1⟩ are two different paths
from u to v1, contradicting that there exists exactly one path
from every vertex to every vertex. Hence G must be acyclic.



Leaves and Edge Counts in Trees and
Forests



Leaves in Trees

Definition

Let G = (V ,E ) be a tree.
A leaf of G is a vertex v ∈ V with deg(v) ≤ 1.

Note: The case deg(v) = 0 only occurs in single-vertex trees
(|V | = 1). In trees with at least two vertices, vertices with degree
0 cannot exist because this would make the graph unconnected.

Theorem

Let G = (V ,E ) be a tree with |V | ≥ 2.
Then G has at least two leaves.



Leaves in Trees – Proof

Proof.

Let π = ⟨v0, . . . , vn⟩ be path in G with maximal length
among all paths in G .
Because |V | ≥ 2, we have n ≥ 1 (else G would not be connected).

We show that vertex vn has degree 1: vn−1 is a neighbour in G .
Assume that it were not the only neighbour of vn in G ,
so u is another neighbour of vn. Then:

If u is not on the path, then ⟨v0, . . . , vn, u⟩
is a longer path: contradiction.

If u is on the path, then u = vi for some i ̸= n and i ̸= n − 1.
Then ⟨vi , . . . , vn, vi ⟩ is a cycle: contradiction.

By reversing π we can show deg(v0) = 1 in the same way.



Edges in Trees

Theorem

Let G = (V ,E ) be a tree with V ̸= ∅.
Then |E | = |V | − 1.



Edges in Trees – Proof (1)

Proof.

Proof by induction over n = |V |.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |E | = 0 = 1− 1 = |V | − 1.

Induction step (n → n + 1):
Let G = (V ,E ) be a tree with n + 1 vertices (n ≥ 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = {u, v} be the connecting edge. . . .



Edges in Trees – Proof (1)

Proof.

Proof by induction over n = |V |.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |E | = 0 = 1− 1 = |V | − 1.

Induction step (n → n + 1):
Let G = (V ,E ) be a tree with n + 1 vertices (n ≥ 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = {u, v} be the connecting edge. . . .



Edges in Trees – Proof (1)

Proof.

Proof by induction over n = |V |.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |E | = 0 = 1− 1 = |V | − 1.

Induction step (n → n + 1):
Let G = (V ,E ) be a tree with n + 1 vertices (n ≥ 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = {u, v} be the connecting edge. . . .



Edges in Trees – Proof (2)

Proof (continued).

Consider the graph G ′ = (V ′,E ′)
with V ′ = V \ {u} and E ′ = E \ {e}.

G ′ is acyclic: every cycle in G ′ would also be present in G
(contradiction).

G ′ is connected: for all vertices w ̸= u and w ′ ̸= u,
G has a path π from w to w ′ because G is connected.
Path π cannot include u because u has only one neighbour, so
traversing u requires repeating v . Hence π is also a path in G ′.

Hence G ′ is a tree with n vertices, and we can apply
the induction hypothesis, which gives |E ′| = |V ′| − 1.
It follows that
|E | = |E ′|+ 1 = (|V ′| − 1) + 1 = (|V ′|+ 1)− 1 = |V | − 1.



Edges in Forests

Theorem

Let G = (V ,E ) be a forest.
Let C be the set of connected components of G.
Then |E | = |V | − |C |.

This result generalizes the previous one.



Edges in Forests – Proof

Proof.

Let C = {C1, . . . ,Ck}.
For 1 ≤ i ≤ k , let Gi = (Ci ,Ei ) be G restricted to Ci , i.e.,
the graph whose vertices are Ci

and whose edges are the edges e ∈ E with e ⊆ Ci .

We have |V | =
∑k

i=1 |Ci | because the connected components
form a partition of V .

We have |E | =
∑k

i=1 |Ei | because every edge belongs to exactly
one connected component. (Note that there cannot be edges
between different connected components.)

Every graph Gi is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is acyclic. This implies |Ei | = |Ci | − 1.

Putting this together, we get
|E | =

∑k
i=1 |Ei | =

∑k
i=1(|Ci |−1) =

∑k
i=1 |Ci |−k = |V |−|C |.



Characterizations of Trees



Characterizations of Trees

Theorem

Let G = (V ,E ) be a graph with V ̸= ∅.
The following statements are equivalent:

1 G is a tree.

2 G is acyclic and connected.

3 G is acyclic and |E | = |V | − 1.

4 G is connected and |E | = |V | − 1.

5 For all u, v ∈ V there exists exactly one path from u to v.



Characterizations of Trees – Proof (1)

Reminder:
(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and |E | = |V | − 1.
(4) G is connected and |E | = |V | − 1.

(5) For all u, v ∈ V there exists exactly one path from u to v .

Proof.

We know already:

(1) and (2) are equivalent by definition of trees.

We have shown that (1) and (5) are equivalent.

We have shown that (1) implies (3) and (4).

We complete the proof by showing (3) ⇒ (2) and (4) ⇒ (2). . . .



Characterizations of Trees – Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E | = |V | − 1.

Proof (continued).

(3) ⇒ (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E | = |V | − |C |,
where C are the connected components of G .

But we also know |E | = |V | − 1. This implies |C | = 1.
Hence G is connected and therefore a tree. . . .



Characterizations of Trees – Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E | = |V | − 1.

Proof (continued).
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where C are the connected components of G .

But we also know |E | = |V | − 1. This implies |C | = 1.
Hence G is connected and therefore a tree. . . .



Characterizations of Trees – Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E | = |V | − 1.

Proof (continued).

(4) ⇒ (2):
In graphs that are not acyclic, we can remove an edge without
changing the connected components: if ⟨v0, . . . , vn, v0⟩ (n ≥ 2)
is a cycle, remove the edge {v0, v1} from the graph.
Every walk using this edge can substitute ⟨v1, . . . , vn, v0⟩
(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V ,E ′) is acyclic and connected and therefore a tree.

This implies |E ′| = |V | − 1, but we also have |E | = |V | − 1.
This yields |E | = |E ′| and hence E ′ = E : the number of edges
removable in this way must be 0. Hence G is already acyclic.
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(4) G is connected and |E | = |V | − 1.

Proof (continued).

(4) ⇒ (2):
In graphs that are not acyclic, we can remove an edge without
changing the connected components: if ⟨v0, . . . , vn, v0⟩ (n ≥ 2)
is a cycle, remove the edge {v0, v1} from the graph.
Every walk using this edge can substitute ⟨v1, . . . , vn, v0⟩
(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V ,E ′) is acyclic and connected and therefore a tree.

This implies |E ′| = |V | − 1, but we also have |E | = |V | − 1.
This yields |E | = |E ′| and hence E ′ = E : the number of edges
removable in this way must be 0. Hence G is already acyclic.



Discrete Mathematics in Computer Science
C4. Further Topics in Graph Theory

Malte Helmert, Gabriele Röger
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Subgraphs



Overview

We conclude our discussion of (di-) graphs by giving
a brief tour of some further topics in graph theory
that we do not have time to discuss in depth.

In the interest of brevity (and hence wider coverage of topics),
we do not give proofs for the results in this chapter.



Subgraphs

Definition (subgraph)

A subgraph of a graph (V ,E ) is a graph (V ′,E ′)
with V ′ ⊆ V and E ′ ⊆ E .

A subgraph of a digraph (N,A) is a digraph (N ′,A′)
with N ′ ⊆ N and A′ ⊆ A.

German: Teilgraph/Untergraph

Question: Can we choose V ′ and E ′ arbitrarily?

The subgraph relationship defines a partial order on graphs
(and on digraphs).



Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

subgraph (V ′,E ′)



Induced Subgraphs (1)

Definition (induced subgraph)

Let G = (V ,E ) be a graph, and let V ′ ⊆ V .
The subgraph of G induced by V ′ is the graph (V ′,E ′)
with E ′ = {{u, v} ∈ E | u, v ∈ V ′}.
We say that G ′ is an induced subgraph of G = (V ,E ) if G ′ is
the subgraph of G induced by V ′ for any set of vertices V ′ ⊆ V .

German: induzierter Teilgraph (eines Graphen)



Induced Subgraphs (2)

Definition (induced subgraph)

Let G = (N,A) be a digraph, and let N ′ ⊆ N.
The subgraph of G induced by N ′ is the digraph (N ′,A′)
with A′ = {(u, v) ∈ A | u, v ∈ N ′}.
We say that G ′ is an induced subgraph of G = (N,A) if G ′ is
the subgraph of G induced by N ′ for any set of nodes N ′ ⊆ N.

German: induzierter Teilgraph (eines gerichteten Graphen)



Induced Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

Is this an induced subgraph?



Induced Subgraphs – Example

A B

C D

E
FG

graph (V ,E )

A B

C D

G

This is an induced subgraph.



Induced Subgraphs – Discussion

Induced subgraphs are subgraphs.

They are the largest (in terms of the set of edges) subgraphs
with any given set of vertices.

A typical example is a subgraph induced by
one connected component of a graph.

The subgraphs induced by the connected components
of a forest are trees.



Counting Subgraphs

How many subgraphs does a graph (V ,E ) have?

How many induced subgraph does a graph (V ,E ) have?

For the second question, the answer is 2|V |.

The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible
(n
2

)
edges)

has
∑n

k=0

(n
k

)
2(

k
2) subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs



Counting Subgraphs

How many subgraphs does a graph (V ,E ) have?

How many induced subgraph does a graph (V ,E ) have?

For the second question, the answer is 2|V |.

The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible
(n
2

)
edges)

has
∑n

k=0

(n
k

)
2(

k
2) subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs



Isomorphism



Motivation

A B

C D

E
FG

graph (V ,E )

1 2

3 4

5
67

graph (V ′,E ′)

What is the difference between these graphs?



Isomorphism

In many cases, the “names” of the vertices of a graph
do not have any particular semantic meaning.

Often, we care about the structure of the graph,
i.e., the relationship between the vertices and edges,
but not what we call the different vertices.

This is captured by the concept of isomorphism.



Isomorphism – Definition

Definition (Isomorphism)

Let G = (V ,E ) and G ′ = (V ′,E ′) be graphs.

An isomorphism from G to G ′ is a bijective function
σ : V → V ′ such that for all u, v ∈ V :

{u, v} ∈ E iff {σ(u), σ(v)} ∈ E ′.

If there exists an isomorphism from G to G ′,
we say that they are isomorphic, in symbols G ∼= G ′.

German: Isomorphismus, isomorph

derives from Ancient Greek for “equally shaped/formed”

analogous definition for digraphs omitted



Isomorphism – Example

A B

C D

E
FG

graph (V ,E )

1 2

3 4

5
67

graph (V ′,E ′)

σ = {A 7→ 1,B 7→ 2,C 7→ 3,D 7→ 4,E 7→ 5,F 7→ 6,G 7→ 7}
for example: {A,B} ∈ E and {σ(A), σ(B)} = {1, 2} ∈ E ′

for example: {A,D} /∈ E and {σ(A), σ(D)} = {1, 4} /∈ E ′



Isomorphism – Discussion

The identity function is an isomorphism.

The inverse of an isomorphism is an isomorphism.

The composition of two isomorphisms is an isomorphism
(when defined over matching sets of vertices)

It follows that being isomorphic is an equivalence relation.



Isomorphic or Not? (1)

A

B

C

D

E

1

2

3

4

5

isomorphic
σ = {A 7→ 1,B 7→ 3,C 7→ 5,D 7→ 2,E 7→ 4}



Isomorphic or Not? (1)

A

B

C

D

E

1

2

3

4

5

isomorphic
σ = {A 7→ 1,B 7→ 3,C 7→ 5,D 7→ 2,E 7→ 4}



Isomorphic or Not? (2)

A B

C D

A B

C

D

isomorphic
⇝ in fact, the same graph!

σ = {A 7→ A,B 7→ B,C 7→ C,D 7→ D}



Isomorphic or Not? (2)

A B

C D

A B

C

D

isomorphic
⇝ in fact, the same graph!

σ = {A 7→ A,B 7→ B,C 7→ C,D 7→ D}



Isomorphic or Not? (3)

A

B

C

D

E A B

C

D

not isomorphic
There does not even exist a bijection between the vertices.



Isomorphic or Not? (3)

A

B

C

D

E A B

C

D

not isomorphic
There does not even exist a bijection between the vertices.



Isomorphic or Not? (4)

A
B

C
D

E

F

G

H

I

J

A
B

C
D

E

F

G

H

I

J

isomorphic or not?



Proving and Disproving Isomorphism

To prove that two graphs are isomorphic, it suffices to state
an isomorphism and verify that it has the required properties.

To prove that two graphs are not isomorphic,
we must rule out all possible bijections.

With n vertices, there are n! bijections.
example n = 10: 10! = 3628800

A common disproof idea is to identify a graph invariant,
i.e., a property of a graph that must be the same
in isomorphic graphs, and show that it differs.

examples: number of vertices, number of edges,
maximum/minimum degree, sorted sequence of all degrees,
number of connected components



Isomorphic or Not? (5)

A
B

C
D

E

F

G

H

I

J

A
B

C
D

E

F

G

H

I

J

not isomorphic

The left graph has cycles of length 4 (e.g., ⟨A,B,G ,F ,A⟩).
The right graph does not.

Having a cycle of a given length is an invariant.



Scientific Pop Culture

Determining if two graphs are isomorphic
is an algorithmic problem that has been famously resistant
to studying its complexity.

For more than 40 years, we have not known if polynomial
algorithms exist, and we also do not know if it belongs to
the famous class of NP-complete problems.

In 2015, László Babai announced an algorithm
with quasi-polynomial (worse than polynomial,
better than exponential) runtime.

Further Reading

Martin Grohe, Pascal Schweitzer.
The Graph Isomorphism Problem.
Communications of the ACM 63(11):128–134, November 2020.
https://dl.acm.org/doi/10.1145/3372123

https://dl.acm.org/doi/10.1145/3372123


Symmetries, Automorphisms and Group Theory

An isomorphism σ between a graph G and itself
is called an automorphism or symmetry of G .

For every graph, its symmetries are permutations of its vertices
that form a mathematical structure called a group:

the identity function is a symmetry
the composition of two symmetries is a symmetry
the inverse of a symmetry is a symmetry



Automorphism Group of a Graph

1

2

3

4

5

What are the symmetries?

one example is the rotation
σ1 = {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1}
another example is the reflection
σ2 = {1 7→ 5, 2 7→ 4, 3 7→ 3, 4 7→ 2, 5 7→ 1}
There are 10 symmetries in total, and they are all
generated by (= can be composed from) σ1 and σ2.



Automorphism Group of a Graph

1

2

3

4

5

What are the symmetries?

one example is the rotation
σ1 = {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1}
another example is the reflection
σ2 = {1 7→ 5, 2 7→ 4, 3 7→ 3, 4 7→ 2, 5 7→ 1}
There are 10 symmetries in total, and they are all
generated by (= can be composed from) σ1 and σ2.



Planarity and Minors



Planarity

We often draw graphs as 2-dimensional pictures.

When we do so, we usually try to draw them
in such a way that different edges do not cross.

This often makes the picture neater
and the edges easier to visualize.

A picture of a graph with no edge crossings
is called a planar embedding.

A graph for which a planar embedding exists is called planar.



Planar Embeddings – Example

A B

C D

not a planar embedding

A B

C

D

planar embedding

The complete graph over 4 vertices is planar.



Planar Graphs

Definition (planar)

A graph G = (V ,E ) is called planar if there exists
a planar embedding of G , i.e., a picture of G
in the Euclidean plane in which no two edges intersect.

German: planar

Notes:

We do not formally define planar embeddings,
as this is nontrivial and not necessary for our discussion.

In general, we may draw edges as arbitrary curves.

However, it is possible to show that a graph
has a planar embedding iff it has a planar embedding
where all edges are straight lines.



Planar Graphs – Discussion

Planar graphs arise in many practical applications.

Many computational problems are easier for planar graphs.

For example, every planar graph can be coloured with at most
4 colours (i.e., we can assign one of four colours to each vertex
such that two neighbours always have different colours).

For this reason, planarity is of great practical interest.

How can we recognize that a graph is planar?

How can we prove that a graph is not planar?



Planar Graphs – Counterexample (1)

A

B

C

D

E

The complete graph K5 over 5 vertices is not planar.
(We do not prove this result.)



Planar Graphs – Counterexample (2)

A

B

C

1

2

3

The complete bipartite graph K3,3 over 3 + 3 vertices is not planar.
(We do not prove this result.)



Non-Planarity in General

The two non-planar graphs K5 and K3,3 are special:
they are the smallest non-planar graphs.

In fact, something much more powerful holds:
a graph is planar iff it does not contain K5 or K3,3.

The notion of containment we need here is related
to the notion of subgraphs that we introduced,
but a bit more complex. We will discuss it next.



Edge Contraction

We say that G ′ = (V ′,E ′) can be obtained from graph G = (V ,E )
by contracting the edge {u, v} ∈ E if

V ′ = (V \ {u, v}) ∪ {uv}, where uv /∈ V is a new vertex

E ′ = {e ∈ E | e ∩ {u, v} = ∅} ∪
{{uv ,w} | w ∈ V \ {u, v}, {u,w} ∈ E or {v ,w} ∈ E}.

In words, we combine the vertices u and v
(which must be connected by an edge) into a single vertex uv .

The neighbours of uv are the union of the neighbours of u
and the neighbours of v (excluding u and v themselves).



Edge Contraction – Example

A B

C D

E
FG

graph (V ,E )

A B

CD

E
G F

after contracting {C,D}



Minor

Definition (minor)

We say that a graph G ′ is a minor of a graph G
if it can be obtained from G through a sequence
of transformations of the following kind:

1 remove a vertex (of degree 0) from the graph

2 remove an edge from the graph

3 contract an edge in the graph

German: Minor (plural: Minoren)

Notes:

If we only allowed the first two transformations,
we would obtain the regular subgraph relationship.

It follows that every subgraph is a minor,
but the opposite is not true in general.



Wagner’s Theorem

Theorem (Wagner’s Theorem)

A graph is planar iff it does not contain K5 or K3,3 as a minor.

German: Satz von Wagner

Note: There exist linear algorithms for testing planarity.



Minor-Hereditary Properties

Being planar is what is called a minor-hereditary property:
if G is planar, then all its minors are also planar.

There exist many other important such properties.

One example is acyclicity.

How could one prove that a property is minor-hereditary?



The Graph Minor Theorem

Theorem (Graph minor theorem)

Let Π be a minor-hereditary property of graphs.

Then there exists a finite set of forbidden minors F (Π)
such that the following result holds:

A graph has property Π iff it does not have any graph
from F (Π) as a minor.

German: Minorentheorem

Examples:

the forbidden minors for planarity are K5 and K3,3

the (only) forbidden minor for acyclicity is K3,
the complete graph with 3 vertices (a.k.a. the 3-cycle graph)



Remarks on the Graph Minor Theorem (1)

The graph minor theorem is also known as the
Robertson-Seymour theorem.

It was proved by Robertson and Seymour in a series
of 20 papers between 1983–2004, totalling 500+ pages.

It is one of the most important results in graph theory.



Remarks on the Graph Minor Theorem (2)

In principle, for every fixed graph H, we can test if H is
a minor of a graph G in polynomial time in the size of G .

This implies that every minor-hereditary property
can be tested in polynomial time.

However, the constant factors involved in the known general
algorithms for testing minors (which depend on |H|) are so
astronomically huge as to make them infeasible in practice.
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Introduction to Formal Logic



Why Logic?

formalizing mathematics

What is a true statement?
What is a valid proof?
What can and cannot be proved?

basis of many tools in computer science

design of digital circuits
semantics of databases; query optimization
meaning of programming languages
verification of safety-critical hardware/software
knowledge representation in artificial intelligence
logic-based programming languages (e.g. Prolog)
. . .



Application: Logic Programming I

Declarative approach: Describe what to accomplish,
Declarative approach: not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

CC BY-SA 3.0 Wikimedia Commons (TUBS)

This is a hard problem!



Application: Logic Programming II

Prolog program

color(red). color(blue). color(green). color(yellow).

differentColor(ColorA, ColorB) :-

color(ColorA), color(ColorB),

ColorA \= ColorB.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,

JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,

TI, UR, VD, VS, ZG, ZH) :-

differentColor(AG, BE), differentColor(AG, BL),

...

differentColor(VD, VS), differentColor(ZH, ZG).



What Logic is About

General Question:

Given some knowledge about the world (a knowledge base)

what can we derive from it?

And on what basis may we argue?

⇝ logic

Goal: “mechanical” proofs

formal “game with letters”

detached from a concrete meaning



Running Example

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net



Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

propositions are statements that can be either true or false

atomic propositions cannot be split into subpropositions

logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage,

German:

Junktoren/logische Verknüpfungen



Examples for Building Blocks

If I don’t drink beer to a meal, then I
always eat fish. Whenever I have fish and
beer with the same meal, I abstain from
ice cream. When I eat ice cream or don’t
drink beer, then I never touch fish.

Every sentence is a proposition that consists of
subpropositions (e. g., “eat ice cream or don’t drink beer”).

atomic propositions “drink beer”, “eat fish”, “eat ice cream”

logical connectives “and”, “or”, negation, “if, then”

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Challenges with Natural Language

If I don’t drink beer to a meal, then I
always eat fish.
Whenever I have fish and beer with the
same meal, I abstain from ice cream.
When I eat ice cream or don’t drink
beer, then I never touch fish.

“irrelevant” information

different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker
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Challenges with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

“irrelevant” information

different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net



What is Next?

What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatIceCream not or DrinkBeer and” not meaningful
→ syntax

What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
→ semantics

When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
→ logical entailment

German: Syntax, Semantik, logische Folgerung



Syntax of Propositional Logic



Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

Every atom a ∈ A is a propositional formula over A.

If φ is a propositional formula over A,
then so is its negation ¬φ.
If φ and ψ are propositional formulas over A,
then so is the conjunction (φ ∧ ψ).
If φ and ψ are propositional formulas over A,
then so is the disjunction (φ ∨ ψ).

The implication (φ→ ψ) is an abbreviation for (¬φ ∨ ψ).
The biconditional (φ↔ ψ) is an abbrev. for ((φ→ ψ)∧ (ψ → φ)).
German: atomare Aussage, aussagenlogische Formel, Atom,
Negation, Konjunktion, Disjunktion, Implikation, Bikonditional



Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences? Which kinds
of formula are they (atom, conjunction, . . . )?

(A ∧ (B ∨ C))

¬( ∧ Rain ∨ StreetWet)

¬(Rain ∨ StreetWet)

((EatFish ∧ DrinkBeer) → ¬EatIceCream)

Rain ∧ ¬Rain
¬(A = B)

(A ∧ ¬(B ↔)C)

((A ≤ B) ∧ C)

(A ∨ ¬(B ↔ C))

((A1 ∧ A2) ∨ ¬(A3 ↔ A2))



Semantics of Propositional Logic



Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish ∧ DrinkBeer) → ¬EatIceCream)?

▷ We need semantics!



Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function I : A → {0, 1}.
A propositional formula φ (over A) holds under I
(written as I |= φ) according to the following definition:

I |= a iff I(a) = 1 (for a ∈ A)
I |= ¬φ iff not I |= φ
I |= (φ ∧ ψ) iff I |= φ and I |= ψ
I |= (φ ∨ ψ) iff I |= φ or I |= ψ

Question: should we define semantics of (φ→ ψ) and (φ↔ ψ)?

German: Wahrheitsbelegung/Interpretation, φ gilt unter I



Semantics of Propositional Logic: Terminology

For I |= φ we also say I is a model of φ
and that φ is true under I.
If φ does not hold under I, we write this as I ̸|= φ
and say that I is no model of φ
and that φ is false under I.
Note: |= is not part of the formula
but part of the meta language (speaking about a formula).

German: I ist ein/kein Modell von φ; φ ist wahr/falsch unter I;
Metasprache



Exercise

Consider the set A = {X,Y,Z} of atomic propositions
and formula φ = (X ∧ ¬Y).

Specify an interpretation I for A with I |= φ.



Semantics: Example (1)

A = {DrinkBeer,EatFish,EatIceCream}
I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}
φ = (¬DrinkBeer → EatFish)

Do we have I |= φ?



Semantics: Example (2)

Goal: prove I |= φ.

Let us use the definitions we have seen:

I |= φ iff I |= (¬DrinkBeer → EatFish)

iff I |= (¬¬DrinkBeer ∨ EatFish)

iff I |= ¬¬DrinkBeer or I |= EatFish

This means that if we want to prove I |= φ, it is sufficient to prove

I |= ¬¬DrinkBeer

or to prove
I |= EatFish.

We attempt to prove the first of these statements.



Semantics: Example (3)

New goal: prove I |= ¬¬DrinkBeer.

We again use the definitions:

I |= ¬¬DrinkBeer iff not I |= ¬DrinkBeer
iff not not I |= DrinkBeer

iff I |= DrinkBeer

iff I(DrinkBeer) = 1

The last statement is true for our interpretation I.

To write this up as a proof of I |= φ,
we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.



Semantics: Example (4)

Let I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}.
Proof that I |= (¬DrinkBeer → EatFish):

(1) We have I |= DrinkBeer
(uses defn. of |= for atomic props. and fact
I(DrinkBeer) = 1).

(2) From (1), we get I ̸|= ¬DrinkBeer
(uses defn. of |= for negations).

(3) From (2), we get I |= ¬¬DrinkBeer
(uses defn. of |= for negations).

(4) From (3), we get I |= (¬¬DrinkBeer ∨ ψ) for all formulas ψ,
in particular I |= (¬¬DrinkBeer ∨ EatFish)
(uses defn. of |= for disjunctions).

(5) From (4), we get I |= (¬DrinkBeer → EatFish)
(uses defn. of “→”). □



Summary

propositional logic based on atomic propositions

syntax defines what well-formed formulas are

semantics defines when a formula is true

interpretations are the basis of semantics
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Properties of Propositional Formulas



The Story So Far

propositional logic based on atomic propositions

syntax: which formulas are well-formed?

semantics: when is a formula true?

interpretations: important basis of semantics



Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

Every atom a ∈ A is a propositional formula over A.

If φ is a propositional formula over A,
then so is its negation ¬φ.
If φ and ψ are propositional formulas over A,
then so is the conjunction (φ ∧ ψ).
If φ and ψ are propositional formulas over A,
then so is the disjunction (φ ∨ ψ).

The implication (φ→ ψ) is an abbreviation for (¬φ ∨ ψ).
The biconditional (φ↔ ψ) is an abbrev. for ((φ→ ψ)∧ (ψ → φ)).



Reminder: Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function I : A → {0, 1}.
A propositional formula φ (over A) holds under I
(written as I |= φ) according to the following definition:

I |= a iff I(a) = 1 (for a ∈ A)
I |= ¬φ iff not I |= φ
I |= (φ ∧ ψ) iff I |= φ and I |= ψ
I |= (φ ∨ ψ) iff I |= φ or I |= ψ



Properties of Propositional Formulas

A propositional formula φ is

satisfiable if φ has at least one model

unsatisfiable if φ is not satisfiable

valid (or a tautology) if φ is true under every interpretation

falsifiable if φ is no tautology

German: erfüllbar, unerfüllbar, allgemeingültig/eine Tautologie,
falsifizierbar



Examples

How can we show that a formula has one of these properties?

Show that (A ∧ B) is satisfiable.

I = {A 7→ 1,B 7→ 1} (+ simple proof that I |= (A ∧ B))

Show that (A ∧ B) is falsifiable.

I = {A 7→ 0,B 7→ 1} (+ simple proof that I ̸|= (A ∧ B))

Show that (A ∧ B) is not valid.

Follows directly from falsifiability.

Show that (A ∧ B) is not unsatisfiable.

Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?

⇝ must consider all possible interpretations
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Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) I |= ¬A
0

Yes

1

No

I(A) I(B) I |= (A ∧ B)

0 0

No

0 1

No

1 0

No

1 1

Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes
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Truth Tables
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if they are models of the considered formula.

I(A) I |= ¬A
0 Yes
1 No

I(A) I(B) I |= (A ∧ B)

0 0 No
0 1 No
1 0 No
1 1 Yes

I(A) I(B) I |= (A ∨ B)

0 0 No
0 1 Yes
1 0 Yes
1 1 Yes



Truth Tables in General

Similarly in the case where we consider a formula whose building
blocks are themselves arbitrary unspecified formulas:

I |= φ I |= ψ I |= (φ ∧ ψ)
No No No
No Yes No
Yes No No
Yes Yes Yes



Truth Tables for Properties of Formulas

Is φ = ((A → B) ∨ (¬B → A)) valid, unsatisfiable, . . . ?

I(A) I(B) I |= ¬B I |= (A → B) I |= (¬B → A) I |= φ

0 0 Yes Yes No Yes
0 1 No Yes Yes Yes
1 0 Yes No Yes Yes
1 1 No Yes Yes Yes



Connection Between Formula Properties and Truth Tables

A propositional formula φ is

satisfiable if φ has at least one model
⇝ result in at least one row is “Yes”

unsatisfiable if φ is not satisfiable
⇝ result in all rows is “No”

valid (or a tautology) if φ is true under every interpretation
⇝ result in all rows is “Yes”

falsifiable if φ is no tautology
⇝ result in at least one row is “No”



Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

1 2 interpretations (rows)
2 4 interpretations (rows)
3 8 interpretations (rows)
n ??? interpretations

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824

⇝ not viable for larger formulas; we need a different solution

more on difficulty of satisfiability etc.:
Theory of Computer Science course

practical algorithms: Foundations of AI course



Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

1 2 interpretations (rows)
2 4 interpretations (rows)
3 8 interpretations (rows)
n 2n interpretations

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824

⇝ not viable for larger formulas; we need a different solution

more on difficulty of satisfiability etc.:
Theory of Computer Science course

practical algorithms: Foundations of AI course



Equivalences



Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas φ and ψ over A are (logically)
equivalent (φ ≡ ψ) if for all interpretations I for A
it is true that I |= φ if and only if I |= ψ.

German: logisch äquivalent



Equivalent Formulas: Example

((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ))

I |= I |= I |= I |= I |= I |= I |=
φ ψ χ (φ ∨ ψ) (ψ ∨ χ) ((φ ∨ ψ) ∨ χ) (φ ∨ (ψ ∨ χ))
No No No No No No No
No No Yes No Yes Yes Yes
No Yes No Yes Yes Yes Yes
No Yes Yes Yes Yes Yes Yes
Yes No No Yes No Yes Yes
Yes No Yes Yes Yes Yes Yes
Yes Yes No Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes



Some Equivalences (1)

(φ ∧ φ) ≡ φ

(φ ∨ φ) ≡ φ (idempotence)

(φ ∧ ψ) ≡ (ψ ∧ φ)
(φ ∨ ψ) ≡ (ψ ∨ φ) (commutativity)

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ))
((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ)) (associativity)

German: Idempotenz

, Kommutativität, Assoziativität
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German: Idempotenz, Kommutativität, Assoziativität



Some Equivalences (2)

(φ ∧ (φ ∨ ψ)) ≡ φ

(φ ∨ (φ ∧ ψ)) ≡ φ (absorption)

(φ ∧ (ψ ∨ χ)) ≡ ((φ ∧ ψ) ∨ (φ ∧ χ))
(φ ∨ (ψ ∧ χ)) ≡ ((φ ∨ ψ) ∧ (φ ∨ χ)) (distributivity)

German: Absorption

, Distributivität
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Some Equivalences (3)

¬¬φ ≡ φ (double negation)

¬(φ ∧ ψ) ≡ (¬φ ∨ ¬ψ)
¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ) (De Morgan’s rules)

(φ ∨ ψ) ≡ φ if φ tautology

(φ ∧ ψ) ≡ ψ if φ tautology (tautology rules)

(φ ∨ ψ) ≡ ψ if φ unsatisfiable

(φ ∧ ψ) ≡ φ if φ unsatisfiable (unsatisfiability rules)

German: Doppelnegation

, De Morgansche Regeln,
Tautologieregeln, Unerfüllbarkeitsregeln
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Substitution Theorem

Theorem (Substitution Theorem)

Let φ and φ′ be equivalent propositional formulas over A.
Let ψ be a propositional formula with (at least)
one occurrence of the subformula φ.

Then ψ is equivalent to ψ′, where ψ′ is constructed from ψ
by replacing an occurrence of φ in ψ with φ′.

German: Ersetzbarkeitstheorem

(without proof)



Application of Equivalences: Example

(P ∧ (Q ∨ ¬P)) ≡ ((P ∧ Q) ∨ (P ∧ ¬P)) (distributivity)

≡ ((P ∧ ¬P) ∨ (P ∧ Q)) (commutativity)

≡ (P ∧ Q) (unsatisfiability rule)



Application of Equivalences: Example

(P ∧ (Q ∨ ¬P)) ≡ ((P ∧ Q) ∨ (P ∧ ¬P)) (distributivity)

≡ ((P ∧ ¬P) ∨ (P ∧ Q)) (commutativity)

≡ (P ∧ Q) (unsatisfiability rule)



Application of Equivalences: Example

(P ∧ (Q ∨ ¬P)) ≡ ((P ∧ Q) ∨ (P ∧ ¬P)) (distributivity)

≡ ((P ∧ ¬P) ∨ (P ∧ Q)) (commutativity)

≡ (P ∧ Q) (unsatisfiability rule)
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Simplified Notation



Parentheses

Associativity:

((φ ∧ ψ) ∧ χ) ≡ (φ ∧ (ψ ∧ χ))
((φ ∨ ψ) ∨ χ) ≡ (φ ∨ (ψ ∨ χ))

Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

ditto for disjunctions of disjunctions

⇝ can omit parentheses and treat this
as if parentheses placed arbitrarily

Example: (A1 ∧ A2 ∧ A3 ∧ A4) instead of
((A1 ∧ (A2 ∧ A3)) ∧ A4)

Example: (¬A ∨ (B ∧ C) ∨D) instead of ((¬A ∨ (B ∧ C)) ∨D)



Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? ⇝ No!

((φ ∧ ψ) ∨ χ) ̸≡ (φ ∧ (ψ ∨ χ))

What should φ ∧ ψ ∨ χ mean?



Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

¬ binds more strongly than ∧
∧ binds more strongly than ∨
∨ binds more strongly than → or ↔

⇝ cf. PEMDAS/“Punkt vor Strich”

Example

A ∨ ¬C ∧ B → A ∨ ¬D stands for A ∨ ¬C ∧ B → A ∨ ¬D

often harder to read

error-prone

⇝ not used in this course
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Short Notations for Conjunctions and Disjunctions

Short notation for addition:∑n

i=1
xi = x1 + x2 + · · ·+ xn

∑
x∈{x1,...,xn}

x = x1 + x2 + · · ·+ xn

Analogously (possible because of commutativity of ∧ and ∨):∧n

i=1
φi = (φ1 ∧ φ2 ∧ · · · ∧ φn)∨n

i=1
φi = (φ1 ∨ φ2 ∨ · · · ∨ φn)

∧
φ∈X

φ = (φ1 ∧ φ2 ∧ · · · ∧ φn)∨
φ∈X

φ = (φ1 ∨ φ2 ∨ · · · ∨ φn)

for X = {φ1, . . . , φn}
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Short Notation: Corner Cases

Is I |= ψ true for

ψ =
∧

φ∈X
φ and ψ =

∨
φ∈X

φ

if X = ∅ or X = {χ}?

convention:∧
φ∈∅ φ is a tautology.∨
φ∈∅ φ is unsatisfiable.∧
φ∈{χ} φ =

∨
φ∈{χ} φ = χ

⇝ Why?



Short Notation: Corner Cases

Is I |= ψ true for

ψ =
∧

φ∈X
φ and ψ =

∨
φ∈X

φ

if X = ∅ or X = {χ}?

convention:∧
φ∈∅ φ is a tautology.∨
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Exercise

Express
∧2

i=1

∨3
j=1 φij without

∧
and

∨
.



Normal Forms



Why Normal Forms?

A normal form is a representation
with certain syntactic restrictions.

condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form

advantages:

can restrict proofs to formulas in normal form
can define algorithms to work only for formulas in normal form

German: Normalform



Negation Normal Form

Definition (Negation Normal Form)

A formula is in negation normal form (NNF)
if it does not contain the abbreviations → and ↔
and if it contains no negation symbols except possibly
directly in front of atomic propositions.

German: Negationsnormalform

Example

((¬P ∨ (R ∧ Q)) ∧ (P ∨ ¬S)) is in NNF.
(P ∧ ¬(Q ∨ R)) is not in NNF.



Construction of NNF

Algorithm to Construct NNF

1 Replace abbreviation ↔ by its definition ((↔)-elimination).
⇝ formula structure: only ¬, ∨, ∧, →

2 Replace abbreviation → by its definition ((→)-elimination).
⇝ formula structure: only ¬, ∨, ∧

3 Repeatedly apply double negation and De Morgan rules
until no rules match any more (“move negations inside”):

Replace ¬¬φ by φ.
Replace ¬(φ ∧ ψ) by (¬φ ∨ ¬ψ).
Replace ¬(φ ∨ ψ) by (¬φ ∧ ¬ψ).

⇝ formula structure: only atoms, negated atoms, ∨, ∧



Constructing NNF: Example

Construction of Negation Normal Form

Given: φ = (((P ∧ ¬Q) ∨ R) → (P ∨ ¬(S ∨ T)))

φ ≡ (¬((P ∧ ¬Q) ∨ R) ∨ P ∨ ¬(S ∨ T)) [Step 2]

≡ ((¬(P ∧ ¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 3]

≡ (((¬P ∨ ¬¬Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 3]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ ¬(S ∨ T)) [Step 3]

≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 3]
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Literals, Clauses and Monomials

A literal is an atomic proposition
or the negation of an atomic proposition (e. g., A and ¬A).
A clause is a disjunction of literals
(e. g., (Q ∨ ¬P ∨ ¬S ∨ R)).

A monomial is a conjunction of literals
(e. g., (Q ∧ ¬P ∧ ¬S ∧ R)).

The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom



Terminology: Examples

Examples

(¬Q ∧ R)

is a monomial

(P ∨ ¬Q)

is a clause

((P ∨ ¬Q) ∧ P)

is neither literal nor clause nor monomial

¬P

is a literal, a clause and a monomial

(P → Q)

is neither literal nor clause nor monomial
(but (¬P ∨ Q) is a clause!)

(P ∨ P)

is a clause, but not a literal or monomial

¬¬P

is neither literal nor clause nor monomial
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Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i. e., if it has the form

n∧
i=1

mi∨
j=1

Lij

with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: konjunktive Normalform (KNF)

Example

((¬P ∨ Q) ∧ R ∧ (P ∨ ¬S)) is in CNF.



Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i. e., if it has the form

n∨
i=1

mi∧
j=1

Lij

with n,mi > 0 (for 1 ≤ i ≤ n), where the Lij are literals.

German: disjunktive Normalform (DNF)

Example

((¬P ∧ Q) ∨ R ∨ (P ∧ ¬S)) is in DNF.



NNF, CNF and DNF: Examples

Which of the following formulas are in NNF?
Which are in CNF? Which are in DNF?

((P ∨ ¬Q) ∧ P)

is in NNF and CNF

((R ∨ Q) ∧ P ∧ (R ∨ S))

is in NNF and CNF

(P ∨ (¬Q ∧ R))

is in NNF and DNF

(P ∨ ¬¬Q)

is in none of the normal forms

(P → ¬Q)

is in none of the normal forms,
but is in all three after expanding →

((P ∨ ¬Q) → P)

is in none of the normal forms

P

is in NNF, CNF and DNF
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Construction of CNF (and DNF)

Algorithm to Construct CNF

First, convert to NNF (steps 1–3).
⇝ formula structure: only literals, ∨, ∧

4 Repeatedly apply distributivity or commutativity +
distributivity to distribute ∨ over ∧:

Replace (φ ∨ (ψ ∧ χ)) by ((φ ∨ ψ) ∧ (φ ∨ χ)).
Replace ((ψ ∧ χ) ∨ φ) by ((ψ ∨ φ) ∧ (χ ∨ φ)).

⇝ formula structure: CNF

5 optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, swap the roles of ∧ and ∨ in Step 4.



Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: φ = (((P ∧ ¬Q) ∨ R) → (P ∨ ¬(S ∨ T)))

φ ≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [to NNF]

≡ ((¬P ∨ Q ∨ P ∨ (¬S ∧ ¬T)) ∧
(¬R ∨ P ∨ (¬S ∧ ¬T))) [Step 4]

≡ (¬R ∨ P ∨ (¬S ∧ ¬T)) [Step 5]

≡ ((¬R ∨ P ∨ ¬S) ∧ (¬R ∨ P ∨ ¬T)) [Step 4]
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Construct DNF: Example

Construction of Disjunctive Normal Form

Given: φ = (((P ∧ ¬Q) ∨ R) → (P ∨ ¬(S ∨ T)))

φ ≡ (((¬P ∨ Q) ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [to NNF]

≡ ((¬P ∧ ¬R) ∨ (Q ∧ ¬R) ∨ P ∨ (¬S ∧ ¬T)) [Step 4]



Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in NNF,
a logically equivalent formula in CNF
and a logically equivalent formula in DNF.

“There is a” always means “there is at least one”.
Otherwise we would write “there is exactly one”.

Intuition: algorithms to construct normal forms work
with any given formula and only use equivalence rewriting.

actual proof would use induction over structure of formula



Size of Normal Forms

In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

Example: for (x1 ∨ y1) ∧ · · · ∧ (xn ∨ yn) there is no smaller
logically equivalent formula in DNF than:∨

S∈P({1,...,n})

(∧
i∈S xi ∧

∧
i∈{1,...,n}\S yi

)
As a consequence, the construction of the CNF/DNF formula
can take exponential time.

For NNF, we can generate an equivalent formula in linear time
if the original formula does not use ↔.



More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

⇝ both proved easily with semantics of propositional logic



Knowledge Bases



Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

KB = {(¬DrinkBeer → EatFish),

((EatFish ∧ DrinkBeer) → ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer) → ¬EatFish)}

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net



Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i. e., a set of propositional formulas over A.

A truth assignment I for A is a model for KB (written: I |= KB)
if I is a model for every formula φ ∈ KB.

German: Wissensbasis, Modell



Properties of Sets of Formulas

A knowledge base KB is

satisfiable if KB has at least one model

unsatisfiable if KB is not satisfiable

valid (or a tautology) if every interpretation is a model for KB

falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie,
falsifizierbar



Example I

Which of the properties does KB = {(A ∧ ¬B),¬(B ∨ A)} have?

KB is unsatisfiable:
For every model I with I |= (A ∧ ¬B) we have I(A) = 1.
This means I |= (B ∨ A) and thus I ̸|= ¬(B ∨ A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.



Example I

Which of the properties does KB = {(A ∧ ¬B),¬(B ∨ A)} have?

KB is unsatisfiable:
For every model I with I |= (A ∧ ¬B) we have I(A) = 1.
This means I |= (B ∨ A) and thus I ̸|= ¬(B ∨ A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.



Example II

Which of the properties does

KB = {(¬DrinkBeer → EatFish),

((EatFish ∧ DrinkBeer) → ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer) → ¬EatFish)} have?

satisfiable, e. g. with
I = {EatFish 7→ 1,DrinkBeer 7→ 1,EatIceCream 7→ 0}
thus not unsatisfiable

falsifiable, e. g. with
I = {EatFish 7→ 0,DrinkBeer 7→ 0,EatIceCream 7→ 1}
thus not valid



Example II

Which of the properties does

KB = {(¬DrinkBeer → EatFish),

((EatFish ∧ DrinkBeer) → ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer) → ¬EatFish)} have?

satisfiable, e. g. with
I = {EatFish 7→ 1,DrinkBeer 7→ 1,EatIceCream 7→ 0}
thus not unsatisfiable

falsifiable, e. g. with
I = {EatFish 7→ 0,DrinkBeer 7→ 0,EatIceCream 7→ 1}
thus not valid



Logical Consequences



Logical Consequences: Motivation

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net



Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB |= φ)
if all models of KB are also models of φ.

also: KB logically entails φ, φ logically follows from KB,
φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB,
φ ist logische Konsequenz von KB

Attention: the symbol |= is “overloaded”: KB |= φ vs. I |= φ.

What if KB is unsatisfiable or the empty set?



Logical Consequences: Example

Let φ = DrinkBeer and

KB = {(¬DrinkBeer → EatFish),

((EatFish ∧ DrinkBeer) → ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer) → ¬EatFish)}.

Show: KB |= φ

Proof sketch.

Proof by contradiction: assume I |= KB, but I ̸|= DrinkBeer.
Then it follows that I |= ¬DrinkBeer.
Because I is a model of KB, we also have
I |= (¬DrinkBeer → EatFish) and thus I |= EatFish. (Why?)
With an analogous argumentation starting from
I |= ((EatIceCream ∨ ¬DrinkBeer) → ¬EatFish)
we get I |= ¬EatFish and thus I ̸|= EatFish. ⇝ Contradiction!
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Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

KB ∪ {φ} |= ψ iff KB |= (φ→ ψ)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB ∪ {φ} |= ¬ψ iff KB ∪ {ψ} |= ¬φ

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB ∪ {φ} is unsatisfiable iff KB |= ¬φ

German: Widerlegungssatz

(without proof)
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Inference Rules and Calculi



Inference: Motivation

up to now: proof of logical consequence
with semantic arguments

no general algorithm

solution: produce formulas that are logical consequences
of given formulas with syntactic inference rules

advantage: mechanical method that can easily
be implemented as an algorithm



Inference Rules

Inference rules have the form

φ1, . . . , φk

ψ
.

Meaning: “Every model of φ1, . . . , φk is a model of ψ.”

An axiom is an inference rule with k = 0.

A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem



Some Inference Rules for Propositional Logic

Modus ponens
φ, (φ→ ψ)

ψ

Modus tollens
¬ψ, (φ→ ψ)

¬φ

∧-elimination
(φ ∧ ψ)
φ

(φ ∧ ψ)
ψ

∧-introduction φ, ψ

(φ ∧ ψ)

∨-introduction φ

(φ ∨ ψ)

↔-elimination
(φ↔ ψ)

(φ→ ψ)

(φ↔ ψ)

(ψ → φ)



Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB
is a sequence of formulas ψ1, . . . , ψk with

ψk = φ and

for all i ∈ {1, . . . , k}:
ψi ∈ KB, or
ψi is the result of the application of an inference rule
to elements from {ψ1, . . . , ψi−1}.

German: Ableitung, Beweis



Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R) → S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)
7 ((Q ∧ R) → S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)
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Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write KB ⊢C φ if there is a derivation of φ from KB
in calculus C .
(If calculus C is clear from context, also only KB ⊢ φ.)

A calculus C is correct if for all KB and φ
KB ⊢C φ implies KB |= φ.

A calculus C is complete if for all KB and φ
KB |= φ implies KB ⊢C φ.

Consider calculus C , consisting of the derivation rules seen earlier.
Question: Is C correct?
Question: Is C complete?

German: korrekt, vollständig
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Questions

Questions?



Summary



Summary (Consequence and Inference)

knowledge base: set of formulas describing given information;
satisfiable, valid etc. used like for individual formulas

logical consequence KB |= φ means that φ is true
whenever (= in all models where) KB is true

A logical consequence KB |= φ allows to conclude that KB
implies φ based on the semantics.

A correct calculus supports such conclusions
on the basis of purely syntactical derivations KB ⊢ φ.



Further Topics

There are many aspects of propositional logic
that we do not cover in this course.

resolution: a commonly used proof system for formulas in CNF

other proof systems, for example tableaux proofs

algorithms for model construction, such as the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

⇝ Foundations of AI course
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Syntax of Predicate Logic



Limits of Propositional Logic

Cannot be expressed well in propositional logic:

“Everyone who does the exercises passes the exam.”

“If someone with administrator privileges presses ‘delete’,

“

all data is gone.”

“Everyone has a mother.”

“If someone is the father of some person,

“

the person is his child.”

▷ need more expressive logic
▷ ⇝ predicate logic (a.k.a. first-order logic)

German: Prädikatenlogik (erster Stufe)
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Syntax: Building Blocks

Signatures define allowed symbols.
analogy: atom set A in propositional logic

Terms are associated with objects by the semantics.
no analogy in propositional logic

Formulas are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel



Signatures: Definition

Definition (Signature)

A signature (of predicate logic) is a 4-tuple S = ⟨V, C,F ,P⟩
consisting of the following four disjoint sets:

a finite or countable set V of variable symbols

a finite or countable set C of constant symbols

a finite or countable set F of function symbols

a finite or countable set P of predicate symbols
(or relation symbols)

Every function symbol f ∈ F and predicate symbol P ∈ P
has an associated arity ar(f), ar(P) ∈ N1 (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und
Relationssymbole; Stelligkeit



Signatures: Terminology and Conventions

terminology:

k-ary (function or predicate) symbol:
symbol s with arity ar(s) = k .

also: unary, binary, ternary

German: k-stellig, unär, binär, ternär

conventions (in this course):

variable symbols written in italics,
other symbols upright.

predicate symbols begin with capital letter,
other symbols with lower-case letters



Signatures: Examples

Example: Arithmetic

V = {x , y , z , x1, x2, x3, . . . }
C = {zero, one}
F = {sum, product}
P = {Positive,SquareNumber}

ar(sum) = ar(product) = 2, ar(Positive) = ar(SquareNumber) = 1



Signatures: Examples

Example: Genealogy

V = {x , y , z , x1, x2, x3, . . . }
C = {roger-federer, lisa-simpson}
F = ∅
P = {Female,Male,Parent}

ar(Female) = ar(Male) = 1, ar(Parent) = 2



Terms: Definition

Definition (Term)

Let S = ⟨V, C,F ,P⟩ be a signature.
A term (over S) is inductively constructed
according to the following rules:

Every variable symbol v ∈ V is a term.

Every constant symbol c ∈ C is a term.

If t1, . . . , tk are terms and f ∈ F is a function symbol
with arity k , then f(t1, . . . , tk) is a term.

German: Term

examples:

x4

lisa-simpson

sum(x3, product(one, x5))
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Formulas: Definition

Definition (Formula)

For a signature S = ⟨V, C,F ,P⟩ the set of predicate logic formulas
(over S) is inductively defined as follows:

If t1, . . . , tk are terms (over S) and P ∈ P is a k-ary predicate
symbol, then the atomic formula (or the atom) P(t1, . . . , tk)
is a formula over S.
If t1 and t2 are terms (over S), then the identity (t1 = t2)
is a formula over S.
If x ∈ V is a variable symbol and φ a formula over S,
then the universal quantification ∀x φ
and the existential quantification ∃x φ are formulas over S.

. . .

German: atomare Formel, Atom, Identität,

German:

Allquantifizierung, Existenzquantifizierung



Formulas: Definition

Definition (Formula)

For a signature S = ⟨V, C,F ,P⟩ the set of predicate logic formulas
(over S) is inductively defined as follows:
. . .

If φ is a formula over S, then so is its negation ¬φ.
If φ and ψ are formulas over S, then so are
the conjunction (φ ∧ ψ) and the disjunction (φ ∨ ψ).

German: Negation, Konjunktion, Disjunktion



Formulas: Examples

Examples: Arithmetic and Genealogy

Positive(x2)

∀x (¬SquareNumber(x) ∨ Positive(x))

∃x3 (SquareNumber(x3) ∧ ¬Positive(x3))
∀x (x = y)

∀x (sum(x , x) = product(x , one))

∀x∃y (sum(x , y) = zero)

∀x∃y (Parent(y , x) ∧ Female(y))

Terminology: The symbols ∀ and ∃ are called quantifiers.

German: Quantoren



Abbreviations and Placement of Parentheses by Convention

abbreviations:

(φ→ ψ) is an abbreviation for (¬φ ∨ ψ).
(φ↔ ψ) is an abbreviation for ((φ→ ψ) ∧ (ψ → φ)).

Sequences of the same quantifier can be abbreviated.
For example:

∀x∀y∀z φ ⇝ ∀xyz φ
∃x∃y∃z φ ⇝ ∃xyz φ
∀w∃x∃y∀z φ ⇝ ∀w∃xy∀z φ

placement of parentheses by convention:

analogous to propositional logic

quantifiers ∀ and ∃ bind more strongly than anything else.

example: ∀x P(x) → Q(x) corresponds to (∀x P(x) → Q(x)),
example: not ∀x (P(x) → Q(x)).



Abbreviations and Placement of Parentheses by Convention

abbreviations:

(φ→ ψ) is an abbreviation for (¬φ ∨ ψ).
(φ↔ ψ) is an abbreviation for ((φ→ ψ) ∧ (ψ → φ)).

Sequences of the same quantifier can be abbreviated.
For example:

∀x∀y∀z φ ⇝ ∀xyz φ
∃x∃y∃z φ ⇝ ∃xyz φ
∀w∃x∃y∀z φ ⇝ ∀w∃xy∀z φ

placement of parentheses by convention:

analogous to propositional logic

quantifiers ∀ and ∃ bind more strongly than anything else.

example: ∀x P(x) → Q(x) corresponds to (∀x P(x) → Q(x)),
example: not ∀x (P(x) → Q(x)).



Exercise

S = ⟨{x , y , z}, {c}, {f, g, h}, {Q,R,S}⟩ with
ar(f) = 3, ar(g) = ar(h) = 1, ar(Q) = 2, ar(R) = ar(S) = 1

f(x , y)

(g(x) = R(y))

(g(x) = f(y , c, h(x)))

(R(x) ∧ ∀x S(x))
∀cQ(c, x)
(∀x∃y (g(x) = y) ∨ (h(x) = c))

Which expressions are syntactically correct formulas or terms for S?
What kind of term/formula?



Questions

Questions?



Semantics of Predicate Logic



Semantics: Motivation

interpretations in propositional logic:
truth assignments for the propositional variables

There are no propositional variables in predicate logic.

instead: interpretation determines meaning
of the constant, function and predicate symbols.

meaning of variable symbols not determined by interpretation
but by separate variable assignment



Interpretations and Variable Assignments

Let S = ⟨V, C,F ,P⟩ be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair I = ⟨U, ·I⟩ of:
a non-empty set U called the universe and

a function ·I that assigns a meaning to the constant,
function, and predicate symbols:

cI ∈ U for constant symbols c ∈ C
fI : Uk → U for k-ary function symbols f ∈ F
PI ⊆ Uk for k-ary predicate symbols P ∈ P

A variable assignment (for S and universe U)
is a function α : V → U.

German: Interpretation, Universum (or Grundmenge),

German:

Variablenzuweisung



Interpretations and Variable Assignments: Example

Example

signature: S = ⟨V, C,F ,P⟩ with V = {x , y , z},
C = {zero, one}, F = {sum, product}, P = {SquareNumber}
ar(sum) = ar(product) = 2, ar(SquareNumber) = 1

I = ⟨U, ·I⟩ with
U = {u0, u1, u2, u3, u4, u5, u6}
zeroI = u0

oneI = u1

sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}
SquareNumberI = {u0, u1, u2, u4}

α = {x 7→ u5, y 7→ u5, z 7→ u0}



Interpretations and Variable Assignments: Example

Example

signature: S = ⟨V, C,F ,P⟩ with V = {x , y , z},
C = {zero, one}, F = {sum, product}, P = {SquareNumber}
ar(sum) = ar(product) = 2, ar(SquareNumber) = 1

I = ⟨U, ·I⟩ with
U = {u0, u1, u2, u3, u4, u5, u6}
zeroI = u0

oneI = u1

sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}
SquareNumberI = {u0, u1, u2, u4}

α = {x 7→ u5, y 7→ u5, z 7→ u0}



Semantics: Informally

Example: (∀x(Block(x) → Red(x)) ∧ Block(a))
“For all objects x : if x is a block, then x is red.
Also, the object called a is a block.”

Terms are interpreted as objects.

Unary predicates denote properties of objects
(to be a block, to be red, to be a square number, . . . ).

General predicates denote relations between objects
(to be someone’s child, to have a common divisor, . . . ).

Universally quantified formulas (“∀”) are true
if they hold for every object in the universe.

Existentially quantified formulas (“∃”) are true
if they hold for at least one object in the universe.



Interpretations of Terms

Let S = ⟨V, C,F ,P⟩ be a signature.

Definition (Interpretation of a Term)

Let I = ⟨U, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and universe U.

Let t be a term over S.
The interpretation of t under I and α, written as tI,α,
is the element of the universe U defined as follows:

If t = x with x ∈ V (t is a variable term):
xI,α = α(x)

If t = c with c ∈ C (t is a constant term):
cI,α = cI

If t = f(t1, . . . , tk) (t is a function term):
f(t1, . . . , tk)

I,α = fI(tI,α1 , . . . , tI,αk )



Interpretations of Terms: Example

Example

signature: S = ⟨V, C,F ,P⟩
with V = {x , y , z}, C = {zero, one}, F = {sum, product},
ar(sum) = ar(product) = 2

I = ⟨U, ·I⟩ with
U = {u0, u1, u2, u3, u4, u5, u6}
zeroI = u0

oneI = u1

sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}

α = {x 7→ u5, y 7→ u5, z 7→ u0}



Interpretations of Terms: Example

Example

signature: S = ⟨V, C,F ,P⟩
with V = {x , y , z}, C = {zero, one}, F = {sum, product},
ar(sum) = ar(product) = 2

I = ⟨U, ·I⟩ with
U = {u0, u1, u2, u3, u4, u5, u6}
zeroI = u0

oneI = u1

sumI(ui , uj) = u(i+j) mod 7 for all i , j ∈ {0, . . . , 6}
productI(ui , uj) = u(i ·j) mod 7 for all i , j ∈ {0, . . . , 6}

α = {x 7→ u5, y 7→ u5, z 7→ u0}



Interpretations of Terms: Example (ctd.)

Example (ctd.)

zeroI,α =

yI,α =

sum(x , y)I,α =

product(one, sum(x , zero))I,α =



Semantics of Predicate Logic Formulas

Let S = ⟨V, C,F ,P⟩ be a signature.

Definition (Formula is Satisfied or True)

Let I = ⟨U, ·I⟩ be an interpretation for S,
and let α be a variable assignment for S and universe U.
We say that I and α satisfy a predicate logic formula φ
(also: φ is true under I and α), written: I, α |= φ,
according to the following inductive rules:

I, α |= P(t1, . . . , tk) iff ⟨tI,α1 , . . . , tI,αk ⟩ ∈ PI

I, α |= (t1 = t2) iff tI,α1 = tI,α2

I, α |= ¬φ iff I, α ̸|= φ

I, α |= (φ ∧ ψ) iff I, α |= φ and I, α |= ψ

I, α |= (φ ∨ ψ) iff I, α |= φ or I, α |= ψ . . .

German: I und α erfüllen φ (also: φ ist wahr unter I und α)



Semantics of Predicate Logic Formulas

Let S = ⟨V, C,F ,P⟩ be a signature.

Definition (Formula is Satisfied or True)
. . .

I, α |= ∀xφ iff I, α[x := u] |= φ for all u ∈ U

I, α |= ∃xφ iff I, α[x := u] |= φ for at least one u ∈ U

where α[x := u] is the same variable assignment as α,
except that it maps variable x to the value u.
Formally:

(α[x := u])(z) =

{
u if z = x

α(z) if z ̸= x



Semantics: Example

Example

signature: S = ⟨V, C,F ,P⟩
with V = {x , y , z}, C = {a, b}, F = ∅, P = {Block,Red},
ar(Block) = ar(Red) = 1.

I = ⟨U, ·I⟩ with
U = {u1, u2, u3, u4, u5}
aI = u1

bI = u3

BlockI = {u1, u2}
RedI = {u1, u2, u3, u5}

α = {x 7→ u1, y 7→ u2, z 7→ u1}



Semantics: Example

Example

signature: S = ⟨V, C,F ,P⟩
with V = {x , y , z}, C = {a, b}, F = ∅, P = {Block,Red},
ar(Block) = ar(Red) = 1.

I = ⟨U, ·I⟩ with
U = {u1, u2, u3, u4, u5}
aI = u1

bI = u3

BlockI = {u1, u2}
RedI = {u1, u2, u3, u5}

α = {x 7→ u1, y 7→ u2, z 7→ u1}



Semantics: Example (ctd.)

Example (ctd.)

Questions:

I, α |= (Block(b) ∨ ¬Block(b))?
I, α |= (Block(x) → (Block(x) ∨ ¬Block(y)))?
I, α |= (Block(a) ∧ Block(b))?

I, α |= ∀x(Block(x) → Red(x))?



Questions

Questions?



Summary

Predicate logic is more expressive than propositional logic
and allows statements over objects and their properties.

Objects are described by terms that are built
from variable, constant and function symbols.

Properties and relations are described by formulas
that are built from predicates, quantifiers
and the usual logical operators.
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Free and Bound Variables



Free and Bound Variables: Motivation

Question:

Consider a signature with variable symbols {x1, x2, x3, . . . }
and an interpretation I.
Which parts of the definition of α are relevant to decide
whether I, α |= (∀x4(R(x4, x2) ∨ (f(x3) = x4)) ∨ ∃x3S(x3, x2))?
α(x1), α(x5), α(x6), α(x7), . . . are irrelevant
since those variable symbols occur in no formula.

α(x4) also is irrelevant: the variable occurs in the formula,
but all occurrences are bound by a surrounding quantifier.

⇝ only assignments for free variables x2 and x3 relevant

German: gebundene und freie Variablen



Variables of a Term

Definition (Variables of a Term)

Let t be a term. The set of variables that occur in t,
written as var(t), is defined as follows:

var(x) = {x}
for variable symbols x

var(c) = ∅
for constant symbols c

var(f(t1, . . . , tk)) = var(t1) ∪ · · · ∪ var(tk)
for function terms

terminology: A term t with var(t) = ∅ is called ground term.
German: Grundterm

example: var(product(x , sum(k, y))) =



Free and Bound Variables of a Formula

Definition (Free Variables)

Let φ be a predicate logic formula. The set of free variables of φ,
written as free(φ), is defined as follows:

free(P(t1, . . . , tk)) = var(t1) ∪ · · · ∪ var(tk)

free((t1 = t2)) = var(t1) ∪ var(t2)

free(¬φ) = free(φ)

free((φ ∧ ψ)) = free((φ ∨ ψ)) = free(φ) ∪ free(ψ)

free(∀x φ) = free(∃x φ) = free(φ) \ {x}

Example: free((∀x4(R(x4, x2) ∨ (f(x3) = x4)) ∨ ∃x3S(x3, x2)))
=



Closed Formulas/Sentences

Note: Let φ be a formula and let α and β variable assignments
with α(x) = β(x) for all free variables x of φ.

Then I, α |= φ iff I, β |= φ.

In particular, α is completely irrelevant if free(φ) = ∅.

Definition (Closed Formulas/Sentences)

A formula φ without free variables (i. e., free(φ) = ∅)
is called closed formula or sentence.

If φ is a sentence, then we often write I |= φ
instead of I, α |= φ, since the definition of α does not influence
whether φ is true under I and α or not.

Formulas with at least one free variable are called open.

Closed formulas with no quantifiers are called ground formulas.

German: geschlossene Formel/Satz, offene Formel,

German:

Grundformel/variablenfreie Formel



Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?

(Block(b) ∨ ¬Block(b))
(Block(x) → (Block(x) ∨ ¬Block(y)))
(Block(a) ∧ Block(b))

∀x(Block(x) → Red(x))



Reasoning in Predicate Logic



Terminology for Formulas

The terminology we introduced for propositional logic
equally applies to predicate logic:

Interpretation I and variable assignment α
form a model of the formula φ if I, α |= φ.

Formula φ is satisfiable if I, α |= φ for at least one I, α.
Formula φ is falsifiable if I, α ̸|= φ. for at least one I, α
Formula φ is valid if I, α |= φ for all I, α.
Formula φ is unsatisfiable if I, α ̸|= φ for all I, α.

German: Modell, erfüllbar, falsifizierbar, gültig, unerfüllbar

All concepts can be used for the special case of sentences.
In this case we usually omit α. Examples:

Interpretation I is a model of a sentence φ if I |= φ.

Sentence φ is unsatisfiable if I ̸|= φ for all I.



Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let S be a signature, Φ a set of formulas over S,
I an interpretation for S and α a variable assignment for S
and the universe of I.

We say that I and α satisfy the formulas Φ
(also: Φ is true under I and α), written as: I, α |= Φ,
if I, α |= φ for all φ ∈ Φ.

German: I und α erfüllen Φ, Φ ist wahr unter I und α

We may again write I |= Φ if all formulas in Φ are sentences.



Logical Equivalence and Logical Consequences

We again we use the same concepts and notations
as in propositional logic.

A set of formulas Φ logically entails/implies formula ψ,
written as Φ |= ψ, if all models of Φ are models of ψ.

For a single formula φ, we may write φ |= ψ for {φ} |= ψ.

Formulas φ and ψ are logically equivalent, written as φ ≡ ψ,
if they have the same models.

Note that φ ≡ ψ iff φ |= ψ and ψ |= φ.



Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

KB ∪ {φ} |= ψ iff KB |= (φ→ ψ)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB ∪ {φ} |= ¬ψ iff KB ∪ {ψ} |= ¬φ

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB ∪ {φ} is unsatisfiable iff KB |= ¬φ

German: Widerlegungssatz

These can be proved exactly the same way as in propositional logic.



Logical Equivalences

All logical equivalences of propositional logic
also hold in predicate logic (e. g., (φ∨ ψ) ≡ (ψ ∨ φ)). (Why?)

Additionally the following equivalences and implications hold:

(∀xφ ∧ ∀xψ) ≡ ∀x(φ ∧ ψ)
(∀xφ ∨ ∀xψ) |= ∀x(φ ∨ ψ) but not the converse

(∀xφ ∧ ψ) ≡ ∀x(φ ∧ ψ) if x /∈ free(ψ)
(∀xφ ∨ ψ) ≡ ∀x(φ ∨ ψ) if x /∈ free(ψ)

¬∀xφ ≡ ∃x¬φ
∃x(φ ∨ ψ) ≡ (∃xφ ∨ ∃xψ)
∃x(φ ∧ ψ) |= (∃xφ ∧ ∃xψ) but not the converse
(∃xφ ∨ ψ) ≡ ∃x(φ ∨ ψ) if x /∈ free(ψ)
(∃xφ ∧ ψ) ≡ ∃x(φ ∧ ψ) if x /∈ free(ψ)

¬∃xφ ≡ ∀x¬φ



Normal Forms (1)

Analogously to DNF and CNF for propositional logic
there are several normal forms for predicate logic, such as

negation normal form (NNF):
negation symbols (¬) are only allowed in front of atoms
or identities

prenex normal form:
quantifiers must form the outermost part of the formula

Skolem normal form:
prenex normal form without existential quantifiers

German: Negationsnormalform, Pränexnormalform,
Skolemnormalform



Normal Forms (2)

Efficient methods transform formula φ

into an equivalent formula in negation normal form,

into an equivalent formula in prenex normal form, or

into an equisatisfiable formula in Skolem normal form.

German: erfüllbarkeitsäquivalent



Inference Rules and Calculi

There exist correct and complete proof systems (calculi)
for predicate logic.

An example is the natural deduction calculus.

This is (essentially) Gödel’s Completeness Theorem (1929).

However, one can show that correct and complete algorithms
that prove that a given formula does not follow
from a given set of formulas cannot exist.

How are these statements reconcilable?



Summary and Outlook



Summary

Predicate logic is more expressive than propositional logic
and allows statements over objects and their properties.

Objects are described by terms that are built
from variable, constant and function symbols.

Properties and relations are described by formulas
that are built from predicates, quantifiers
and the usual logical operators.

Bound vs. free variables: to decide if I, α |= φ,
only free variables in α matter

Sentences (closed formulas): formulas without free variables



Summary

Once the basic definitions are in place, predicate logic
can be developed in the same way as propositional logic:

logical consequence

deduction theorem etc.

logical equivalences

normal forms

inference rules, proof systems, resolution



Other Logics (1)

We considered first-order predicate logic.

Second-order predicate logic allows
quantifying over predicate symbols.

There are intermediate steps, e. g., monadic second-order logic
(all quantified predicates are unary) and description logics
(foundation of the semantic web).



Second-Order Logic Example

Second-order logic example:

“T is the transitive closure of R”

conjunction of

∀x∀y(R(x , y) → T (x , y))
“T is a superset of R”
∀x∀y∀z((T (x , y) ∧ T (y , z)) → T (x , z))
“T is transitive”
∀Q((∀x∀y(R(x , y) → Q(x , y)) ∧

(

∀x∀y∀z((Q(x , y) ∧ Q(y , z)) → Q(x , z)))
→ ∀x∀y(T (x , y) → Q(x , y))))

“All supersets Q of R that are transitive are supersets of T”

impossible to express in first-order logic



Other Logics (2)

Modal logics have new operators □ and ♢.
classical meaning: □φ for “φ is necessary”,

classical meaning:

♢φ for “φ is possible”.
temporal logic: □φ for “φ is always true in the future”,

temporal logic:

♢φ for “φ is true at some point in the future”
epistemic logic: □φ for “φ is known”,

epistemic logic:

♢φ for “φ is possible”
doxastic logic: □φ for “φ is believed”,

doxastic logic:

♢φ for “φ is considered possible”
deontic logic: □φ for “φ is obligatory”,

deontic logic:

♢φ for “φ is permitted”
. . .

very important in computer-aided verification



Other Logics (3)

In fuzzy logic, formulas are not true or false
but have values between 0 and 1.

Intuitionist logic is “constructive” and excludes indirect
proof methods such as the principle of the excluded third.

Non-monotonic logics have rules with exceptions
(e.g., default logic, cumulative logic).

. . . and there is a lot more


