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Organizational Matters



People

Lecturers

Malte Helmert

email: malte.helmert@unibas.ch

office: room 06.004, Spiegelgasse 1

Gabi Röger

email: gabriele.roeger@unibas.ch

office: room 04.005, Spiegelgasse 1

Assistant

David Speck

email: davidjakob.speck@unibas.ch

office: room 04.003, Spiegelgasse 5



People

Tutors

Maria Desteffani (maria.desteffani@unibas.ch)

Pascal von Fellenberg (pascal.vonfellenberg@unibas.ch)

Carina Schrenk (carina.schrenk@unibas.ch)

Carina Fehr (carina.fehr@unibas.ch)



Target Audience

target audience:

this is an introductory course on the Bachelor’s level

we cover mathematical foundations that are
particularly useful for the computer science curriculum

main target audience: B.Sc. Computer Science,
1st semester

all other students welcome



Enrolment

https://services.unibas.ch/

official deadline: October 13

better today, so that you get all relevant emails
and access to the ADAM workspace

https://services.unibas.ch/


Discrete Mathematics Course on ADAM

ADAM

https://adam.unibas.ch/

link to website with slides

submission of exercise sheets

model solutions for exercise sheets

link to Discord server (for interaction among participants,
but you also get answers from lecturers, assistant and tutors)

additional material

https://adam.unibas.ch/


Language

The course is taught in English.

All lecture material is in English.

We (lecturers, assistant, tutors) speak German and English.

You are also welcome to ask questions in German.

Also exercise submissions can be in English or German.



Lectures

Mon 16:15–18:00, Hörsaal U1.131, Biozentrum
Wed 16:15–17:00, Hörsaal 1, Pharmazentrum

first half of the course taught by Gabi Röger,
second half by Malte Helmert

on December 17: Q&A session for exam preparation



Exercises

Exercise sheets (homework assignments):

mostly theoretical exercises

exercise sheets on ADAM every Monday after the lecture

must be solved in groups of two or three
(not alone or in larger groups)

due on the following Sunday (23:59)
(upload to ADAM at https://adam.unibas.ch/)

we only accept readable PDFs
→ with a bonus point per sheet created with LATEX

(template, cheat sheet and intro on ADAM)

Question: Who has experience with LATEX?

https://adam.unibas.ch/


Exercise Sessions With Tutors

Exercise Sessions (starting September 24/25/27)

Wed 17:15–18:00 Alte Universität, Seminarraum −201
with Carina S.

Wed 17:15–18:00 Spiegelgasse 1, Computer-Labor U1.001
with Pascal

Thu 17:15–18:00 Spiegelgasse 1, Seminarraum 00.003
with Maria

Fri 17:15–18:00 Pharmazentrum, Labor U1075
with Carina F.

common mistakes/misconceptions
(full model solutions on ADAM)

questions about exercise sheets and the course

as time permits, support while you solve the exercises

important: please fill in the survey on ADAM for the group
important: allocation until Friday 12:00 (September 19).



Exam

Written exam

6 ECTS credits

Monday, January 19, 2026, 16:00-18:00

Maurice E. Müller Saal, Biozentrum

admission to exam: 50% of the exercise marks

grade for course determined exclusively by the exam



Required Time

Official calculation

1 CP ≈ 30 hours

The course has 6 CP.

You need to invest about 180 hours.

With 40 hours for exam preparation,
this leaves 10–11 hours/week during the teaching period.

Alternative calculation

A full-time student achieves 30 CP per semester.

The course corresponds to 1/5 of 30 CP.

With a 42h week, this still corresponds to 8.4 hours/week.



Required Time

Official calculation

1 CP ≈ 30 hours

The course has 6 CP.

You need to invest about 180 hours.

With 40 hours for exam preparation,
this leaves 10–11 hours/week during the teaching period.

Alternative calculation

A full-time student achieves 30 CP per semester.

The course corresponds to 1/5 of 30 CP.

With a 42h week, this still corresponds to 8.4 hours/week.



Plagiarism

Plagiarism

Plagiarism is presenting someone else’s work, ideas, or words
as your own, without proper attribution.

For example:

Using someone’s text without citation

Paraphrasing too closely

Using information from a source without attribution

Passing off AI-generated content as your own original work

Long-term impact:

You undermine your own learning.

You start to lose confidence in your ability to think, write,
and solve problems independently.

Damage to academic reputation and professional
consequences in future careers
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Plagiarism in Exercises

You may discuss material from the course,
including the exercise assignments, with your peers.

But: You have to independently write down your exercise
solutions (in your team).

Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:

0 marks for the exercise sheet (first time)

exclusion from exam (second time)

If in doubt: check with us what is (and isn’t) OK before submitting
Exercises too difficult? We are happy to help!
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Special Needs?

We (and the university) strive for equality of students
with disabilities or chronic illnesses.

Contact the lecturers for small adaptations.

Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.



Questions on Organization

Questions?



About this Course



Content: Discrete Mathematics in Computer Science

mathematical thinking and proof techniques

sets and relations

group theory and permutations

modular arithmetic

graphs and trees

formal logic



Learning Goals

proficiency in abstract thinking

ability to formalize mathematical ideas and arguments

knowledge of common mathematical tools in computer science



Questions about the Course

Questions?
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Sets



Important Building Blocks of Discrete Mathematics

sets

relations

functions

These topics will mainly be the content of part B of the course.

We cover some foundations on sets already now because we will
use them for illustrating proof techniques.
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Sets

Definition

A set is an unordered collection of distinct objects.

unorderd: no notion of a “first” or “second” object,
e. g. {Alice,Bob,Charly} = {Charly,Bob,Alice}
distinct: each object contained at most once,
e. g. {Alice,Bob,Charly} = {Alice,Charly,Bob,Alice}

German: Menge
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Notation

Specification of sets

explicit, listing all elements, e. g. A = {1, 2, 3}
implicit with set-builder notation,
specifying a property characterizing all elements,
e. g. A = {x | x ∈ N0 and 1 ≤ x ≤ 3},
e. g. B = {n2 | n ∈ N0}
implicit, as a sequence with dots,
e. g. Z = {. . . ,−2,−1, 0, 1, 2, . . . }
implicit with an inductive definition

e ∈ M: e is in set M (an element of the set)

e /∈ M: e is not in set M

empty set ∅ = {}

Question: Is it true that 1 ∈ {{1, 2}, 3}?

German: Element

, leere Menge
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Special Sets

Natural numbers N0 = {0, 1, 2, . . . }
Integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }
Positive integers Z+ = N1 = {1, 2, . . . }
Rational numbers Q = {n/d | n ∈ Z, d ∈ N1}
Real numbers R = (−∞,∞)
Why do we use interval notation?
Why didn’t we introduce it before?

German: Natürliche (N0), ganze (Z), rationale (Q), reelle (R) Zahlen
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Questions

Questions?



Russell’s Paradox



Excursus: Barber Paradox

Barber Paradox

In a town there is only one barber, who is male.

The barber shaves all men in the town,
and only those, who do not shave themselves.

Who shaves the barber?

We can exploit the self-reference to derive a contradiction.
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Russell’s Paradox

Bertrand Russell

Question

Is the collection of all sets that do not contain
themselves as a member a set?

Is S = {M | M is a set and M /∈ M} a set?

Assume that S is a set.
If S /∈ S then S ∈ S ⇝ Contradiction
If S ∈ S then S /∈ S ⇝ Contradiction
Hence, there is no such set S .

→ Not every property used in set-builder notation defines a set.
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Relations on Sets



Equality

Definition (Axiom of Extensionality)

Two sets A and B are equal (written A = B)
if every element of A is an element of B and vice versa.

Two sets are equal if they contain the same elements.

We write A ̸= B to indicate that A and B are not equal.
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Subsets and Supersets

A ⊆ B: A is a subset of B,
i. e., every element of A is an element of B

A ⊂ B: A is a strict subset of B,
i. e., A ⊆ B and A ̸= B.

A ⊇ B: A is a superset of B if B ⊆ A.

A ⊃ B: A is a strict superset of B if B ⊂ A.

We write A ⊈ B to indicate that A is not a subset of B.

Analogously: ̸⊂, ⊉, ̸⊃

German: Teilmenge, echte Teilmenge, Obermenge, echte Obermenge
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Power Set

Definition (Power Set)

The power set P(S) of a set S is the set of all subsets of S .
That is,

P(S) = {M | M ⊆ S}.

Example: P({a, b}) =

German: Potenzmenge
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Questions?



Set Operations



Set Operations

Set operations allow us to express sets in terms of other sets

intersection A ∩ B = {x | x ∈ A and x ∈ B}

A B

If A ∩ B = ∅ then A and B are disjoint.

union A ∪ B = {x | x ∈ A or x ∈ B}

A B

set difference A \ B = {x | x ∈ A and x /∈ B}

A B

complement A = B \ A, where A ⊆ B and
B is the set of all considered objects (in a given context)

A
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Differenz, Komplement



Set Operations

Set operations allow us to express sets in terms of other sets

intersection A ∩ B = {x | x ∈ A and x ∈ B}

A B

If A ∩ B = ∅ then A and B are disjoint.

union A ∪ B = {x | x ∈ A or x ∈ B}

A B

set difference A \ B = {x | x ∈ A and x /∈ B}

A B

complement A = B \ A, where A ⊆ B and
B is the set of all considered objects (in a given context)

A
German: Schnitt, disjunkt, Vereinigung

,
Differenz, Komplement



Set Operations

Set operations allow us to express sets in terms of other sets

intersection A ∩ B = {x | x ∈ A and x ∈ B}

A B

If A ∩ B = ∅ then A and B are disjoint.

union A ∪ B = {x | x ∈ A or x ∈ B}

A B

set difference A \ B = {x | x ∈ A and x /∈ B}

A B

complement A = B \ A, where A ⊆ B and
B is the set of all considered objects (in a given context)

A
German: Schnitt, disjunkt, Vereinigung,

Differenz

, Komplement



Set Operations

Set operations allow us to express sets in terms of other sets

intersection A ∩ B = {x | x ∈ A and x ∈ B}

A B

If A ∩ B = ∅ then A and B are disjoint.

union A ∪ B = {x | x ∈ A or x ∈ B}

A B

set difference A \ B = {x | x ∈ A and x /∈ B}

A B

complement A = B \ A, where A ⊆ B and
B is the set of all considered objects (in a given context)

A
German: Schnitt, disjunkt, Vereinigung,

Differenz, Komplement



Properties of Set Operations: Commutativity

Theorem (Commutativity of ∪ and ∩)
For all sets A and B it holds that

A ∪ B = B ∪ A and

A ∩ B = B ∩ A.

Question: Is the set difference also commutative,
Question: i. e. is A \ B = B \ A for all sets A and B?

German: Kommutativität
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Properties of Set Operations: Associativity

Theorem (Associativity of ∪ and ∩)
For all sets A,B and C it holds that

(A ∪ B) ∪ C = A ∪ (B ∪ C ) and

(A ∩ B) ∩ C = A ∩ (B ∩ C ).

German: Assoziativität



Properties of Set Operations: Distributivity

Theorem (Union distributes over intersection and vice versa)

For all sets A,B and C it holds that

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) and

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

German: Distributivität



Properties of Set Operations: De Morgan’s Law

Augustus De Morgan

British mathematician (1806-1871)

Theorem (De Morgan’s Law)

For all sets A and B it holds that

A ∪ B = A ∩ B and

A ∩ B = A ∪ B.



Questions

Questions?



Cardinality of Finite Sets



Cardinality of Sets

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

Definition (Cardinality)

The cardinality of a finite set is the number of elements it contains.

|∅| =
|{x | x ∈ N0 and 2 ≤ x < 5}| =
|{3, 0, {1, 3}}| =
|P({1, 2})| =

German: Kardinalität oder Mächtigkeit
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Cardinality of the Union of Sets

Theorem

For finite sets A and B it holds that |A ∪ B| = |A|+ |B| − |A ∩ B|.

Corollary

If finite sets A and B are disjoint then |A ∪ B| = |A|+ |B|.



Cardinality of the Union of Sets

Theorem

For finite sets A and B it holds that |A ∪ B| = |A|+ |B| − |A ∩ B|.

Corollary

If finite sets A and B are disjoint then |A ∪ B| = |A|+ |B|.



Cardinality of the Power Set

Theorem

Let S be a finite set. Then |P(S)| = 2|S |.

Proof sketch.

We can construct a subset S ′ by iterating over all elements e of S
and deciding whether e becomes a member of S ′ or not.

We make |S | independent decisions, each between two options.
Hence, there are 2|S | possible outcomes.

Every subset of S can be constructed this way and different
choices lead to different sets. Thus, |P(S)| = 2|S|.
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Questions?



Summary



Summary

Sets are unordered collections of distinct objects.

Important set relations: equality (=), subset (⊆),
superset (⊇) and strict variants (⊂ and ⊃)

The power set of a set S is the set of all subsets of S .

Important set operations are intersection, union, set difference
and complement.

Union and intersection are commutative and associative.
Union distributes over intersection and vice versa.
De Morgan’s law for complement of union or intersection.

The number of elements in a finite set is called its cardinality.
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A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

What is a statement?
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Mathematical Statements

Mathematical Statement

A mathematical statement is a declarative sentence that is either
true or false (but not both).

Examples (some true, some false):

Let p ∈ N0 be a prime number. Then p is odd.

There exists an even prime number.

The equation ak + bk = ck has infinitely many solutions
with a, b, c, k ∈ N1 and k ≥ 2.

German: Mathematische Aussage



Mathematical Statements: Quantification

Statements often use quantification.

Universal quantification:
“For all x in set S it holds that 〈sub-statement on x〉.”
This is true if the sub-statement is true for every x in S .

Existential quantification:
“There is an x in set S such that 〈sub-statement on x〉.”
This is true if there exists at least one x in S for which the
sub-statement is true.

Examples (some true, some false):

For all x ∈ N1 it holds that x + 1 is in N1.

For all x ∈ N1 it holds that x − 1 is in N1.

There is an x ∈ N1 such that x =
√
x .



Mathematical Statements: Preconditions and Conclusions

We can identify preconditions and conclusions.

“If 〈preconditions〉 then 〈conclusions〉.”
The statement is true if the conclusions are true
whenever the preconditions are true.

Not every statement has preconditions. Preconditions are often
used in universally quantified sub-statements.

Examples (some true, some false):

If 4 is a prime number then 2 · 3 = 4.

If n is a prime number with n > 2 then n is odd.

For all p ∈ N1 it holds that if p is a prime number then p is
odd.



Different Statements with the same Meaning

The following statements have the same meaning, we just move
preconditions into the quantification, make some aspects implicit,
and change the structure.

For all p ∈ N1 it holds that if p is a prime number with p > 2
then p is odd.

For all prime numbers p it holds that if p > 2 then p is odd.

Let p be a natural number with p > 2.
Then p is prime if p is odd.

If p is a prime number with p > 2 then p is odd.

All prime numbers p > 2 are odd.

A single mathematical statement can be expressed in different
ways, as long as the meaning stays the same.

Like paraphrasing a sentence in everyday language.
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On what Statements can we Build the Proof?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

We can use:

axioms: statements that are assumed to always be true
in the current context

theorems and lemmas: statements that were already proven

lemma: an intermediate tool
theorem: itself a relevant result

premises: assumptions we make
to see what consequences they have

German: Axiom, Theorem/Satz, Lemma, Prämisse/Annahme



What is a Logical Step?

A mathematical proof is

a sequence of logical steps

starting with one set of statements

that comes to the conlusion
that some statement must be true.

Each step directly follows

from the axioms,

premises,

previously proven statements and

the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.
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The Role of Definitions

Definition

A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is
said to contain its elements.

We write x ∈ S to indicate that x is an element of set S , and
x /∈ S to indicate that S does not contain x .

The set that does not contain any objects is the empty set ∅.

A definition introduces an abbreviation.

Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

Definitions can also introduce notation.

German: Definition
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Disproofs

A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

Example (False statement)

“If p ∈ N0 is a prime number then p is odd.”

Refutation.

Consider natural number 2 as a counter example. It is prime
because it has exactly 2 divisors, 1 and itself. It is not odd,
because it is divisible by 2.

German: Widerlegung
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A Word on Style

A proof should help the reader to see why the result must be true.

A proof should be easy to follow.

Omit unnecessary information.

Move self-contained parts into separate lemmas.

In complicated proofs, reveal the overall structure in advance.

Have a clear line of argument.

→ Writing a proof is like writing an essay.

Recommended reading (ADAM additional ressources):

“Some Remarks on Writing Mathematical Proofs” (John M. Lee)

“§1. Minicourse on technical writing” of “Mathematical Writing”
(Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts)
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Questions

Questions?



Summary



Summary

A proof should convince the reader by logical steps of the truth of
some mathematical statement.
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Proof Strategies



Common Forms of Statements

Many statements have one of these forms:

1 “All x ∈ S with the property P also have the property Q.”

2 “A is a subset of B.”

3 “For all x ∈ S : x has property P iff x has property Q.”
(“iff”: “if and only if”)

4 “A = B”, where A and B are sets.

In the following, we will discuss some typical proof/disproof
strategies for such statements.
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Proof Strategies

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”

To prove, assume you are given an arbitrary x ∈ S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.
To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.



Proof Strategies

2 “A is a subset of B.”

To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.
To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.



Proof Strategies

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)

To prove, separately prove “if P then Q” and “if Q then P”.
To disprove, disprove “if P then Q” or disprove “if Q then P”.



Proof Strategies

4 “A = B”, where A and B are sets.

To prove, separately prove “A ⊆ B” and “B ⊆ A”.
To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.



Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Direct Proof



Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis



Direct Proof: Example

Theorem

For all sets A, B and C it holds that

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

Let A, B and C be arbitrary sets.

We will show separately that

A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that

(A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . .
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Direct Proof: Example cont.

Proof (continued).

We first show that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ):

If A ∩ (B ∪ C ) is empty, the statement is trivially true. Otherwise
consider an arbitrary x ∈ A ∩ (B ∪ C ). By the definition of the
intersection it holds that x ∈ A and that x ∈ (B ∪ C ).
We make a case distinction between x ∈ B and x /∈ B:

Case 1 (x ∈ B): As x ∈ A is true, it holds in this case that
x ∈ (A ∩ B).

Case 2 (x /∈ B): From x ∈ (B ∪ C ) it follows for this case that
x ∈ C . With x ∈ A we conclude that x ∈ (A∩C ).

In both cases it holds that x ∈ A ∩ B or x ∈ A ∩ C , and we
conclude that x ∈ (A ∩ B) ∪ (A ∩ C ).

As x was chosen arbitrarily from A ∩ (B ∪ C ), we have shown that
every element of A ∩ (B ∪ C ) is an element of (A ∩ B) ∪ (A ∩ C ),
so it holds that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ). . . .
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Direct Proof: Example cont.

Proof (continued).

We will now show that (A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . . [Homework assignment] . . .

Overall we have shown for arbitrary sets A,B and C that
A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that
(A∩B)∪ (A∩C ) ⊆ A∩ (B ∪C ), which concludes the proof of the
theorem.



Indirect Proof



Indirect Proof

Indirect Proof (Proof by Contradiction)

Make an assumption that the statement is false.

Use the assumption to derive a contradiction.

This shows that the assumption must be false
and hence the original statement must be true.

German: Indirekter Beweis, Beweis durch Widerspruch



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.



Proof by Contrapositive



Contrapositive

(Proof by) Contrapositive

Prove “If A, then B” by proving “If not B, then not A.”

Examples:

Prove “For all n ∈ N0: if n
2 is odd, then n is odd”

by proving “For all n ∈ N0, if n is even, then n2 is even.”

Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”

German: Kontraposition
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Contrapositive: Example

Theorem

For any sets A and B: If A ⊆ B then A \ B = ∅.

Proof.

We prove the theorem by contrapositive, showing for any sets A
and B that if A \ B ̸= ∅ then A ̸⊆ B.

Let A and B be arbitrary sets with A \ B ̸= ∅.
As the set difference is not empty, there is at least one x with
x ∈ A \ B. By the definition of the set difference (\), it holds for
such x that x ∈ A and x /∈ B.

Hence, not all elements of A are elements of B, so it does not hold
that A ⊆ B.
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x ∈ A \ B. By the definition of the set difference (\), it holds for
such x that x ∈ A and x /∈ B.

Hence, not all elements of A are elements of B, so it does not hold
that A ⊆ B.
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Questions?



Summary



Summary

There are standard strategies for proving some common forms
of statements, e.g. some property of all elements of a set.

Direct proof: derive statement by deducing or rewriting.

Indirect proof: derive contradiction from the assumption that
the statement is false.

Proof by contrapositive: Prove “If A, then B” by proving “If
not B, then not A.”.
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Mathematical Induction



Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)

Mathematical induction proves that

we can climb as high as we like on a ladder,

by proving that we can climb onto the bottom rung (the basis)

and that

from each rung we can climb up to the next one (the step).



Propositions

Consider a statement on all natural numbers n with n ≥ m.

E.g. “Every natural number n ≥ 2 can be written as a product
of prime numbers.”

P(2): “2 can be written as a product of prime numbers.”
P(3): “3 can be written as a product of prime numbers.”
P(4): “4 can be written as a product of prime numbers.”
. . .
P(n): “n can be written as a product of prime numbers.”
For every natural number n ≥ 2 proposition P(n) is true.

Proposition P(n) is a mathematical statement that is defined in
terms of natural number n.



Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition P(n)
for all natural numbers n with n ≥ m:

basis: proof of P(m)

induction hypothesis (IH):
suppose that P(k) is true for all k with m ≤ k ≤ n

inductive step: proof of P(n + 1)
using the induction hypothesis

German: Vollständige Induktion, Induktionsanfang,
Induktionsannahme oder Induktionsvoraussetzung,
Induktionsschritt



Mathematical Induction: Example I

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.
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Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 ≤ k ≤ n
IH: can be written as a product of prime numbers.

. . .
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Every natural number n ≥ 2 can be written as a product of prime
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Mathematical Induction: Example I

Theorem

Every natural number n ≥ 2 can be written as a product of prime
numbers, i. e. n = p1 · p2 · . . . · pm with prime numbers p1, . . . , pm.

Proof (continued).

inductive step n → n + 1:

Case 1: n + 1 is a prime number ⇝ trivial

Case 2: n + 1 is not a prime number.
There are natural numbers 2 ≤ q, r ≤ n with n + 1 = q · r .
Using the IH shows that there are prime numbers
q1, . . . , qs with q = q1 · . . . · qs and
r1, . . . , rt with r = r1 · . . . · rt .
Together this means n + 1 = q1 · . . . · qs · r1 · . . . · rt .
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Mathematical Induction: Example II

Theorem

Let S be a finite set. Then |P(S)| = 2|S |.

What proposition can we use to prove this
with mathematical induction?



Proof by Induction

Proof.

By induction over |S |.
Basis (|S | = 0): Then S = ∅ and |P(S)| = |{∅}| = 1 = 20.

IH: For all sets S with |S | ≤ n, it holds that |P(S)| = 2|S |.

Inductive Step (n → n + 1):

Let S ′ be an arbitrary set with |S ′| = n + 1 and
let e be an arbitrary member of S ′.

Let further S = S ′ \ {e} and X = {S ′′ ∪ {e} | S ′′ ∈ P(S)}.
Then P(S ′) = P(S) ∪ X . As P(S) and X are disjoint and
|X | = |P(S)|, it holds that |P(S ′)| = 2|P(S)|.
Since |S | = n, we can use the IH and get

|P(S ′)| = 2 · 2|S | = 2 · 2n = 2n+1 = 2|S
′|.
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Weak vs. Strong Induction

Weak induction: Induction hypothesis only supposes
that P(k) is true for k = n

Strong induction: Induction hypothesis supposes
that P(k) is true for all k ∈ N0 with m ≤ k ≤ n

also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?
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Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction
but not with weak induction?

We can always use a stronger proposition:

“Every n ∈ N0 with n ≥ 2 can be written as a product of
prime numbers.”

P(n): “n can be written as a product of prime numbers.”

P ′(n): “all k ∈ N0 with 2 ≤ k ≤ n can be written
P ′(n) “ as a product of prime numbers.”
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Questions
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Structural Induction



Inductively Defined Sets: Examples

Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

□ is a binary tree (a leaf)

If L and R are binary trees, then ⟨L,⃝,R⟩ is a binary tree
(with inner node ⃝).

Implicit statement: all elements of the set can be constructed
Implicit statement: by finite application of these rules

German: Binärbaum, Blatt, innerer Knoten
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Example (Natural Numbers)

The set N0 of natural numbers is inductively defined as follows:

0 is a natural number.

If n is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set B of binary trees is inductively defined as follows:

□ is a binary tree (a leaf)

If L and R are binary trees, then ⟨L,⃝,R⟩ is a binary tree
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Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: Induktive Definition, Basiselemente, Konstruktionsregeln



Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

basis: proof of the statement for the basic elements

induction hypothesis (IH):
suppose that the statement is true for some elements M

inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: Strukturelle Induktion



Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B),
is defined as follows:

leaves(□) = 1

leaves(⟨L,⃝,R⟩) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(□) = 0

inner(⟨L,⃝,R⟩) = inner(L) + inner(R) + 1



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(□) = 0 = 1− 1 = leaves(□)− 1

⇝ statement is true for base case . . .



Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B)− 1.

Proof.

induction basis:
inner(□) = 0 = 1− 1 = leaves(□)− 1

⇝ statement is true for base case . . .



Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree ⟨L,⃝,R⟩,
we may use that it is true for the subtrees L and R.

inductive step for B = ⟨L,⃝,R⟩:

inner(B) = inner(L) + inner(R) + 1

IH
= (leaves(L)− 1) + (leaves(R)− 1) + 1

= leaves(L) + leaves(R)− 1 = leaves(B)− 1



Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree ⟨L,⃝,R⟩,
we may use that it is true for the subtrees L and R.
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Example: Tarradiddles

Example (Tarradiddles)

The set of tarradiddles is inductively defined as follows:

✈ is a tarradiddle.

♥ is a tarradiddle.

If x and y are tarradiddles, then x✿✿y is a tarradiddle.

If x and y are tarradiddles, then ✿x✈y✿ is a tarradiddle.

How do you prove with structural induction that every tarradiddle
contains an even number of flowers?
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Questions?



Excursus: Computer-assisted
Theorem Proving



Computer-assisted Proofs

Computers can help proving theorems.

Computer-aided proofs have for example been used for
proving theorems by exhaustion.

Example: Four color theorem



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Interactive Theorem Proving

On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

On this level, proofs can be automatically verified by
computers.

Nobody wants to write or read proofs on this level of detail.

In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

If it succeeds, we can be very confident that the proof is valid.

Example theorem provers: Isabelle/HOL, Lean



Example

⇝ Demo



Summary



Summary

Mathematical induction is used to prove a proposition P for
all natural numbers ≥ m.

Prove P(m).
Make hypothesis that P(k) is true for m ≤ k ≤ n.
Establish P(n + 1) using the hypothesis.

Structural induction applies the same general concept to prove
a proposition P for all elements of an inductively defined set.
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Tuples and the Cartesian Product



Motivation

A set is an unordered collection of distinct objects.

We often need a more structured way of representation.

A person is associated with a name, address, phone number.
A set of persons makes sense in many contexts.
Representing the associated data as a set rather not.

We could for example want to

directly access the name of a person, or
have a separate billing and delivery address for some order,
but in general, these can be the same.

Tuples are mathematical building blocks that support this.



Sets vs. Tuples

A set is an unordered collection of distinct objects.

A tuple is an ordered sequence of objects.



Sets vs. Tuples

A set is an unordered collection of distinct objects.

A tuple is an ordered sequence of objects.



Tuples

k-tuple: ordered sequence of k objects (k ∈ N0)

written (o1, . . . , ok) or ⟨o1, . . . , ok⟩
unlike sets, order matters (⟨1, 2⟩ ≠ ⟨2, 1⟩)
objects may occur multiple times in a tuple

objects contained in tuples are called components

terminology:

k = 2: (ordered) pair
k = 3: triple
more rarely: quadruple, quintuple, sextuple, septuple, . . .

if k is clear from context (or does not matter),
often just called tuple

German: k-Tupel, Komponente, (geordnetes) Paar, Tripel, Quadrupel
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Equality of Tuples

Definition (Equality of Tuples)

Two n-tuples t = ⟨o1, . . . , on⟩ and t ′ = ⟨o ′1, . . . , o ′n⟩
are equal (t = t ′) if for i ∈ {1, . . . , n} it holds that oi = o ′i .



Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S1, . . . ,Sn be sets. The Cartesian product S1 × · · · × Sn is
the following set of n-tuples:

S1 × · · · × Sn = {⟨x1, . . . , xn⟩ | x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn}.

The k-ary Cartesian power of a set S (with k ∈ N1) is the set
Sk = {⟨o1, . . . , ok⟩ | oi ∈ S for all i ∈ {1, . . . , k}} = S × · · · × S︸ ︷︷ ︸

k times

.

René Descartes: French mathematician and philosopher (1596–1650)

Example: A = {a, b}, B = {1, 2, 3}

A× B =

A2 =

German: Kartesisches Produkt
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(Non-)properties of the Cartesian Product

The Cartesian product is

not commutative, in most cases A× B ̸= B × A.

not associative, in most cases (A× B)× C ̸= A× (B × C )

Why? Exceptions?
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Summary



Summary

A k-tuple is an ordered sequence of k objects, called the
components of the tuple.

2-tuples are also called pairs and 3-tuples triples.

The Cartesian Product S1 × · · · × Sn of set S1, . . . ,Sn is the
set of all tuples ⟨o1, . . . , on⟩, where for all i ∈ {1, . . . , n}
component oi is an element of Si .
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Relations: Informally

Intuitively, a mathematical relation connects elements from
several (possibly different) sets by specifying related groupings.

We already know some relations, e. g.

⊆ relation for sets
≤ relation for natural numbers

These are examples of binary relations,
considering pairs of objects.

There are also relations of higher arity, e. g.

“x + y = z” for integers x , y , z .
“The name, address and office number
belong to the same person.”

Relations are for example important for relational databases,
semantic networks or knowledge representation and reasoning.
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Relations

Definition (Relation)

Let S1, . . . ,Sn be sets.

A relation over S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

The arity of R is n.

A relation of arity n is a set of n-tuples.

German: Relation, Stelligkeit



Relations: Examples

⊆ = {(S , S ′) | S and S ′ are sets and
for every x ∈ S it holds that x ∈ S ′}

≤ = {(x , y) | x , y ∈ N0 and x < y or x = y}
R = {(x , y , z) | x , y , z ∈ Z and x + y = z}
R ′ = {(Gabi Röger,Spiegelgasse 1, 04.005),

(Malte Helmert, Spiegelgasse 1, 06.004),
(David Speck,Spiegelgasse 5, 04.003)}
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Properties of Binary Relations



Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

Instead of (x , y) ∈ R, we also write xRy , e. g.
x ≤ y instead of (x , y) ∈ ≤
If the sets are equal, we say “R is a binary relation over A”
instead of “R is a binary relation over A and A”.

Such a relation over a set is also called
a homogeneous relation or an endorelation.

German: zweistellige Relation, homogene Relation
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Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive
if for all a ∈ A it holds that (a, a) ∈ R.

Which of these relations are reflexive?

R = {(a, a), (a, b), (a, c), (b, a), (b, c), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: reflexiv
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Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive
if for all a ∈ A it holds that (a, a) /∈ R.

Which of these relations are irreflexive?
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Symmetry

Definition (symmetric)

A binary relation R over set A is symmetric
if for all a, b ∈ A it holds that (a, b) ∈ R iff (b, a) ∈ R.

Which of these relations are symmetric?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: symmetrisch
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Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if
for all a, b ∈ A it holds that if (a, b) ∈ R then (b, a) /∈ R.

Relation R is antisymmetric if for all a, b ∈ A with a ̸= b it holds
that if (a, b) ∈ R then (b, a) /∈ R.

Which of these relations are asymmetric/antisymmetric?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

How do these

properties relate

to irreflexivity?

German: asymmetrisch, antisymmetrisch
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Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all a, b, c ∈ A that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

Which of these relations are transitive?

R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
equality relation = on natural numbers

less-than relation ≤ on natural numbers

strictly-less-than relation < on natural numbers

German: transitiv
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Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all a, b, c ∈ A that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
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Summary

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

A binary relation is a relation over two sets.

A binary relation over set S is a relation R ⊆ S × S and also
called a homogeneous relation.

A binary relation R over A is

reflexive if (a, a) ∈ R for all a ∈ A,
irreflexive if (a, a) /∈ R for all a ∈ A,
symmetric if for all a, b ∈ A it holds that
(a, b) ∈ R iff (b, a) ∈ R,
asymmetric if for all a, b ∈ A it holds that
if (a, b) ∈ R then (b, a) /∈ R,
antisymmetric if for all a, b ∈ A with a ̸= b it holds that
if (a, b) ∈ R then (b, a) /∈ R,
transitive if for all a, b, c ∈ A it holds that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
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Special Classes of Relations

Some important classes of relations are defined in terms of
these properties.

Equivalence relation: reflexive, symmetric, transitive
Partial order: reflexive, antisymmetric, transitive
Strict order: irreflexive, asymmetric, transitive
. . .

We will consider these and other classes in detail.
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Equivalence Relations



Motivation

Think of any attribute that two objects can have in common,
e. g. their color.

We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

We also can define a relation ∼ such that x ∼ y iff
x and y share the attribute, e. g.have the same color.

Would this relation be

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Equivalence Relation

Definition (Equivalence Relation)

A binary relation ∼ over set S is an equivalence relation
if ∼ is reflexive, symmetric and transitive.

Examples:

{(x , y) | x and y have the same place of origin}
over the set of all Swiss citizens

{(x , y) | x and y have the same parity} over N0

{(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),
(2, 2), (2, 3), (3, 2), (3, 3)} over {1, 2, . . . , 5}

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one “bucket” for all objects that share a specific color)?

German: Äquivalenzrelation
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Equivalence Classes

Definition (Equivalence Class)

Let ∼ be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]∼ = {y ∈ S | x ∼ y}.

Consider
∼= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]∼ =

German: Äquivalenzklasse
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Equivalence Classes: Properties

Let ∼ be an equivalence relation over set S and
E = {[x ]∼ | x ∈ S} the set of all equivalence classes.

Every element of S is in some equivalence class in E .

Every element of S is in at most one equivalence class in E .
⇝ homework assignment

⇒ Equivalence relations induce partitions
(not covered in this course).
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Order Relations



Order Relations

We now consider other combinations of properties,
that allow us to describe a consistent order of the objects.

“Number x is not larger than number y .”
“Set S is a subset of set T .”
“Jerry runs at least as fast as Tom.”
“Pasta tastes better than Potatoes.”

German: Ordnungsrelation
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Partial Orders

We begin with partial orders.

Example partial order relations are ≤ over N0 or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?
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We begin with partial orders.

Example partial order relations are ≤ over N0 or ⊆ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Partial Orders – Definition

Definition (Partial order)

A binary relation ⪯ over set S is a partial order
if ⪯ is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

strict subset relation ⊂ for sets

not-less-than relation ≥ over N0

R = {(a, a), (a, b), (b, b), (b, c), (c , c)} over {a, b, c}

German: Halbordnung oder partielle Ordnung
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Least and Greatest Element

Definition (Least and greatest element)

Let ⪯ be a partial order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S it holds that x ⪯ y .

It is the greatest element of S if for all y ∈ S , y ⪯ x .

Is there a least/greatest element? Which one?

S = {1, 2, 3} and ⪯ = {(x , y) | x , y ∈ S and x ≤ y}
relation ≤ over N0

relation ≤ over Z
Why can we say the least element instead of a least element?

German: kleinstes/grösstes Element
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Uniqueness of Least Element

Theorem

Let ⪯ be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x , y are least elements of S with x ̸= y .

Since x is a least element, x ⪯ y is true.
Since y is a least element, y ⪯ x is true.
As a partial order is antisymmetric, this implies that x = y .  

Analogously: If there is a greatest element then is unique.
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Proof.
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Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let ⪯ be a partial order over set S .
An element x ∈ S is a minimal element of S
if there is no y ∈ S with y ⪯ x and x ̸= y .

An element x ∈ S is a maximal element of S
if there is no y ∈ S with x ⪯ y and x ̸= y .

A set can have several minimal elements and no least element.
Example?

German: minimales/maximales Element
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Total Orders

Relations ≤ over N0 and ⊆ for sets are partial orders.

Can we compare every object against every object?

For all x , y ∈ N0 it holds that x ≤ y or that y ≤ x (or both).
{1, 2} ⊈ {2, 3} and {2, 3} ⊈ {1, 2}

Relation ≤ is a total order, relation ⊆ is not.
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Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

German: totale Relation

, (schwache) Totalordnung oder totale Ordnung
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Strict Orders

A partial order is reflexive, antisymmetric and transitive.

We now consider strict orders.

Example strict order relations are < over N0 or ⊂ for sets.

Are these relations

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?
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We now consider strict orders.

Example strict order relations are < over N0 or ⊂ for sets.

Are these relations

reflexive?
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symmetric?
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transitive?



Strict Orders – Definition

Definition (Strict (partial) order)

A binary relation ≺ over set S is a strict (partial) order
if ≺ is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

subset relation ⊆ for sets

strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict (partial) order?

We can omit irreflexivity or asymmetry from the definition
(but not both). Why?

German: strenge (Halb-)ordnung
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Strict Total Orders

As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

Example 1 (personal preferences):
“Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.”
“Rice tastes better than potato.”

Pasta

Potato Bread

Rice

This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

Example 2: ⊂ relation for sets

It doesn’t work to simply require that the strict order is total.
Why?
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Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.

Attention: a non-empty strict total order is never a total order.

German: trichotom

, strenge Totalordnung
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Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let ≺ be a strict order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S where y ̸= x it holds that x ≺ y .

It is the greatest element of S if for all y ∈ S where y ̸= x , y ≺ x .

Element x ∈ S is a minimal element of S
if there is no y ∈ S with y ≺ x .

It is a maximal element of S
if there is no y ∈ S with x ≺ y .



Special Elements – Example

Consider again the previous example:

S = {Pasta,Potato,Bread,Rice}
≺ = {(Pasta,Potato), (Bread,Potato),

(Rice,Potato), (Rice,Bread)}

Pasta

Potato Bread

Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?
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Questions?



Summary

An equivalence relation is reflexive, symmetric and transitive.

A partial order x ⪯ y is reflexive, antisymmetric and
transitive.

If x is the greatest element of a set S , it is greater than every
element: for all y ∈ S it holds that y ⪯ x .
If x is a maximal element of set S then it is not smaller than
any other element y : there is no y ∈ S with x ⪯ y and x ̸= y .
A total order is a partial order without incomparable objects.

A strict order is irreflexive, asymmetric and transitive.

Strict total orders and special elements are analogously defined
as for partial orders but with a special treatment of equal
elements.
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