Discrete Mathematics in Computer Science
Al. Organizational Matters

Malte Helmert, Gabriele Roger

University of Basel

September 17, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 1/20

Discrete Mathematics in Computer Science
September 17, 2025 — Al. Organizational Matters

Al.1 Organizational Matters

A1.2 About this Course

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 2/20

A1l. Organizational Matters Organizational Matters

A1l.1 Organizational Matters

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 3/20

A1l. Organizational Matters Organizational Matters

People

Lecturers

Malte Helmert
» email: malte.helmert@unibas.ch

> office: room 06.004, Spiegelgasse 1

Gabi Roger
> email: gabriele.roeger@unibas.ch

> office: room 04.005, Spiegelgasse 1

David Speck
> email: davidjakob.speck@unibas.ch

> office: room 04.003, Spiegelgasse 5

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 4 /20

A1l. Organizational Matters Organizational Matters

People

Tutors
» Maria Desteffani (maria.desteffani@unibas.ch)

» Pascal von Fellenberg (pascal.vonfellenberg@unibas.ch)
» Carina Schrenk (carina.schrenk@unibas.ch)
» Carina Fehr (carina.fehr@unibas.ch)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 5 /20

Al. Organizational Matters Organizational Matters

Target Audience

target audience:

P this is an introductory course on the Bachelor's level

> we cover mathematical foundations that are
particularly useful for the computer science curriculum

» main target audience: B.Sc. Computer Science,
1st semester

» all other students welcome

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 6 /20

Al. Organizational Matters Organizational Matters

Enrolment

> https://services.unibas.ch/
» official deadline: October 13

> better today, so that you get all relevant emails
and access to the ADAM workspace

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 7 /20

https://services.unibas.ch/

Al. Organizational Matters

Discrete Mathematics Course on ADAM

ADAM
https://adam.unibas.ch/

>

>
>
>

v

link to website with slides
submission of exercise sheets
model solutions for exercise sheets

link to Discord server (for interaction among participants,
but you also get answers from lecturers, assistant and tutors)

additional material

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025

8/

Organizational Matters

https://adam.unibas.ch/

Al. Organizational Matters Organizational Matters

Language

The course is taught in English.

All lecture material is in English.

>
>
» We (lecturers, assistant, tutors) speak German and English.
» You are also welcome to ask questions in German.

>

Also exercise submissions can be in English or German.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 9 /20

Al. Organizational Matters Organizational Matters

Lectures

» Mon 16:15-18:00, Horsaal U1.131, Biozentrum
Wed 16:15-17:00, Horsaal 1, Pharmazentrum

> first half of the course taught by Gabi Roger,
second half by Malte Helmert

» on December 17: Q&A session for exam preparation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 10 /20

Al. Organizational Matters Organizational Matters

Exercises

Exercise sheets (homework assignments):
» mostly theoretical exercises
> exercise sheets on ADAM every Monday after the lecture

> must be solved in groups of two or three
(not alone or in larger groups)
» due on the following Sunday (23:59)
(upload to ADAM at https://adam.unibas.ch/)

» we only accept readable PDFs
— with a bonus point per sheet created with IATEX
(template, cheat sheet and intro on ADAM)

Question: Who has experience with IATEX?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 11 /20

https://adam.unibas.ch/

Al. Organizational Matters Organizational Matters

Exercise Sessions With Tutors

Exercise Sessions (starting September 24/25/27)

Wed 17:15-18:00 Alte Universitat, Seminarraum —201
with Carina S.

Wed 17:15-18:00 Spiegelgasse 1, Computer-Labor U1.001
with Pascal

Thu 17:15-18:00 Spiegelgasse 1, Seminarraum 00.003
with Maria

Fri 17:15-18:00 Pharmazentrum, Labor U1075

with Carina F.

» common mistakes/misconceptions
(full model solutions on ADAM)
P questions about exercise sheets and the course
P as time permits, support while you solve the exercises

important: please fill in the survey on ADAM for the group
allocation until Friday 12:00 (September 19).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 12 /20

Al. Organizational Matters Organizational Matters

Exam

> Written exam

> 6 ECTS credits

» Monday, January 19, 2026, 16:00-18:00

» Maurice E. Miiller Saal, Biozentrum

» admission to exam: 50% of the exercise marks
>

grade for course determined exclusively by the exam

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 13

20

Al. Organizational Matters Organizational Matters

Required Time

Official calculation
> 1 CP =~ 30 hours
» The course has 6 CP.
> You need to invest about 180 hours.

> With 40 hours for exam preparation,
this leaves 10-11 hours/week during the teaching period.

Alternative calculation
> A full-time student achieves 30 CP per semester.
» The course corresponds to 1/5 of 30 CP.
> With a 42h week, this still corresponds to 8.4 hours/week.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 14 /20

Al. Organizational Matters Organizational Matters

Plagiarism

Plagiarism
Plagiarism is presenting someone else's work, ideas, or words
as your own, without proper attribution.

For example:
» Using someone’s text without citation
» Paraphrasing too closely
» Using information from a source without attribution
> Passing off Al-generated content as your own original work

Long-term impact:
» You undermine your own learning.
» You start to lose confidence in your ability to think, write,
and solve problems independently.
» Damage to academic reputation and professional
consequences in future careers

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 15 /20

Al. Organizational Matters Organizational Matters

Plagiarism in Exercises

» You may discuss material from the course,
including the exercise assignments, with your peers.

> But: You have to independently write down your exercise
solutions (in your team).

» Help from an LLM is acceptable to the same extent as it is
acceptable from someone who is not a member of your team.

Immediate consequences of plagiarism:
» 0 marks for the exercise sheet (first time)

> exclusion from exam (second time)

If in doubt: check with us what is (and isn't) OK before submitting
Exercises too difficult? We are happy to help!

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 16 / 20

Al. Organizational Matters

Special Needs?

Organizational Matters

» We (and the university) strive for equality of students
with disabilities or chronic illnesses.

» Contact the lecturers for small adaptations.

» Contact the Students Without Barriers (StoB) service point
for general adaptations and disadvantage compensation.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 17 / 20

A1l. Organizational Matters About this Course

A1.2 About this Course

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 18 / 20

A1l. Organizational Matters About this Course

Content: Discrete Mathematics in Computer Science

mathematical thinking and proof techniques
sets and relations

group theory and permutations

modular arithmetic

graphs and trees

vVvvyVvVvyy

formal logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 19 / 20

Al. Organizational Matters About this Course

Learning Goals

> proficiency in abstract thinking
> ability to formalize mathematical ideas and arguments

> knowledge of common mathematical tools in computer science

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 17, 2025 20 / 20

Discrete Mathematics in Computer Science
A2. Sets: Foundations

Malte Helmert, Gabriele Roger

University of Basel

September 22, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

1/

Discrete Mathematics in Computer Science
September 22, 2025 — A2. Sets: Foundations

A2.1 Sets

A2.2 Russell's Paradox
A2.3 Relations on Sets
A2.4 Set Operations

A2.5 Cardinality of Finite Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 2/25

A2. Sets: Foundations Sets

A2.1 Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 3/25

A2. Sets: Foundations Sets

Important Building Blocks of Discrete Mathematics

» sets
» relations

> functions
These topics will mainly be the content of part B of the course.

We cover some foundations on sets already now because we will
use them for illustrating proof techniques.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 4 /25

A2. Sets: Foundations Sets

Sets

Definition
A set is an unordered collection of distinct objects.

» unorderd: no notion of a “first” or “second” object,
e.g. {Alice, Bob, Charly} = { Charly, Bob, Alice}

P distinct: each object contained at most once,
e.g. {Alice, Bob, Charly} = {Alice, Charly, Bob, Alice}

German: Menge

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 5 /25

A2. Sets: Foundations Sets

Notation

» Specification of sets
> explicit, listing all elements, e.g. A = {1,2,3}
» implicit with set-builder notation,
specifying a property characterizing all elements,
e.g. A={x|xeNgand1l<x<3},
B = {n2 | ne No}
P implicit, as a sequence with dots,
eg. Z={...,—2,-1,0,1,2,...}
» implicit with an inductive definition

> e M: eisinset M (an element of the set)
» e ¢ M: eis notinset M
> empty set) = {}

Question: Is it true that 1 € {{1,2},3}?

German: Element, leere Menge

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 6 /25

A2. Sets: Foundations Sets

Special Sets
» Natural numbers No ={0,1,2,...}
» Integers Z=1{...,—2,-1,0,1,2,...}
» Positive integers Z, =Ny = {1,2,...}
» Rational numbers Q = {n/d | n€ Z,d € N1}
» Real numbers R = (—o00, 00)

Why do we use interval notation?
Why didn’t we introduce it before?

German: Natiirliche (Np), ganze (Z), rationale (Q), reelle (R) Zahlen

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 7 /25

A2. Sets: Foundations Russell's Paradox

A2.2 Russell's Paradox

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 8 /25

A2. Sets: Foundations Russell's Paradox

Excursus: Barber Paradox

Barber Paradox
In a town there is only one barber, who is male.

The barber shaves all men in the town,
and only those, who do not shave themselves.

Who shaves the barber?

We can exploit the self-reference to derive a contradiction.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 9 /25

A2. Sets: Foundations Russell's Paradox

Russell's Paradox

Question
Is the collection of all sets that do not contain
themselves as a member a set?

IsS={M| Misasetand M ¢ M} a set?

Bertrand Russell

Assume that S is a set.

If S¢S then S € S ~» Contradiction
If S€ S then S ¢ S~ Contradiction
Hence, there is no such set S.

— Not every property used in set-builder notation defines a set.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 10 / 25

A2. Sets: Foundations Relations on Sets

A2.3 Relations on Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 11 /25

A2. Sets: Foundations Relations on Sets

Equality

Definition (Axiom of Extensionality)

Two sets A and B are equal (written A = B)
if every element of A is an element of B and vice versa.

Two sets are equal if they contain the same elements.

We write A # B to indicate that A and B are not equal.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

12/

A2. Sets: Foundations Relations on Sets

Subsets and Supersets

> AC B: Ais a subset of B,
i.e., every element of A is an element of B

» A C B: Ais a strict subset of B,
i.e, ACBand A#B.

> AD B: Ais asuperset of Bif B C A.
> A D B: Ais a strict superset of B if B C A.

We write A ¢ B to indicate that A is not a subset of B.
Analogously: ¢, 2, 7

German: Teilmenge, echte Teilmenge, Obermenge, echte Obermenge

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 13 /25

Relations on Sets

A2. Sets: Foundations

Power Set

Definition (Power Set)
The power set P(S) of a set S is the set of all subsets of S.

That is,
P(S)={M|MCS}.

Example: P({a, b}) =

German: Potenzmenge

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

14 /

A2. Sets: Foundations Set Operations

A2.4 Set Operations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 15 / 25

A2. Sets: Foundations Set Operations

Set Operations

Set operations allow us to express sets in terms of other sets
» intersection AN B ={x|x € Aand x € B}

th

() then A and B are disjoint.
UB =

x|x€Aorxe B}

~= O

» set difference A\ B={x|x € Aand x ¢ B}

» complement A= B\ A, where AC B and
B is the set of all considered objects (in a given context)

:

Differenz, Komplement

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

German: Schnitt, disjunkt, Vereinigung,

16 / 25

A2. Sets: Foundations Set Operations

Properties of Set Operations: Commutativity

Theorem (Commutativity of U and N)
For all sets A and B it holds that

» AUB =BUA and
> ANB=BNA.

Question: Is the set difference also commutative,
i.e.is A\ B = B\ A for all sets A and B?

German: Kommutativitat

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 17 / 25

A2. Sets: Foundations Set Operations

Properties of Set Operations: Associativity

Theorem (Associativity of U and N)
For all sets A, B and C it holds that

» (AUB)UC =AU (BUC) and
> (ANB)NC=An(BNCQ).

German: Assoziativitat

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 18 / 25

A2. Sets: Foundations Set Operations

Properties of Set Operations: Distributivity

Theorem (Union distributes over intersection and vice versa)
For all sets A, B and C it holds that

> AU(BNC)=(AUB)N(AUC) and
> AN(BUC) = (ANB)U(ANC).

German: Distributivitat

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 19 / 25

A2. Sets: Foundations Set Operations

Properties of Set Operations: De Morgan's Law

Augustus De Morgan
British mathematician (1806-1871)

Theorem (De Morgan's Law)
For all sets A and B it holds that

» AUB=ANB and
» ANB=AUB.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 20 / 25

A2. Sets: Foundations Cardinality of Finite Sets

A2.5 Cardinality of Finite Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 21 /25

A2. Sets: Foundations Cardinality of Finite Sets

Cardinality of Sets

The cardinality |S| measures the size of set S.

A set is finite if it has a finite number of elements.

Definition (Cardinality)
The cardinality of a finite set is the number of elements it contains.

> ‘(Z)’ =

> {x|x€eNpand 2 <x <5} =
> 1{3,0,{1,3}}| =

> [P({1,2})[=

German: Kardinalitat oder Machtigkeit

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 22 /25

A2. Sets: Foundations Cardinality of Finite Sets

Cardinality of the Union of Sets

Theorem
For finite sets A and B it holds that |AU B| = |A| + |B| — |[AN BJ.

Corollary
If finite sets A and B are disjoint then |AU B| = |A| + |B].

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 23 /25

A2. Sets: Foundations Cardinality of Finite Sets

Cardinality of the Power Set

Theorem
Let S be a finite set. Then |P(S)| = 2/°/.

Proof sketch.
We can construct a subset S’ by iterating over all elements e of S
and deciding whether e becomes a member of S’ or not.

We make |S| independent decisions, each between two options.
Hence, there are 2!°! possible outcomes.

Every subset of S can be constructed this way and different
choices lead to different sets. Thus, |P(S)| = 2. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 24 / 25

A2. Sets: Foundations Summary

Summary

» Sets are unordered collections of distinct objects.

> Important set relations: equality (=), subset (C),
superset (2) and strict variants (C and D)

» The power set of a set S is the set of all subsets of S.

» Important set operations are intersection, union, set difference
and complement.

» Union and intersection are commutative and associative.
» Union distributes over intersection and vice versa.
» De Morgan's law for complement of union or intersection.

» The number of elements in a finite set is called its cardinality.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 25 / 25

Discrete Mathematics in Computer Science
A3. Proofs: Introduction

Malte Helmert, Gabriele Roger

University of Basel

September 22, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

1/

Discrete Mathematics in Computer Science
September 22, 2025 — A3. Proofs: Introduction

A3.1 What is a Proof?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 2 /14

A3. Proofs: Introduction What is a Proof?

A3.1 What is a Proof?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 3 /14

A3. Proofs: Introduction

What is a Proof?

A mathematical proof is
> a sequence of logical steps
P starting with one set of statements

» that comes to the conlusion
that some statement must be true.

What is a statement?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

What is a Proof?

September 22, 2025

4/

What is a Proof?

A3. Proofs: Introduction

Mathematical Statements

Mathematical Statement
A mathematical statement is a declarative sentence that is either

true or false (but not both).

Examples (some true, some false):
> Let p € Ny be a prime number. Then p is odd.
» There exists an even prime number.
» The equation a¥ + b* = c¥ has infinitely many solutions
with a, b,c, k € Ny and k > 2.

German: Mathematische Aussage

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

5/

A3. Proofs: Introduction What is a Proof?

Mathematical Statements: Quantification

Statements often use quantification.

» Universal quantification:
“For all x in set S it holds that (sub-statement on x)

This is true if the sub-statement is true for every x in S.

> Existential quantification:
“There is an x in set S such that (sub-statement on x)

This is true if there exists at least one x in S for which the
sub-statement is true.

Examples (some true, some false):
> For all x € Ny it holds that x + 1 is in Nj.
> For all x € Ny it holds that x — 1 is in Nj.
» There is an x € Ny such that x = /.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

6/

A3. Proofs: Introduction What is a Proof?

Mathematical Statements: Preconditions and Conclusions

We can identify preconditions and conclusions.

”

“If (preconditions) then (conclusions)

The statement is true if the conclusions are true
whenever the preconditions are true.

Not every statement has preconditions. Preconditions are often
used in universally quantified sub-statements.
Examples (some true, some false):

» If 4 is a prime number then 2 -3 = 4.

» If nis a prime number with n > 2 then n is odd.

» For all p € Ny it holds that if p is a prime number then p is
odd.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 7/ 14

A3. Proofs: Introduction What is a Proof?

Different Statements with the same Meaning

The following statements have the same meaning, we just move
preconditions into the quantification, make some aspects implicit,
and change the structure.

» For all p € Ny it holds that if p is a prime number with p > 2
then p is odd.

» For all prime numbers p it holds that if p > 2 then p is odd.

» Let p be a natural number with p > 2.

Then p is prime if p is odd.
> If p is a prime number with p > 2 then p is odd.
» All prime numbers p > 2 are odd.

A single mathematical statement can be expressed in different
ways, as long as the meaning stays the same.

Like paraphrasing a sentence in everyday language.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

8

A3. Proofs: Introduction What is a Proof?

On what Statements can we Build the Proof?

A mathematical proof is
> a sequence of logical steps
> starting with one set of statements

» that comes to the conlusion
that some statement must be true.

We can use:

P> axioms: statements that are assumed to always be true
in the current context
» theorems and lemmas: statements that were already proven
» |lemma: an intermediate tool
» theorem: itself a relevant result
P premises: assumptions we make

to see what consequences they have
German: Axiom, Theorem/Satz, Lemma, Pramisse/Annahme

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

9/

A3. Proofs: Introduction What is a Proof?

What is a Logical Step?

A mathematical proof is
P> a sequence of logical steps
> starting with one set of statements

» that comes to the conlusion
that some statement must be true.

Each step directly follows
» from the axioms,
P premises,
P previously proven statements and
>

the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 10 / 14

A3. Proofs: Introduction What is a Proof?

The Role of Definitions

Definition
A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is
said to contain its elements.

We write x € S to indicate that x is an element of set S, and
x ¢ S to indicate that S does not contain x.

The set that does not contain any objects is the empty set ().

» A definition introduces an abbreviation.

» Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

» Definitions can also introduce notation.

German: Definition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 11

14

A3. Proofs: Introduction What is a Proof?

Disproofs

» A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.
» This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

Example (False statement)
“If p € Ng is a prime number then p is odd.”

Refutation.

Consider natural number 2 as a counter example. It is prime
because it has exactly 2 divisors, 1 and itself. It is not odd,
because it is divisible by 2. O

German: Widerlegung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025

12

14

A3. Proofs: Introduction What is a Proof?

A Word on Style

A proof should help the reader to see why the result must be true.

» A proof should be easy to follow.

Omit unnecessary information.

>

> Move self-contained parts into separate lemmas.

» In complicated proofs, reveal the overall structure in advance.
>

Have a clear line of argument.

— Writing a proof is like writing an essay.

Recommended reading (ADAM additional ressources):
> “Some Remarks on Writing Mathematical Proofs” (John M. Lee)

» “8§1. Minicourse on technical writing” of “Mathematical Writing”
(Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 13 /14

A3. Proofs: Introduction Summary

Summary

A proof should convince the reader by logical steps of the truth of
some mathematical statement.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 22, 2025 14 / 14

Discrete Mathematics in Computer Science
A4. Proof Techniques |

Malte Helmert, Gabriele Roger

University of Basel

September 24, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 1/21

Discrete Mathematics in Computer Science
September 24, 2025 — A4. Proof Techniques |

A4.1 Proof Strategies
A4.2 Direct Proof
A4.3 Indirect Proof

A4.4 Proof by Contrapositive

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 2/21

A4. Proof Techniques | Proof Strategies

A4.1 Proof Strategies

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 3/21

A4. Proof Techniques | Proof Strategies

Common Forms of Statements

Many statements have one of these forms:
@ "All x € § with the property P also have the property Q."
@ "Ais a subset of B."

© "For all x € 5: x has property P iff x has property Q."
(“iff": “if and only if")

Q@ "A= B", where A and B are sets.

In the following, we will discuss some typical proof/disproof
strategies for such statements.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 4 /21

A4. Proof Techniques | Proof Strategies

Proof Strategies

@ "All x € § with the property P also have the property Q."
“For all x € S: if x has property P, then x has property Q."

> To prove, assume you are given an arbitrary x € S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

» To disprove, find a counterexample, i.e., find an x € S
that has property P but not @ and prove this.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 5/21

A4. Proof Techniques | Proof Strategies

Proof Strategies

@ "Ais a subset of B."
> To prove, assume you have an arbitrary element x € A
and prove that x € B.
> To disprove, find an element in x € A\ B
and prove that x € A\ B.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 6 /21

A4. Proof Techniques | Proof Strategies

Proof Strategies

© “For all x € S: x has property P iff x has property Q."
(“iff": "if and only if")
» To prove, separately prove “if P then Q" and “if Q then P".
» To disprove, disprove “if P then Q" or disprove “if Q then P".

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 7/21

A4. Proof Techniques | Proof Strategies

Proof Strategies

Q@ "“"A= B", where A and B are sets.

» To prove, separately prove “A C B"” and "B C A".
» To disprove, disprove “"A C B" or disprove "B C A”.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 8 /21

A4. Proof Techniques | Proof Strategies

Proof Techniques

most common proof techniques:
> direct proof
» indirect proof (proof by contradiction)
P contrapositive
» mathematical induction
>

structural induction

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 9/21

A4. Proof Techniques | Direct Proof

A4.2 Direct Proof

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 10 / 21

A4. Proof Techniques | Direct Proof

Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 11 /21

A4. Proof Techniques | Direct Proof

Direct Proof: Example

Theorem
For all sets A, B and C it holds that

AN(BUC)=(AnB)U(AN ().

Proof.

Let A, B and C be arbitrary sets.

We will show separately that
» AN(BUC)C (ANB)U(ANC) and that
» (AnNB)U(ANC)C An(BUCQ).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 12 /21

A4. Proof Techniques | Direct Proof

Direct Proof: Example cont.

Proof (continued).
We first show that AN (BUC) C(ANB)U(ANC):

If An(BU C) is empty, the statement is trivially true. Otherwise
consider an arbitrary x € AN (B U C). By the definition of the
intersection it holds that x € A and that x € (BU C).

We make a case distinction between x € B and x ¢ B:

Case 1 (x € B): As x € A'is true, it holds in this case that

x € (AN B).
Case 2 (x ¢ B): From x € (B U C) it follows for this case that

x € C. With x € A we conclude that x € (AN C).
In both cases it holds that x € AN B or x € AN C, and we
conclude that x € (AN B)U (AN C).
As x was chosen arbitrarily from AN (B U C), we have shown that

every element of AN (B U C) is an element of (AN B)U (AN C),
so it holds that AN (BUC) C (ANB)U(AN ().

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 13 /21

A4. Proof Techniques | Direct Proof

Direct Proof: Example cont.

Proof (continued).
We will now show that (ANB)U(ANC) C An(BUC).

... [Homework assignment] ...

Overall we have shown for arbitrary sets A, B and C that
AN(BUC)C(ANB)U(ANC) and that

(ANB)U(ANC) C An(BUC), which concludes the proof of the
theorem. O]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 14 /21

A4. Proof Techniques | Indirect Proof

A4 .3 Indirect Proof

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 15 /21

A4. Proof Techniques | Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)
» Make an assumption that the statement is false.

» Use the assumption to derive a contradiction.

» This shows that the assumption must be false
and hence the original statement must be true.

German: Indirekter Beweis, Beweis durch Widerspruch

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 16 / 21

A4. Proof Techniques | Indirect Proof

Indirect Proof: Example

Theorem
Let A and B be sets. If A\ B =1 then A C B.

Proof.
We prove the theorem by contradiction.

Assume that there are sets A and B with A\ B=0 and A ¢Z B.
Let A and B be such sets.

Since A Z B there is some x € A such that x ¢ B.

For this x it holds that x € A\ B.

This is a contradiction to A\ B = .

We conclude that the assumption was false and thus the theorem
is true.]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 17 / 21

A4. Proof Techniques | Proof by Contrapositive

A4 .4 Proof by Contrapositive

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 18 / 21

A4. Proof Techniques | Proof by Contrapositive

Contrapositive

(Proof by) Contrapositive
Prove “If A, then B" by proving “If not B, then not A."

Examples:

» Prove “For all n € Ny: if n? is odd, then n is odd”
by proving “For all n € N, if n is even, then n? is even.

» Prove “For all n € Ny: if nis not a square number,
then +/n is irrational” by proving “For all n € Np:
if \/n is rational, then n is a square number.”

German: Kontraposition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 19 /21

A4. Proof Techniques | Proof by Contrapositive

Contrapositive: Example

Theorem
For any sets A and B: If AC B then A\ B = ().

Proof.

We prove the theorem by contrapositive, showing for any sets A
and B that if A\ B # () then A Z B.

Let A and B be arbitrary sets with A\ B # .

As the set difference is not empty, there is at least one x with

x € A\ B. By the definition of the set difference (), it holds for
such x that x € Aand x ¢ B.

Hence, not all elements of A are elements of B, so it does not hold
that A C B. L]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025

20

A4. Proof Techniques | Summary

Summary

» There are standard strategies for proving some common forms
of statements, e.g. some property of all elements of a set.

» Direct proof: derive statement by deducing or rewriting.

» Indirect proof: derive contradiction from the assumption that
the statement is false.

» Proof by contrapositive: Prove “If A, then B" by proving “If
not B, then not A.".

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 24, 2025 21 /21

Discrete Mathematics in Computer Science
A5. Proof Techniques Il

Malte Helmert, Gabriele Roger

University of Basel

September 29, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 1/26

Discrete Mathematics in Computer Science
September 29, 2025 — A5. Proof Techniques Il

A5.1 Mathematical Induction

A5.2 Structural Induction

A5.3 Excursus: Computer-assisted Theorem Proving

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 2/26

A5. Proof Techniques |l Mathematical Induction

A5.1 Mathematical Induction

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 3/26

A5. Proof Techniques |l Mathematical Induction

Proof Techniques

most common proof techniques:
> direct proof
» indirect proof (proof by contradiction)
P contrapositive
» mathematical induction
>

structural induction

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 4 /26

A5. Proof Techniques |l Mathematical Induction

Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)
Mathematical induction proves that

we can climb as high as we like on a ladder,

by proving that we can climb onto the bottom rung (the basis)
and that

from each rung we can climb up to the next one (the step).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025

5/

A5. Proof Techniques Il Mathematical Induction

Propositions

Consider a statement on all natural numbers n with n > m.
> E.g. “Every natural number n > 2 can be written as a product
of prime numbers.”
> P(2): "2 can be written as a product of prime numbers.”

P(3): “3 can be written as a product of prime numbers.”
P(4): “4 can be written as a product of prime numbers.”

P(n): “n can be written as a product of prime numbers.”
For every natural number n > 2 proposition P(n) is true.

\ A A {

Proposition P(n) is a mathematical statement that is defined in
terms of natural number n.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 6 /26

A5. Proof Techniques |l Mathematical Induction

Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition P(n)

for all natural numbers n with n > m:
» basis: proof of P(m)

» induction hypothesis (IH):
suppose that P(k) is true for all k with m < k <n

» inductive step: proof of P(n+ 1)
using the induction hypothesis

German: Vollstandige Induktion, Induktionsanfang,

Induktionsannahme oder Induktionsvoraussetzung,
Induktionsschritt

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 7/ 26

A5. Proof Techniques Il Mathematical Induction

Mathematical Induction: Example |

Theorem

Every natural number n > 2 can be written as a product of prime
numbers, i.e. n=pi-p>- ... pm with prime numbers pi, ..., pm.
Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime
IH: Every natural number k with 2 < k <n
can be written as a product of prime numbers.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 8 /26

A5. Proof Techniques Il Mathematical Induction

Mathematical Induction: Example |

Theorem
Every natural number n > 2 can be written as a product of prime
numbers, i.e. n = p1 - p>- ... pym With prime numbers p1,. .., pm.

Proof (continued).

inductive step n — n+ 1:
» Case 1: n+ 1 is a prime number ~> trivial
» Case 2: n+ 1 is not a prime number.

There are natural numbers 2 < g, r < nwithn+1=gq-r.
Using the IH shows that there are prime numbers

gi,--.,q9s withg=q1-...-gs and
My.o.,rpwithr=r ... rg.
Together thismeans n+1=q1-...-Qqs-r ... It

O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 9 /26

A5. Proof Techniques |l

Mathematical Induction: Example Il

Theorem
Let S be a finite set. Then |P(S)| = 2/

What proposition can we use to prove this
with mathematical induction?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

Mathematical Induction

September 29, 2025

10 / 26

A5. Proof Techniques Il Mathematical Induction

Proof by Induction

Proof.
By induction over |S|.

Basis (|S| = 0): Then S =0 and |P(S)| = [{0}| =1 =2°.
IH: For all sets S with |S| < n, it holds that |P(S)| = 2I5I.

Inductive Step (n — n+1):

Let S’ be an arbitrary set with |S'| = n+ 1 and
let e be an arbitrary member of S’.

Let further S = 5"\ {e} and X = {S" U {e} | " € P(S)}.
Then P(S') = P(S) U X. As P(S) and X are disjoint and
|X| = |P(S)], it holds that |P(S)| = 2|P(S)].

Since |S| = n, we can use the IH and get
IP(S)| =225 =2.2n = om+t —oI¥'l,

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 11 /26

A5. Proof Techniques |l Mathematical Induction

Weak vs. Strong Induction

» Weak induction: Induction hypothesis only supposes
that P(k) is true for k = n

» Strong induction: Induction hypothesis supposes
that P(k) is true for all k € Ng with m < k <n

» also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 12 / 26

A5. Proof Techniques Il Mathematical Induction

Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction
but not with weak induction?

We can always use a stronger proposition:

» “Every n € Ny with n > 2 can be written as a product of
prime numbers.”

» P(n): “n can be written as a product of prime numbers.”

> P’'(n): “all k € Ny with 2 < k < n can be written
as a product of prime numbers.”

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 13 /26

A5. Proof Techniques |l Structural Induction

A5.2 Structural Induction

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 14 / 26

A5. Proof Techniques Il Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)
The set Ny of natural numbers is inductively defined as follows:

» 0 is a natural number.

» If nis a natural number, then n+ 1 is a natural number.

Example (Binary Tree)
The set B of binary trees is inductively defined as follows:

» [Jis a binary tree (a leaf)
» If L and R are binary trees, then (L, (O, R) is a binary tree
(with inner node Q).
Implicit statement: all elements of the set can be constructed
by finite application of these rules
German: Binarbaum, Blatt, innerer Knoten

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025

15 /

A5. Proof Techniques |l Structural Induction

Inductive Definition of a Set

Inductive Definition
A set M can be defined inductively by specifying

» basic elements that are contained in M

» construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

German: Induktive Definition, Basiselemente, Konstruktionsregeln

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 16 / 26

A5. Proof Techniques Il Structural Induction

Structural Induction

Structural Induction
Proof of statement for all elements of an inductively defined set

P basis: proof of the statement for the basic elements

» induction hypothesis (IH):
suppose that the statement is true for some elements M
» inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)

German: Strukturelle Induktion

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 17 / 26

A5. Proof Techniques Il Structural Induction

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written /eaves(B),
is defined as follows:

leaves(dD) = 1
leaves((L, O, R)) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(C0) = 0
inner({L, O, R)) = inner(L) + inner(R) + 1

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 18 / 26

A5. Proof Techniques |l Structural Induction

Structural Induction: Example (2)

Theorem
For all binary trees B: inner(B) = leaves(B) — 1.

Proof.
induction basis:
inne(d) =0=1—1= leaves(dJ) — 1

~~ statement is true for base case

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 19 / 26

A5. Proof Techniques Il Structural Induction

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:
to prove that the statement is true for a composite tree (L, O, R),

we may use that it is true for the subtrees L and R.
inductive step for B = (L, O, R):
inner(B) = inner(L) + inner(R) + 1

H (leaves(L) — 1) + (leaves(R) — 1) + 1
= leaves(L) + leaves(R) — 1 = leaves(B) — 1

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 20 / 26

A5. Proof Techniques Il Structural Induction

Example: Tarradiddles

Example (Tarradiddles)
The set of tarradiddles is inductively defined as follows:

> »F is a tarradiddle.

> ¥ is a tarradiddle.

> If x and y are tarradiddles, then x%e€ey is a tarradiddle.
» If x and y are tarradiddles, then €ex¥»y$® is a tarradiddle.

How do you prove with structural induction that every tarradiddle
contains an even number of flowers?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 21

/26

A5. Proof Techniques |l Excursus: Computer-assisted Theorem Proving

A5.3 Excursus: Computer-assisted
Theorem Proving

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 22 /26

A5. Proof Techniques |l Excursus: Computer-assisted Theorem Proving

Computer-assisted Proofs

» Computers can help proving theorems.

» Computer-aided proofs have for example been used for
proving theorems by exhaustion.

» Example: Four color theorem

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 23 /26

A5. Proof Techniques Il Excursus: Computer-assisted Theorem Proving

Interactive Theorem Proving

» On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

» On this level, proofs can be automatically verified by
computers.

» Nobody wants to write or read proofs on this level of detail.

» In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

> If it succeeds, we can be very confident that the proof is valid.

» Example theorem provers: Isabelle/HOL, Lean

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 24 /26

A5. Proof Techniques Il Excursus: Computer-assisted Theorem Proving

Example

Isabelle2019/HOL - Mysets.thy 2 @ &)
fle Edt Search Markers Folding View Utiities Magros Plugins Help
OI@BME & 9¢ KO0 R@ COEE B & @ [e
5 -
T [theory Mysets d}@
imports Main =
begin %
set_example: "VA.VB. (A-B = Set.empty — ACB)" m
proof (rule ccontr) H
assume "—(VA.VB. (A-B = Set.empty — ACB))" E
hence "3A.3B. (A-B = Set.empty A —ACB)" by simp H
then obtain A::"'a set" and B::"'a set" where "A-B = Set.empty" "-ACB" by simp 1&]
hence "3x. (x € A A x ¢ B)" by simp
then obtain x::"'a" where "(x € A A x ¢ B)" by (rule exE, simp)
hence "x € A-B" by simp
hence "A-B # Set.empty" using <-ACB> by simp
with <A-B = Set.empty> show “"False® by simp
qedll
AT |
G+ cupit [y Seigemamme [symbos
1546500 UTF-8-isabelle) |1 (0UG /512MB_2:58 PM|

~ Demo

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 25 /26

A5. Proof Techniques Il Summary

Summary

» Mathematical induction is used to prove a proposition P for
all natural numbers > m.
> Prove P(m).
> Make hypothesis that P(k) is true for m < k < n.
» Establish P(n+ 1) using the hypothesis.
» Structural induction applies the same general concept to prove
a proposition P for all elements of an inductively defined set.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science September 29, 2025 26

26

Discrete Mathematics in Computer Science
B1. Tuples & Cartesian Product

Malte Helmert, Gabriele Roger

University of Basel

October 1, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025

1/

Discrete Mathematics in Computer Science
October 1, 2025 — B1. Tuples & Cartesian Product

B1.1 Tuples and the Cartesian Product

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 2 /10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

B1.1 Tuples and the Cartesian
Product

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 3/10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

Motivation

» A set is an unordered collection of distinct objects.
» We often need a more structured way of representation.

» A person is associated with a name, address, phone number.
P> A set of persons makes sense in many contexts.
» Representing the associated data as a set rather not.

» We could for example want to

» directly access the name of a person, or
» have a separate billing and delivery address for some order,
but in general, these can be the same.

» Tuples are mathematical building blocks that support this.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 4 /10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

Sets vs. Tuples

» A set is an unordered collection of distinct objects.

» A tuple is an ordered sequence of objects.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 5/ 10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

Tuples
> k-tuple: ordered sequence of k objects (k € Np)
» written (o1,...,0k) or (o01,...,0k)
» unlike sets, order matters ((1,2) # (2,1))
P objects may occur multiple times in a tuple
» objects contained in tuples are called components
> terminology:
> k = 2: (ordered) pair
> k= 3: triple

» more rarely: quadruple, quintuple, sextuple, septuple, ...

» if k is clear from context (or does not matter),
often just called tuple

German: k-Tupel, Komponente, (geordnetes) Paar, Tripel, Quadrupel

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025

6/

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

Equality of Tuples

Definition (Equality of Tuples)
Two n-tuples t = (01,...,0,) and t' = (0].....0})

are equal (t = t') if for i € {1,..., n} it holds that o; = o/.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 7 /10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

Cartesian Product

Definition (Cartesian Product and Cartesian Power)
Let S1,...,S, be sets. The Cartesian product S; x --- x S, is
the following set of n-tuples:

S51x--- xS :{<X1,...,Xn>‘X1€51,X2€52,...,Xn€5n}.

The k-ary Cartesian power of a set S (with k € Nyp) is the set
Sk={(o1,...,0k) | oj € Sforallie{l,....k}} =Sx---xS.
————

k times

René Descartes: French mathematician and philosopher (1596-1650)
Example: A={a, b}, B=1{1,2,3}

Ax B ={(a,1),(2,2),(a,3),(b 1), (b,2), (b,3)}
A% = {(a,a), (a, b), (b, a), (b, b)}

German: Kartesisches Produkt

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025

8/

10

B1. Tuples & Cartesian Product Tuples and the Cartesian Product

(Non-)properties of the Cartesian Product

The Cartesian product is
» not commutative, in most cases A x B # B x A.
> not associative, in most cases (A x B) x C # A x (B x C)

Why? Exceptions?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 9 /10

B1. Tuples & Cartesian Product Summary

Summary

> A k-tuple is an ordered sequence of k objects, called the
components of the tuple.

P> 2-tuples are also called pairs and 3-tuples triples.

» The Cartesian Product S; x --- x S, of set 51,...,5, is the
set of all tuples (o1, ..., 0,), where for all i € {1,...,n}
component o; is an element of ;.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 1, 2025 10 /10

Discrete Mathematics in Computer Science
B2. Relations

Malte Helmert, Gabriele Roger

University of Basel

October 6, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025

1/

Discrete Mathematics in Computer Science
October 6, 2025 — B2. Relations

B2.1 Relations

B2.2 Properties of Binary Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 2 /15

B2. Relations Relations

B2.1 Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 3 /15

B2. Relations Relations

Relations: Informally

> Intuitively, a mathematical relation connects elements from
several (possibly different) sets by specifying related groupings.
> We already know some relations, e. g.
» C relation for sets
» < relation for natural numbers
» These are examples of binary relations,
considering pairs of objects.
» There are also relations of higher arity, e. g.
> “x 4y =2Zz" for integers x, y, z.
» “The name, address and office number
belong to the same person.”

> Relations are for example important for relational databases,
semantic networks or knowledge representation and reasoning.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 4 /15

B2. Relations Relations

Relations

Definition (Relation)
Let 5,...,5, be sets.
A relation over S1,...,S5,isaset RC 51 X --- X §,,.

The arity of R is n.

A relation of arity n is a set of n-tuples.

German: Relation, Stelligkeit

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 5 /15

B2. Relations Relations

Relations: Examples

> C ={(5,5)|S and S’ are sets and
for every x € S it holds that x € S’}

> < :{(Xv)/)‘X7y€NoandX<yorx:y}
> R:{(ny,ZHX,y,ZGZand X—I—y:z}

» R’ = {(Gabi Roger, Spiegelgasse 1,04.005),
(Malte Helmert, Spiegelgasse 1,06.004),
(David Speck, Spiegelgasse 5,04.003)}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 6 /15

B2. Relations Properties of Binary Relations

B2.2 Properties of Binary Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 7 /15

B2. Relations Properties of Binary Relations

Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)
A binary relation is a relation over two sets A and B.

» Instead of (x,y) € R, we also write xRy, e.g.
x < y instead of (x,y) € <

> If the sets are equal, we say “R is a binary relation over A"
instead of “R is a binary relation over A and A”.

» Such a relation over a set is also called
a homogeneous relation or an endorelation.

German: zweistellige Relation, homogene Relation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 8 /15

B2. Relations Properties of Binary Relations

Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive)
A binary relation R over set A is reflexive
if for all a € A it holds that (a, a) € R.

Which of these relations are reflexive?

R ={(a,a),(a, b),(a,c),(b,a),(b,c),(c,c)} over {a, b, c}
R ={(a,a),(a, b),(a,c),(b,b),(b,c),(c,c)} over {a, b, c}
equality relation = on natural numbers

v

>
>
P> less-than relation < on natural numbers

P strictly-less-than relation < on natural numbers

German: reflexiv

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 9 /15

B2. Relations Properties of Binary Relations

Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive
if for all a € A it holds that (a,a) ¢ R.

Which of these relations are irreflexive?

R ={(a,a),(a, b),(a,c),(b,a),(b,c),(c,c)} over {a, b, c}
R ={(a,a),(a, b),(a,c),(b,b),(b,c),(c,c)} over {a, b, c}
equality relation = on natural numbers

v

>
>
P> less-than relation < on natural numbers

P strictly-less-than relation < on natural numbers

German: irreflexiv

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 10 / 15

B2. Relations Properties of Binary Relations

Symmetry

Definition (symmetric)
A binary relation R over set A is symmetric
if for all a, b € A it holds that (a, b) € R iff (b,a) € R.

Which of these relations are symmetric?
R ={(a,a),(a, b),(a,c),(b,a),(c,a),(c,c)} over {a, b, c}
R ={(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)} over {a, b, c}

equality relation = on natural numbers

v

less-than relation < on natural numbers

vvvyyy

strictly-less-than relation < on natural numbers

German: symmetrisch

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025

11/

B2. Relations elations
How do these
properties relate
to irreflexivity?

Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric)CDQ
Let R be a binary relation over set A.

Relation R is asymmetric if

for all a, b € A it holds that if (a, b) € R then (b, a) ¢ R.
Relation R is antisymmetric if for all a, b € A with a # b it holds
that if (a, b) € R then (b, a) ¢ R.

Which of these relations are asymmetric/antisymmetric?
» R={(a,a),(a,b),(ac),(b,a)(c,a)(c,c)} over {a,b,c}
» R=1{(a,a),(a,b),(a,c)(b,b),(b,c),(c,c)} over {a,b,c}
P equality relation = on natural numbers
» |ess-than relation < on natural numbers
> strictly-less-than relation < on natural numbers

German: asymmetrisch, antisymmetrisch

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 12 /15

B2. Relations Properties of Binary Relations

Transitivity

Definition

A binary relation R over set A is transitive
if it holds for all a, b, c € A that

if (a,b) € R and (b, c) € R then (a,c) € R.

Which of these relations are transitive?

R ={(a,a),(a,b),(a,c),(b,a),(c,a),(c,c)} over {a, b, c}
R ={(a,a),(a, b),(a,c),(b,b),(b,c),(c,c)} over {a, b, c}
equality relation = on natural numbers

v

>
>
» less-than relation < on natural numbers

P strictly-less-than relation < on natural numbers

German: transitiv

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 13 /15

B2. Relations

Summary

> A relation over sets S1,...,S,isaset RC 51 x--- x §5,.

> A binary relation is a relation over two sets.

» A binary relation over set S is a relation R C S x S and also

called a homogeneous relation.

P> A binary relation R over A is

>
>
>

reflexive if (a,a) € R for all a € A,

irreflexive if (a,a) ¢ R for all a € A,

symmetric if for all a, b € A it holds that

(a, b) € R iff (b,a) € R,

asymmetric if for all a, b € A it holds that

if (a, b) € R then (b,a) ¢ R,

antisymmetric if for all a, b € A with a # b it holds that
if (a, b) € R then (b,a) ¢ R,

transitive if for all a, b, c € A it holds that

if (a,b) € R and (b, c) € R then (a,c) € R.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025

Summary

14

15

B2. Relations Summary

Special Classes of Relations

» Some important classes of relations are defined in terms of
these properties.
» Equivalence relation: reflexive, symmetric, transitive
» Partial order: reflexive, antisymmetric, transitive

» Strict order: irreflexive, asymmetric, transitive
»

» We will consider these and other classes in detail.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6, 2025 15 /15

Discrete Mathematics in Computer Science

B3. Equivalence and Order Relations

Malte Helmert, Gabriele Roger

University of Basel

October 6/8, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 1/23

Discrete Mathematics in Computer Science
October 6/8, 2025 — B3. Equivalence and Order Relations

B3.1 Equivalence Relations

B3.2 Order Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 2 /23

B3. Equivalence and Order Relations Equivalence Relations

B3.1 Equivalence Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 3/23

B3. Equivalence and Order Relations

Motivation

Equivalence Relations

» Think of any attribute that two objects can have in common,

e.g.

their color.

> We could place the objects into distinct “buckets”,

e.g.

one bucket for each color.

> We also can define a relation ~ such that x ~ y iff
x and y share the attribute, e. g.have the same color.

» Would this relation be

>

vvyyvyYVYyy

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

October 6/8, 2025 4 /23

B3. Equivalence and Order Relations Equivalence Relations

Equivalence Relation

Definition (Equivalence Relation)

A binary relation ~ over set S is an equivalence relation
if ~ is reflexive, symmetric and transitive.

Examples:

» {(x,y) | x and y have the same place of origin}
over the set of all Swiss citizens

» {(x,y) | x and y have the same parity} over Ny
> {(]‘?]‘)7 (17 4)7 (]‘7 5)? (47]‘)7 (4’ 4)7 (47 5)7 (5’ 1)’ (57 4)7 (57 5)’
(2,2),(2,3),(3,2),(3,3)} over {1,2,...,5}

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e.g. one “"bucket” for all objects that share a specific color)?

German: Aquivalenzrelation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 5/23

B3. Equivalence and Order Relations Equivalence Relations

Equivalence Classes

Definition (Equivalence Class)
Let ~ be an equivalence relation over set S.

For any x € S, the equivalence class of x is the set

X~ ={yeS|x~y}

Consider

4] =

German: Aquivalenzklasse

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 6 /23

B3. Equivalence and Order Relations Equivalence Relations

Equivalence Classes: Properties

Let ~ be an equivalence relation over set S and
E = {[x]~ | x € S} the set of all equivalence classes.

» Every element of S is in some equivalence class in E.
> Every element of S is in at most one equivalence class in E.

~> homework assignment

= Equivalence relations induce partitions
(not covered in this course).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 7 /23

B3. Equivalence and Order Relations Order Relations

B3.2 Order Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 8 /23

B3. Equivalence and Order Relations Order Relations

Order Relations

» We now consider other combinations of properties,
that allow us to describe a consistent order of the objects.

» “Number x is not larger than number y."
“Set S is a subset of set T."
“Jerry runs at least as fast as Tom."”
“Pasta tastes better than Potatoes.”

German: Ordnungsrelation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 9 /23

B3. Equivalence and Order Relations Order Relations

Partial Orders

> We begin with partial orders.

» Example partial order relations are < over Np or C for sets.
P Are these relations

reflexive?

irreflexive?

symmetric?

asymmetric?

antisymmetric?

transitive?

VVVVYYVYY

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 10 / 23

B3. Equivalence and Order Relations Order Relations

Partial Orders — Definition

Definition (Partial order)
A binary relation < over set S is a partial order
if < is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?
> strict subset relation C for sets
» not-less-than relation > over Ny
» R={(a,a),(a,b),(b,b),(b,c),(c,c)} over {a,b,c}

German: Halbordnung oder partielle Ordnung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 11 /23

B3. Equivalence and Order Relations Order Relations

Least and Greatest Element

Definition (Least and greatest element)
Let < be a partial order over set S.

An element x € S is the least element of S
if for all y € S it holds that x < y.

It is the greatest element of S if forall y € S, y < x.

> |s there a least/greatest element? Which one?
> S={1,2,3} and < ={(x,¥) | x,y € Sand x <y}
» relation < over Ny
P relation < over Z

> Why can we say the least element instead of a least element?

German: kleinstes/grosstes Element

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025

12/

B3. Equivalence and Order Relations Order Relations

Uniqueness of Least Element

Theorem
Let < be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with x # y.
Since x is a least element, x < y is true.

Since y is a least element, y < x is true.

As a partial order is antisymmetric, this implies that x =y. 4 [J

Analogously: If there is a greatest element then is unique.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025

13/

23

B3. Equivalence and Order Relations Order Relations

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)
Let < be a partial order over set S.

An element x € S is a minimal element of S

if there isno y € S with y < x and x # y.

An element x € § is a maximal element of §
if there isno y € S with x <y and x #£ y.

A set can have several minimal elements and no least element.
Example?

German: minimales/maximales Element

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 14 / 23

B3. Equivalence and Order Relations Order Relations

Total Orders

» Relations < over Ny and C for sets are partial orders.

» Can we compare every object against every object?
» For all x,y € Ny it holds that x < y or that y < x (or both).
> {12} ¢ {2,3} and {2,3} ¢ {1,2}

> Relation < is a total order, relation C is not.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 15 / 23

B3. Equivalence and Order Relations Order Relations

Total Order — Definition

Definition (Total relation)
A binary relation R over set S is total
if for all x,y € S at least one of xRy or yRx is true.

Definition (Total order)
A binary relation is a total order if it is total and a partial order.

German: totale Relation, (schwache) Totalordnung oder totale Ordnung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 16 / 23

B3. Equivalence and Order Relations Order Relations

Strict Orders

> A partial order is reflexive, antisymmetric and transitive.
» We now consider strict orders.

» Example strict order relations are < over Ny or C for sets.
P Are these relations

reflexive?

irreflexive?

symmetric?

asymmetric?

antisymmetric?

transitive?

VVVyVYYVYY

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 17 / 23

B3. Equivalence and Order Relations Order Relations

Strict Orders — Definition

Definition (Strict (partial) order)

A binary relation < over set S is a strict (partial) order
if < is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
» subset relation C for sets

> strict superset relation D for sets

Can a relation be both, a partial order and a strict (partial) order?

We can omit irreflexivity or asymmetry from the definition
(but not both). Why?

German: strenge (Halb-)ordnung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 18 / 23

B3. Equivalence and Order Relations Order Relations

Strict Total Orders

> As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

» Example 1 (personal preferences):

“Pasta tastes better than potato.”

“Rice tastes better than bread.”
“Bread tastes better than potato.” Ric>
“Rice tastes better than potato.”

This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

VVYVYyYVYVYY

» Example 2: C relation for sets

> It doesn’t work to simply require that the strict order is total.
Why?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 19 /23

B3. Equivalence and Order Relations Order Relations

Strict Total Orders — Definition

Definition (Trichotomy)
A binary relation R over set S is trichotomous if for all x,y € S
exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)
A binary relation < over S is a strict total order
if < is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.
Example: < relation over Ny gives the standard ordering
0,1,2,3,... of natural numbers.

Attention: a non-empty strict total order is never a total order.

German: trichotom, strenge Totalordnung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 20 /23

B3. Equivalence and Order Relations Order Relations

Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)
Let < be a strict order over set S.

An element x € S is the least element of S
if for all y € S where y # x it holds that x < y.

It is the greatest element of S if for all y € S where y # x, y < x.

Element x € S is a minimal element of S
if there is no y € S with y < x.

It is a maximal element of S
if there isno y € S with x < y.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 21 /23

B3. Equivalence and Order Relations Order Relations

Special Elements — Example

Consider again the previous example:

S = {Pasta, Potato, Bread, Rice}
< = {(Pasta, Potato), (Bread, Potato),
(Rice, Potato), (Rice, Bread)}

Pasta> (Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025 22 /23

B3. Equivalence and Order Relations Order Relations

Summary

» An equivalence relation is reflexive, symmetric and transitive.

P> A partial order x < y is reflexive, antisymmetric and
transitive.
> If x is the greatest element of a set S, it is greater than every
element: for all y € S it holds that y < x.
P If x is a maximal element of set S then it is not smaller than
any other element y: thereisno y € S with x <y and x # y.
> A total order is a partial order without incomparable objects.
» A strict order is irreflexive, asymmetric and transitive.
> Strict total orders and special elements are analogously defined
as for partial orders but with a special treatment of equal
elements.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 6/8, 2025

23 /

23

Discrete Mathematics in Computer Science

B4. Operations on Relations

Malte Helmert, Gabriele Roger

University of Basel

October 13, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 1/13

Discrete Mathematics in Computer Science
October 13, 2025 — B4. Operations on Relations

B4.1 Operations on Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 2 /13

B4. Operations on Relations Operations on Relations

B4.1 Operations on Relations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 3 /13

B4. Operations on Relations Operations on Relations

Relations: Recap

> A relation over sets S1,...,S,isaset RC 5y x--- x §5,.
> A binary relation is a relation over two sets.

» A homogeneous relation R over set S is a binary relation
RCSxS.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 4 /13

B4. Operations on Relations Operations on Relations

Set Operations

P Relations are sets of tuples, so we can build their union,
intersection, complement,

» Let R be a relation over Si,...,S, and R’ a relation over
Si,...,S). Then RUR'is a relation over S$4US],...,S,US],.
With the standard relations <, = and < for Np,
relation < corresponds to the union of relations < and =.

» Let R and R’ be relations over n sets.
Then RN R’ is a relation.
Over which sets?
With the standard relations <, = and > for Np,
relation = corresponds to the intersection of < and >.

> If R is a relation over 51,...,5,
then so is the complementary relation R = (S; x --- x S,) \ R.
With the standard relations for Ny, relation = is the
complementary relation of # and > the one of <.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 5 /13

B4. Operations on Relations

Inverse of a Relation

Definition
Let R C A x B be a binary relation over A and B.

The inverse relation of R is the relation R~1 C B x A given by
R1={(b,a) | (a,b) € R}.

» The inverse of the < relation over Ny is the > relation.

> Relation R with xRy iff person x has a key for y.
Inverse: @ with a@b iff lock a can be openened by person b.

German: inverse Relation oder Umkehrrelation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025

6/

Operations on Relations

B4. Operations on Relations Operations on Relations

Composition of Relations

Definition (Composition of relations)
Let Ry be a relation over A and B and R» a relation over B and C.

The composition of Ry and R» is the relation R, o R over A and C
with:

Ry o R1 ={(a,c) | thereis a b € B with
(a,b) € Ry and (b, c) € Ry}

How can we illustrate this graphically?

German: Komposition oder Riickwartsverkettung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 7 /13

B4. Operations on Relations Operations on Relations

Composition of Relations: Example

S1={1,2,3,4}
S»={A,B,C,D, E}
S3={a,b,c,d}

Rl = {(17 A)a (17 B)7 (3’ B)7 (47 D)} over 51 and 52
Ry, ={(B,a),(C,c),(D,a),(D,d)} over Sy and S3
R2 ¢} Rl =

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 8 /13

B4. Operations on Relations Operations on Relations

Composition is Associative

Theorem (Associativity of composition)
Let Si1,...,S4 be sets and Ry, Ry, R3 relations with R; C S; X Sj11.
Then

R3o(RaoRy)=(R30Rx)oRy.

Proof.
It holds that (x1,x4) € R3 0 (R o Ry) iff there is an x3 with
(Xl,X3) € Ry o Ry and (X3,X4) € Rs.

As (x1,x3) € Ry o Ry iff there is an x» with (x1,x2) € Ry and
(x2,x3) € Rp, we have overall that (x1,x) € Rz 0 (Ry o Ry) iff
there are xp, x3 with (X1,X2) € Ry, (X2,X3) € R» and (X3,X4) € Rs.

This is the case iff there is an xp with (x1,x2) € Ry and
(X2,X4) € R3 o Ry, which holds iff (X1,X4) € (R3 o Rg) o Rj. L]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 9 /13

B4. Operations on Relations Operations on Relations

(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)
Let R be a relation over set S.

The transitive closure RT of R is the smallest relation over S
that is transitive and has R as a subset.

The reflexive transitive closure R* of R is the smallest relation over
S that is reflexive, transitive and has R as a subset.
The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b,
what do R and R* express?

German: (reflexive) transitive Hiille

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 10 / 13

B4. Operations on Relations

Operations on Relations

Transitive Closure and n-fold Composition

Define the n-fold composition of a relation R over S as

Ro ={(x,x) | x € S} and
R;:ROR,'_l foriZl.
Theorem

Let R be a relation over set S.

Then Rt = Ufil R; and R* = U?io R;.

Without proof.

German: n-fache Komposition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 11 /13

B4. Operations on Relations

Other Operators

Operations on Relations

» There are many more operators, also for general relations.

» Highly relevant for queries over relational databases.

P For example, join operators combine relations based on

common entries.

» Example for a natural join:

Employee

Dept

Name | Empld DeptN

Harry | 3415
Sally 2241
George | 3401
Harriet | 2202

Mary 1257

Finance
Sales
Finance
Sales

Human
Resources

Dep
Finance George
Sales Harriet

Production | Charles

Name
Harry
Sally
George

Harriet

Employee M Dept

Empld DeptName Manager

3415
2241
3401
2202

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

Finance George
Sales Harriet
Finance George

Sales Harriet

(Source: Wikipedia)

October 13, 2025 12/

13

B4. Operations on Relations Operations on Relations

Summary

P Relations: general, binary, homogeneous

» Properties: reflexivity, symmetry, transitivity
(and related properties)

» Special relations: equivalence relations, order relations

» Operations: inverse, composition, transitive closure

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 13, 2025 13 /13

Discrete Mathematics in Computer Science
B5. Functions

Malte Helmert, Gabriele Roger

University of Basel

October 15/20, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025

1/

Discrete Mathematics in Computer Science
October 15/20, 2025 — B5. Functions

B5.1 Partial and Total Functions

B5.2 Operations on Partial Functions

B5.3 Properties of Functions

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 2 /40

B5. Functions Partial and Total Functions

B5.1 Partial and Total Functions

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 3 /40

B5. Functions Partial and Total Functions

Important Building Blocks of Discrete Mathematics

Important building blocks:
> sets
> relations

» functions

In principle, functions are just a special kind of relations:
» f:Ng— Ng with)"'(X):X2
> relation R over Ng with R = {(x,x?) | x € Ng}.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 4 /40

B5. Functions Partial and Total Functions

Functional Relations

Definition
A binary relation R over sets A and B is functional
if for every a € A there is at most one b € B with (a, b) € R.

functional not functional

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 5 /40

B5. Functions Partial and Total Functions

Functions — Examples

> f: Ny — No with f(x) =x2+1
» abs: 7 — Ny with
if x>0
abs(x):{x hrs

—x otherwise

» distance : R?2 x R?2 — R with
distance((x1, y1), (x2, ¥2)) = /(x2 = x1)? + (y2 — y1)?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 6 /40

B5. Functions Partial and Total Functions

Partial Function — Example

Partial function r : Z x Z - QQ with

o if d #0

r(n,d) =
() undefined otherwise

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025

7 /40

B5. Functions Partial and Total Functions

Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A -+ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f.

We write f(x) = y for (x,y) € G and say
y is the image of x under f.

If there is no y € B with (x,y) € G, then f(x) is undefined.

Partial function r : Z x Z - Q with

r(n.d){g ifd #0

undefined otherwise
has graph {((n,d), 5) |n€ Z,d € Z\ {0}} C Z* x Q.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 8 /40

B5. Functions

Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)
Let f : A-» B be a partial function.

Set A is called the domain of f, set B is its codomain.
The domain of definition of f is the set

dom(f) = {x € A|thereis a y € B with f(x) = y}.
The image (or range) of f is the set

img(f) = {y | there is an x € A with f(x) = y}.

f(a)=4,f(b)=2,f(c)=1,f(e) =4
| domain {a,b,c,d, e}
‘% codomain {1,2,3,4}
- domain of definition dom(f) = {a, b, c, e}
image img(f) = {1,2,4}

— f: {3, b,c,d, e} e {1’2’3’4}
e
.2\\

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025

9/

Partial and Total Functions

40

B5. Functions Partial and Total Functions

Preimage

The preimage contains all elements of the domain that are mapped
to given elements of the codomain.

Definition (Preimage)
Let f : A-» B be a partial function and let Y C B.
The preimage of Y under f is the set

FlY]={x € A|f(x) € Y}.

{1 =
(3N =
FI{aN =
F{1,2)] =

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 10 / 40

B5. Functions Partial and Total Functions

Total Functions

Definition (Total function)
A (total) function f : A — B from set A to set B is a partial
function from A to B such that f(x) is defined for all x € A.

— no difference between the domain and the domain of definition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 11 / 40

B5. Functions Partial and Total Functions

Specifying a Function

Some common ways of specifying a function:
> Listing the mapping explicitly, e. g.
f(a)=4,f(b)=2,f(c)=1,f(e)=4or
f={a—4,b—2c—1le— 4}
» By a formula, e.g. f(x) = x> +1

» By recurrence, e. g.
0!'=1and
nl'=n(n—1)! forn>0

» In terms of other functions, e. g. inverse, composition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 12 / 40

B5. Functions Partial and Total Functions

Relationship to Functions in Programming

def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

— Relationship between recursion and recurrence

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 13 / 40

B5. Functions Partial and Total Functions

Relationship to Functions in Programming

def foo(n):
value =
while <some condition>:

value =
return value

— Does possibly not terminate on all inputs

— Value is undefined for such inputs.
— Theoretical computer science: partial function

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 14 / 40

B5. Functions Partial and Total Functions

Relationship to Functions in Programming

import random
counter = 0

def bar(n):
print("Hi! I got input", n)
global counter
counter += 1
return random.choice([1,2,n])

— Functions in programming don’t always compute
mathematical functions (except purely functional languages).
— In addition, not all mathematical functions are computable.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 15 / 40

B5. Functions Operations on Partial Functions

B5.2 Operations on Partial Functions

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 16 / 40

B5. Functions Operations on Partial Functions

Restrictions and Extensions

Definition (Restriction and extension)

Let f : A-» B be a partial function and let X C A.

The restriction of f to X is the partial function f|x : X - B
with f|x(x) = f(x) for all x € X.

A function f' : A' - B is called an extension of f
if AC A" and f'[4 = f.

The restriction of f to its domain of definition is a total function.
What's the graph of the restriction?
What's the restriction of f to its domain?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 17 / 40

B5. Functions Operations on Partial Functions

Function Composition

Definition (Composition of partial functions)
Let f : A-» B and g : B -+ C be partial functions.

The composition of f and gis gof : A C with

g(f(x)) if f is defined for x and
(gof)(x)= g is defined for f(x)
undefined otherwise

Corresponds to relation composition of the graphs.
If f and g are functions, their composition is a function.
Example:
f:No— Ng with f(x) = x?
g :No— Ny with g(x) =x+3
(gof)(x)=

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 18 / 40

B5. Functions Operations on Partial Functions

Properties of Function Composition

Function composition is
P> not commutative:
> f: Ny — Ny with f(x) = x?
> g: Ny — Ng with g(x) =x+3
> (gof)(x) =x2+3
> (fog)(x)=(x+3)?
» associative, i.e. ho(gof)=(hog)of
— analogous to associativity of relation composition

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 19 / 40

B5. Functions Operations on Partial Functions

Function Composition in Programming

We implicitly compose functions all the time. ..
def foo(n):

somefunction(n)
y = someotherfunction(x)

i
1]

Many languages also allow explicit composition of functions,
e.g. in Haskell:

incr x = x + 1

square X = X * X

squareplusone = incr . square

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 20 / 40

B5. Functions Properties of Functions

B5.3 Properties of Functions

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 21 / 40

B5. Functions Properties of Functions

Properties of Functions

» Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.

» Different elements of the domain can have the same image.

» There can be values of the codomain
that aren't the image of any element of the domain.

» We often want to exclude such cases
— define additional properties to say this quickly

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 22

40

B5. Functions Properties of Functions

Injective Functions

An injective function maps distinct elements of its domain to
distinct elements of its co-domain.
Definition (Injective function)

A function f : A — B is injective (also one-to-one or an injection)
if for all x,y € A with x # y it holds that f(x) # f(y).

injective not injective

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 23 /40

B5. Functions Properties of Functions

Injective Functions — Examples

Which of these functions are injective?
» f:Z — Ny with f(x) = |x]|
> g:Ng — Np with g(x) = x?
x—1 if xis odd

» h: Ny — Ny with h(x) = {x—i—l if x is even

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 24 / 40

B5. Functions Properties of Functions

Composition of Injective Functions

Theorem
Iff :A— B and g : B — C are injective functions
then also g o f is injective.

Proof.

Consider arbitrary elements x,y € A with x # y.
Since f is injective, we know that f(x) # f(y).

As g is injective, this implies that g(f(x)) # g(f(y))-
With the definition of g o f, we conclude that

(gof)(x) # (gof)(y).

Overall, this shows that g o f is injective. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 25 / 40

B5. Functions Properties of Functions

Surjective Functions

A surjective function maps at least one elements to every element
of its co-domain.

Definition (Surjective function)

A function f : A — B is surjective (also onto or a surjection)

if its image is equal to its codomain,

i.e. for all y € B there is an x € A with f(x) = y.

surjective not surjective

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 26 / 40

B5. Functions Properties of Functions

Surjective Functions — Examples

Which of these functions are surjective?
» f:Z — Ny with f(x) = |x]|
> g:Ng — Np with g(x) = x?
x—1 if xis odd

» h: Ny — Ny with h(x) = {x—i—l if x is even

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 27 / 40

B5. Functions Properties of Functions

Composition of Surjective Functions

Theorem
Iff :A— B and g : B — C are surjective functions
then also g o f is surjective.

Proof.

Consider an arbitary element z € C.

Since g is surjective, there is a y € B with g(y) = z.

As f is surjective, for such a y there is an x € A with f(x) =y
and thus g(f(x)) = z.

Overall, for every z € C there is an x € A with
(gof)(x)=g(f(x)) =2z so gof is surjective. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 28 / 40

B5. Functions Properties of Functions

Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.

~ Corollary
\\ The composition of two bijective
B \ functions is bijective.
/ :
%

bijection

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 29 / 40

B5. Functions Properties of Functions

Bijective Functions — Examples

Which of these functions are bijective?
» f:Z — Ny with f(x) = |x]|
> g:Ng — Np with g(x) = x?
x—1 if xis odd

» h: Ny — Ny with h(x) = {x—i—l if x is even

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 30/ 40

B5. Functions Properties of Functions

Inverse Function

Definition
Let f : A — B be a bijection.
The inverse function of f is the function 7! : B — A with

f~Y(y) = x iff f(x) = y.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 31 /40

B5. Functions Properties of Functions

Inverse Function and Composition

Theorem
Let f : A— B be a bijection.

@ For all x € A it holds that f~1(f(x)) = x
@ For all y € B it holds that f(f~(y)) =y.
@ 1 is a bijection from B to A.

Q@ (Fh)yt=rf

Proof sketch.

@ For x € Alety = f(x). Then f~1(f(x)) = f1(y) = x

@ For y € B there is exactly one x with y = f(x). With this x
it holds that f~1(y) = x and overall f(f71(y)) = f(x) = y.

© Surjective: for all x € A, =1 maps f(x) to x (cf. (1)).
Injective: if f=1(y) = f~1(y’) then f(F~1(y)) = F(F1(y")),
so with (2) we have y = y'.

@ Def. of inverse: (f1)7}(x) =y iff F1(y) = xiff f(x) =y.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 32 /40

B5. Functions Properties of Functions

Inverse Function

Theorem
Let f: A— B and g : B — C be bijections.

Then (gof)t=flog L

Proof.

We need to show that for all x € C it holds that

(gof)7Hx) = (Ftog h)(x).

Consider an arbitrary x € C and let y = (g o f)71(x).

By the definition of the inverse (g o f)(y) = g(f(y)) = x.

Let z = f(y).

From x = g(f(y)), we know that x = g(z) and thus g71(x) = z.
From z = f(y)wegetf Y(z)=y.

This gives (f Log) (x) = f1(g7}(x)) = f1(z) =y. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 33 /40

B5. Functions Properties of Functions

Permutations

faeo Low
@leo @0l
ool ol

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 34 / 40

B5. Functions Properties of Functions

Permutation — Definition

Definition (Permutation)
Let S be a set. A bijection 7: S — S is called a permutation of S.
How many permutations are there for a finite set 57

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S. Why?

The inverse of a permutation is again a permutation.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 35 /40

B5. Functions Properties of Functions

Permutations as Functions on Positions

» A permutation can be used to describe the rearrangement of
objects.

» Consider for example sequence 02, 01, 03, 04
P Let's rearrange the objects, e. g. to 03, 01, 04, 0.
» The object at position 1 was moved to position 4,
> the one from position 3 to position 1,
» the one from position 4 to position 3 and
P the one at position 2 stayed where it was.
» This corresponds to the permutation
o:4{1,2,3,4} — {1,2,3,4} with
o(1)=4,02)=2,003)=1,0(4) =3

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 36 / 40

B5. Functions Properties of Functions

Permutation: Example |

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

f°4
)@ ® and 7 permutation of {1,2,3}.

1 -2
Define £ with F(£) = 1, F(@) =2, F(@) =3
to describe the initial configuration.

Then 7 o f describes the resulting configuration.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 37 / 40

B5. Functions Properties of Functions

Permutation: Example |l

Describe what fruit is moved to the place of what fruit,
independent of the positions.

Swap the ‘° and the ‘ with permutation f of {‘n, 6, @} with
f)-@ @-6r0-0

If g maps locations to fruits then f~! o g describes the mapping
from locations to fruits after the swap.

For example g(1) = ‘° g(2) =@ g(3) = @ for ‘Q“.
Then (F o g)(1) = @ (Fog)2) =& (Fog)3) = @

o fe
representing C 3

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 38 / 40

B5. Functions Properties of Functions

Permutation: Example lll

Determine the permutation of locations that leads from one
configuration to the other.

‘q“ :“0-

Define f with f("’) =1,f(@ =2 f(@) =3

to describe the initial configuration and

function g with g(‘,) =2, g(‘) =1 g(@)=3

for the final configuration.

Then g o f~1 describes the permutation of locations.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 39 / 40

B5. Functions Properties of Functions

Summary

P injective function: maps distinct elements of its domain to
distinct elements of its co-domain.

> surjective function: maps at least one element to every
element of its co-domain.

> bijective function: injective and surjective
— one-to-one correspondence

> Bijective functions are invertible. The inverse function of f
maps the image of x under f to x.

» Permutations are bijections from a set to itself. They can be
used to describe rearrangements of objects.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 15/20, 2025 40 / 40

Discrete Mathematics in Computer Science
B6. Sets: Comparing Cardinality and Hilbert's Hotel

Malte Helmert, Gabriele Roger

University of Basel

October 22, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 1/15

Discrete Mathematics in Computer Science
October 22, 2025 — B6. Sets: Comparing Cardinality and Hilbert's Hotel

B6.1 Comparing Cardinality

B6.2 Hilbert's Hotel

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 2 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Comparing Cardinality

B6.1 Comparing Cardinality

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 3 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel

Finite Sets Revisited

Comparing Cardinality

We already know:
» The cardinality |S| measures the size of set S.

> A set is finite if it has a finite number of elements.

» The cardinality of a finite set
is the number of elements it contains.

A set is infinite if it has an infinite number of elements.

Do all infinite sets have the same cardinality?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 4 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Comparing Cardinality

Comparing the Cardinality of Sets

» Consider A = {1,2} and B = {dog, cat, mouse}.
» We can map distinct elements of A to distinct elements of B,
e.g.
1 — dog
2 — cat

» This is an injective function from A to B:

» every element of A is mapped to an element of B;
> different elements of A are mapped to different elements of B.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 5/ 15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Comparing Cardinality

Comparing Cardinality

Definition (cardinality not larger)
Set A has cardinality less than or equal to the cardinality of set B
(|A] < |BY]), if there is an injective function from A to B.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 6 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Comparing Cardinality

Comparing the Cardinality of Sets

» A={1,2,3} and B = {dog, cat, mouse} have cardinality 3.

» We can pair their elements by a bijection from A to B:

1 < dog
2 < cat

3 <> mouse

» This is a bijection from A to B.

> Each element of A is paired with exactly one element of set B.
» Each element of B is paired with exactly one element of A.

> If there is a bijection from A to B there is one from B to A
(the inverse function).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 7 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Comparing Cardinality

Equinumerous Sets

We use the existence of a bijection also as criterion for infinite sets:

Definition (equinumerous sets)

Two sets A and B have the same cardinality (|A| = |B|)
if there exists a bijection from A to B.

Such sets are called equinumerous.

Definition (strictly smaller cardinality)

Set A has cardinality strictly less than the cardinality of set B
(JAl < |BJ), if |A] < |B| and |A] # |B|.

Consider set A and object e ¢ A. Is |A| < |[AU {e}|?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 8/ 15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

B6.2 Hilbert's Hotel

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 9 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

Hilbert's Hotel

Our intuition for finite sets does not always work for infinite sets.

» If in a hotel all rooms are occupied
then it cannot accomodate
additional guests.

» But Hilbert’s Grand Hotel has
infinitely many rooms.

> All these rooms are occupied.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 10 / 15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

One More Guest Arrives

» Every guest moves from her current room n to room n+ 1.
» Room 1 is then free.

> The new guest gets room 1.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 11 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

Four More Guests Arrive

prie

» Every guest moves from her current room n to room n+ 4.

» Rooms 1 to 4 are no longer occupied and
can be used for the new guests.

— Works for any finite number of additional guests.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 12 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

An Infinite Number of Guests Arrives

xﬂﬂﬂm? 011

» Every guest moves from her current room n to room 2n.

» The infinitely many rooms with odd numbers are now
available.

» The new guests fit into these rooms.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 13 /15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Hilbert's Hotel

Can we Go further?

What if ...
> infinitely many coaches, each with an infinite number of guests

» infinitely many ferries, each with an infinite number of
coaches, each with infinitely many guests

>

...arrive?

There are strategies for all these situations
as long as with “infinite” we mean “countably infinite”
and there is a finite number of layers.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 14 / 15

B6. Sets: Comparing Cardinality and Hilbert's Hotel Summary

Summary

» Set A has cardinality less than or equal the cardinality of set
B (|A| < |BJ), if there is an injective function from A to B.

» Sets A and B have the same cardinality (|A| = |B]) if there
exists a bijection from A to B.

» Our intuition for finite sets does not always work
for infinite sets.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 22, 2025 15 / 15

Discrete Mathematics in Computer Science
B7. Sets: Countability

Malte Helmert, Gabriele Roger

University of Basel

October 27, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 1/17

Discrete Mathematics in Computer Science
October 27, 2025 — B7. Sets: Countability

B7.1 Countable Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 2 /17

B7. Sets: Countability Countable Sets

B7.1 Countable Sets

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 3/17

B7. Sets: Countability Countable Sets

Comparing Cardinality

> Two sets A and B have the same cardinality
if their elements can be paired
(i.e. there is a bijection from A to B).
» Set A has a strictly smaller cardinality than set B if

» we can map distinct elements of A to distinct elements of B
(i.e. there is an injective function from A to B), and
> |Al # |B.

» This clearly makes sense for finite sets.

> What about infinite sets?
Do they even have different cardinalities?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 4 /17

B7. Sets: Countability

Countable and Countably Infinite Sets

Definition (countably infinite and countable)
A set A is countably infinite if |A| = |Np|.

A set A is countable if |A] < |Np].

A set is countable if it is finite or countably infinite.

» We can count the elements of a countable set one at a time.

» The objects are “discrete” (in contrast to “continuous”).

» Discrete mathematics deals with all kinds of countable sets.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025

5/

Countable Sets

B7. Sets: Countability Countable Sets

Set of Even Numbers

» even={n|neNyand niseven}
» Obviously: even C Ny

P Intuitively, there are twice as many natural numbers
as even numbers — no?

» Is |even| < |Np|?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 6 /17

B7. Sets: Countability Countable Sets

Set of Even Numbers

Theorem (set of even numbers is countably infinite)
The set of all even natural numbers is countably infinite,
i,e. {n| n&Ng and nis even}| = |Np|.

Proof Sketch.
We can pair every even number 2n with natural number n. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 7/17

B7. Sets: Countability Countable Sets

Set of Perfect Squares

Theorem (set of perfect squares is countably infinite)

The set of all perfect squares is countably infinite,
i.e. |{n?®| n € No}| = |No|.

Proof Sketch.
We can pair every square number n? with natural number n. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 8 /17

B7. Sets: Countability Countable Sets

Subsets of Countable Sets are Countable

In general:
Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with B C A is countable.

Proof.
Since A is countable there is an injective function f from A to Np.
The restriction of f to B is an injective function from B to Ng. [

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025

9/

B7. Sets: Countability Countable Sets

Set of the Positive Rationals

Theorem (set of positive rationals is countably infinite)

Set Qr ={n|neQandn>0}={p/q|p, qgecN;}
is countably infinite.

Proof idea.

1 1 1 1

10721 3@ 736G _5@0) 7
v v

2 2 2 2 2

i@ 2() 30 _3() 5

i v a

3 3 3 3 3

16 2@ _3() & 5
v

4 4 4 4 4

i 2() 3 2 5

i

5 5 5 5 5

10 2 3 2 5

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 10 / 17

B7. Sets: Countability Countable Sets

Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable)
Let A and B be countable sets. Then AU B is countable.

Proof sketch.
As A and B are countable there is an injective function fa from A
to Np, analogously fg from B to Np.

We define function fa g from AU B to Ny as

2fa(e) ifecA
2fg(e) +1 otherwise

faus(e) = {

O

This fayp is an injective function from AU B to Np.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 11 /17

B7. Sets: Countability Countable Sets

Integers and Rationals

Theorem (sets of integers and rationals are countably infinite)
The sets Z, and Q are countably infinite.

Without proof (~~ exercises)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 12 /17

B7. Sets: Countability Countable Sets

Union of More than Two Sets

Definition (arbitrary unions)
Let M be a set of sets. The union (Js.,, S is the set with

x € U S iff exists S € M with x € S.
SeM

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 13 /17

B7. Sets: Countability

Countable Union of Countable Sets

Theorem

Let M be a countable set of countable sets.

Then | Jscp, S is countable.

Proof sketch.

With M = {51,52,53,..

Si = {xi1, xi2, - - -
as for the countability of Q4 (skipping duplicates):

S
Sy
S3:
Sy
Ss

X11 =7 X12 X13 =7 X14

2 4

X21 X2 X23 X2

N 4

X31 X32 X33 X34
/

X41 X42 X43 X44

s

X51 X52 X53 X54

.} (possibly finite) and each
} (possibly finite), we can use an analogous idea

X15 —

X25"'

X35 * "

Xa5 * ¢

Xg5 * - *

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

Countable Sets

October 27, 2025 14 /17

B7. Sets: Countability Countable Sets

Set of all Binary Trees is Countable

Theorem (set of all binary trees is countable)
The set B = {b | b is a binary tree} is countable.

Proof.
For n € Ny the set B, of all binary trees with n leaves is finite.

With M = {B; | i € Ny} the set of all binary trees is
B == UB/GM B/.

Since M is a countable set of countable sets, B is countable. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 15 /17

B7. Sets: Countability Countable Sets

And Now?

We have seen several countably infinite sets.

What about our original questions?
» Do all infinite sets have the same cardinality?

» Are they all countably infinite?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 16 / 17

B7. Sets: Countability Summary

Summary

> A set is countable if it has at most cardinality |Np|.

> If a set is countable and infinite, it is countably infinite.
» Sets Z and Q are countably infinite.

> Every subset of a countable set is countable.

>

Every countable union of countable sets is countable, in
particular, the union of two countable sets is countable.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 27, 2025 17 /17

Discrete Mathematics in Computer Science
B8. Cantor's Theorem

Malte Helmert, Gabriele Roger

University of Basel

October 29, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 1/22

Discrete Mathematics in Computer Science
October 29, 2025 — B8. Cantor's Theorem

B8.1 Cantor’'s Theorem
B8.2 Consequences of Cantor's Theorem
B8.3 Sets: Summary

B8.4 Outlook: Finite Sets and Computer Science

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 2/22

Reminder: Cardinality of the Power Set

Theorem
Let S be a finite set. Then |P(S)| = 2/°!.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 3/22

B8. Cantor's Theorem Cantor’s Theorem

B8.1 Cantor's Theorem

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 4 /22

B8. Cantor’'s Theorem

Countable Sets

Cantor’'s Theorem

We already know:

» Sets with the same cardinality as Ny are called countably
infinite.

> A countable set is finite or countably infinite.
> Every subset of a countable set is countable.

» The union of countably many countable sets is countable.

Open questions (to be resolved today):
» Do all infinite sets have the same cardinality?

» Does the power set of an infinite set S
have the same cardinality as S7

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 5 /22

B8. Cantor’'s Theorem Cantor’'s Theorem

Georg Cantor

» German mathematician (1845-1918)

» Proved that the rational numbers are
countable.

» Proved that the real numbers are not
countable.

» Cantor's Theorem: For every set S
it holds that |S| < |P(S)].

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 6 /22

B8. Cantor’'s Theorem Cantor’'s Theorem

Our Plan

» Understand Cantor's theorem

» Understand an important theoretical implication
for computer science

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 7 /22

B8. Cantor’'s Theorem Cantor’'s Theorem

Cantor's Diagonal Argument lllustrated on a Finite Set

S={a,b,c}.

Consider an arbitrary function from S to P(S).
For example:

a b ¢
a 1 0 1 a mapped to {a, c}
b 1 1 0 b mapped to {a, b}
c 01 0 ¢ mapped to {b}
0 0 1 nothing was mapped to {c}.

We can identify an “unused” element of P(S).
Complement the entries on the main diagonal.

Works with every function from S to P(S).
— there cannot be a surjective function from S to P(S).
— there cannot be a bijection from S to P(S).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 8 /22

B8. Cantor’'s Theorem Cantor’'s Theorem

Cantor's Diagonal Argument on a Countably Infinite Set

S =Np.

Consider an arbitrary function from Ny to P(Np).
For example:

0 1 2 3 4
01 01 01
111 0 1 0
2 01 0 1 0
31 1.0 00
4 1 1 0 1 1

0 01 10
Complementing the entries on the main diagonal

again results in an “unused” element of P(Np).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 9 /22

B8. Cantor’'s Theorem Cantor’'s Theorem

Cantor’'s Theorem

Theorem (Cantor’s Theorem)
For every set S it holds that |S| < |P(S)].

Proof.
Consider an arbitrary set S. We need to show that

@ There is an injective function from S to P(S).
@ There is no bijection from S to P(S).

For 1, consider function f : S — P(S) with f(x) = {x}.
It maps distinct elements of S to distinct elements of P(S).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 10 / 22

B8. Cantor’'s Theorem Cantor’'s Theorem

Cantor’'s Theorem

Proof (continued).
We show 2 by contradiction.
Assume there is a bijection f from S to P(S).

Consider M = {x | x € §,x ¢ f(x)} and note that M € P(S).
Since f is bijective, it is surjective and there is an y € S with

f(y) = M. Consider this y in a case distinction:

If y € M then y ¢ f(y) by the definition of M. Since f(y) = M
this implies y ¢ M. ~~ contradiction

If y ¢ M, we conclude from f(y) = M that y ¢ f(y). Using the
definition of M we get that y € M. ~~ contradiction

Since all cases lead to a contradiction, there is no such y and thus
f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no
bijection from S to P(S). O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 11 /22

B8. Cantor's Theorem Consequences of Cantor’s Theorem

B8.2 Consequences of Cantor's
Theorem

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 12 /22

B8. Cantor’'s Theorem Consequences of Cantor’'s Theorem

Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:
[No| < [P(No))| < [P(P(No)))| < ...

INo| =Ro = o

[P(No)| = Ju(= |R])

[P(P(No))| = 32

v

vvyyypwy

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025

13 /22

B8. Cantor’'s Theorem Consequences of Cantor’'s Theorem

Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 14 / 22

B8. Cantor’'s Theorem

Decision Problems

“Intuitive Definition:" Decision Problem
A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

>
>

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 15 /

“Does the given binary tree have more than three leaves?”
“Is the given integer odd?”

“Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”

Input can be encoded as some finite string.

Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes".

A computer program solves a decision problem if it terminates
on every input and returns the correct answer.

Consequences of Cantor’'s Theorem

22

B8. Cantor’'s Theorem Consequences of Cantor’'s Theorem

More Problems than Programs |

> A computer program is given by a finite string.

» A decision problem corresponds to a set of strings.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 16 / 22

B8. Cantor’'s Theorem Consequences of Cantor’'s Theorem

More Problems than Programs |l

» Consider an arbitrary finite set of symbols (an alphabet) X.

» You can think of ¥ = {0,1}
as internally computers operate on binary representation.

> Let S be the set of all finite strings made from symbols in .

» There are at most |S| computer programs with this alphabet.

» There are at least |P(S)| problems with this alphabet.
> every subset of S corresponds to a separate decision problem

» By Cantor's theorem |S| < |P(S)],
so there are more problems than programs.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025

17 /

B8. Cantor's Theorem Sets: Summary

B8.3 Sets: Summary

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 18 / 22

B8. Cantor's Theorem Sets: Summary

Summary

» Cantor’s theorem: For all sets S it holds that |S| < |P(S)].

» There are problems that cannot be solved by a computer
program.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 19 / 22

B8. Cantor's Theorem Outlook: Finite Sets and Computer Science

B8.4 Outlook: Finite Sets and
Computer Science

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 20 / 22

B8. Cantor’'s Theorem Outlook: Finite Sets and Computer Science

Enumerating all Subsets

Determine a one-to-one mapping between numbers 0, ..., 2151 —1
and all subsets of finite set S:

S={a,b,c}
> i i . .
Consider th.e binary decimal binary set
representation of numbers Abe

0,...,2151 —1.

» Associate every bit with a (1) ? {{{
different element of S.) 0 {Z}

» Every number is mapped to 3 11 (b c}
the set that contains exactly 4 100 ,{a}
the elements associated with 5 101 (a,c}
the 1-bits. 6 110 {a,b}

7 111 {a,b,c}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 21 /22

B8. Cantor’'s Theorem Outlook: Finite Sets and Computer Science

Computer Representation as Bit String

Same representation as in enumeration of all subsets:
» Required: Fixed universe U of possible elements
> Represent sets as bitstrings of length |U]|
> Associate every bit with one object from the universe

» Each bit is 1 iff the corresponding object is in the set

Example:
> U:{Oo,...,OQ}
» Associate the i-th bit (O-indexed, from left to right) with o;

» {0p,04, 05,00} is represented as:
0010110001

How can the set operations be implemented?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science October 29, 2025 22 /22

Discrete Mathematics in Computer Science
B9. Divisibility & Modular Arithmetic

Malte Helmert, Gabriele Roger

University of Basel

November 3, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 1/20

Discrete Mathematics in Computer Science
November 3, 2025 — B9. Divisibility & Modular Arithmetic

B9.1 Divisibility

B9.2 Modular Arithmetic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 2/20

B9. Divisibility & Modular Arithmetic Divisibility

B9.1 Divisibility

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 3/20

B9. Divisibility & Modular Arithmetic Divisibility

Divisibility

> Can we equally share n muffins among m persons
without cutting a muffin?

» If yes then n is a multiple of m and m divides n.
» We consider a generalization of this concept to the integers.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 4 /20

B9. Divisibility & Modular Arithmetic Divisibility
Divisibility

Definition (divisor, multiple)

Let m,n € Z. If there exists a k € 7Z such that mk = n,

we say that m divides n, m is a divisor of n or nis a multiple of m
and write this as m | n.

Which of the following are true?
> 2|4

> 2|4

> 2|4

> 42

> 3|4

> Every integer divides 0.

German: teilt, Teiler, Vielfaches

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 5 /20

B9. Divisibility & Modular Arithmetic Divisibility

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a,b and d be integers. If d | a and d | b then
for all integers x and y it holds that d | xa + yb.

Proof.

If d | aand d | b then there are k, k' € Z

such that kd = a and k'd = b.

It holds for all x,y € Z that xa+ yb = xkd + yk'd = (xk + yk')d.
As x,y, k, k" are integers, xk + yk' is integer, thus d | xa+ yb. [

Some consequences:
» d|a—biffd|b—a
» Ifd|aand d|bthend|a+band d|a—b.
» If d | athen d | —8a.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 6 /20

B9. Divisibility & Modular Arithmetic

Divisibility

Multiplication and Exponentiation

Theorem

Let a,b,c € Z and n € Nj.

If a| b then ac | bc and a" | b".

Proof.

If a| b there is a k € Z such that ak = b.

Multiplying both sides with ¢, we get cak = cb and thus ca | cb.

From ak = b, we also get b” = (ak)" = a"k", so a" | b". O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 7 /20

B9. Divisibility & Modular Arithmetic

Partial Order

If we consider only the natural numbers,
divisibility is a partial order:

Theorem
Divisibility | over Ny is a partial order.

Proof.

P reflexivity: For all m € Ny it holds that m-1=m, so m | m.

» transitivity: If m| nand n| o there are k, k' € Z
such that mk = n and nk’ = o.

It holds that o = nk/ = mkk’ and kk' is an integer,

so we conclude m | o.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

November 3, 2025

Divisibility

8 /20

B9. Divisibility & Modular Arithmetic Divisibility

Partial Order

Proof (continued).
» antisymmetry: We show that if m | n and n | m then m = n.
If m= n =0, there is nothing to show.
Otherwise, at least one of m and n is positive.
Let this w.l.o.g. (without loss of generality) be m.
If m| nand n| m then there are k, k' € Z
such that mk = n and nk’ = m.
Combining these, we get m = nk’ = mkk’, which implies
(with m # 0) that kk’ = 1.
Since k and k' are integers, this implies k = k = 1 or
k = k' = —1. As mk = n, m is positive and n is non-negative,
we can conclude that k =1 and m = n.
[]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025

9

B9. Divisibility & Modular Arithmetic Modular Arithmetic

B9.2 Modular Arithmetic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 10 / 20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Halloween

» You have m sweets.

> There are k kids showing up for
trick-or-treating.

> To keep everything fair, every kid
gets the same amount of treats.

» You may enjoy the rest. :-)

» How much does every kid get,
how much do you get?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 11 /20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Euclid’s Division Lemma

Theorem (Euclid’s division lemma)

For all integers a and b with b # 0

there are unique integers q and r

with a=gb+r and 0 < r < |b|.

Number a is called the dividend, b the divisor, q is the quotient
and r the remainder.

Without proof.

Examples:
> a=18,b=5
> a=5b=18
> a=-18,b=5
> a=18,b=-5

German: Division mit Rest, Dividend, Divisor, Ganzzahlquotient, Rest

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 12 / 20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Modulo Operation

> With a mod b we refer to the remainder of Euclidean division.

> Most programming languages have a built-in operator
to compute a mod b (for positive integers):

int mod = 34 % 7;
// result 6 because 4 * 7 + 6 = 3/

» Common application: Determine whether
a natural number n is even.

n%2==

> Languages behave differently with negative operands!

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 13 /20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Halloween

def share_sweets(no_kids, no_sweets):
print("Each kid gets",
no_sweets // no_kids,
"of the sweets.")
print ("You may keep",
no_sweets 7 no_kids,
"of the sweets.")

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 14 / 20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Congruence Modulo n

> We now are no longer interested in the value of the remainder
but will consider numbers a and &’ as equivalent
if the remainder with division by a given number b is equal.
> Consider the clock:
> It's now 3 o'clock
In 12 hours its 3 o'clock
Same in 24, 36, 48, ... hours.
15:00 and 3:00 are shown the same.
In the following, we will express this as 3 = 15 (mod 12)

vvyyvyy

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 15 /20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Congruence Modulo n — Definition

Definition (Congruence modulo n)
For integer n > 1, two integers a and b
are called congruent modulo nif n|a— b.

We write this as a = b (mod n).

Which of the following statements are true?
» 0=5 (mod 5)
» 1=6 (mod 5)
> 4 =14 (mod 5)
» —8=7 (mod 5)
» 2= -3 (mod5)

Why is this the same concept as described in the clock example?!?

German: kongruent modulo n

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 16 / 20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Congruence Corresponds to Equal Remainders

Theorem
For integers a and b and integer n > 1 it holds that
a= b (mod n) iff there are q,q',r € Z with

a=qgn-+r
b=gq¢gn+r.

Proof sketch.
“=": If n| a— b then there is a k € Z with kn=a — b.

As n # 0, by Euclid’s lemma there are g, q’, r,r' € Z with
a=qgn+rand b=g'n+r', where 0 <r<|n and 0 <r <|n|.

Together, we get that kn = gn+ r — (¢'n+ r’), which is the case
iff kn+r" = (g — q')n+ r. By Euclid's lemma, quotients and
remainders are unique, so in particular r' = r.

‘=" If we subtract the equations, we get a— b = (q — q')n,
son|a—band a=b (mod n).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 17 / 20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Congruence Modulo n is an Equivalence Relation

Theorem
Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: a = a (mod n) because every integer divides 0.
Symmetric: a=b (mod n) iffn|a—biffn|b—a

iff b= a (mod n).

Transitive: If a= b (mod n) and b= c (mod n) thenn|a—b
and n | b — c. Together, these imply that n|a— b+ b — c.
From n | a— c we get a= ¢ (mod n).

For modulus n, the equivalence class of a is
a,={...,a—2n,a—n,a,a+na+2n,...}.

Set a, is called the congruence class or residue of a modulo n.
German: Restklasse

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 18 /20

B9. Divisibility & Modular Arithmetic Modular Arithmetic

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
ifa=b (mod n) and & = b’ (mod n) then

» a+a =b+ b (mod n),

a—a =b—b (mod n),

aa’ = bb’ (mod n),

a+k=b+ k (mod n) for all k € Z,
ak = bk (mod n) for all k € Z, and
ak = bk (mod n) for all k € Ny.

vVvYyyVvyy

Congruence modulo n is a so-called congruence relation
(= equivalence relation compatible with operations).

German: kompatibel mit Addition Subtraktion, Multiplikation,

. Translation, Skalierun E)onentlatlon Kongurenzrela‘uon)
M. Helmert, G. Roger (University of Base\ Discrete MatRématics in Computer Science November 3, 2025 19 / 20

B9. Divisibility & Modular Arithmetic Summary

Summary

» m divides n (written m | n) if nis a multiple of m,
i.e. there is an integer k with n = mk.

» Divisibility is compatible with multiplication and
exponentiation.

» Divisibility over the natural numbers is a partial order.

» The modulo operation a mod b corresponds to the remainder
of Euclidean division.

» Congruence modulo n considers integers equivalent if they
have with divisor n the same remainder.

» Congurence modulo n is an equivalence relation that is
compatible with the arithmetic operations.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 3, 2025 20

Discrete Mathematics in Computer Science
C1. Introduction to Graphs

Malte Helmert, Gabriele Roger

University of Basel

November 5, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 1/20

Discrete Mathematics in Computer Science
November 5, 2025 — C1. Introduction to Graphs

C1.1 Graphs and Directed Graphs

C1.2 Induced Graphs and Degree Lemma

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 2/20

C1. Introduction to Graphs Graphs and Directed Graphs

C1.1 Graphs and Directed Graphs

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 3/20

C1. Introduction to Graphs Graphs and Directed Graphs

Graphs

Graphs (of various kinds) are ubiquitous in Computer Science
and its applications.
Some examples:
» Boolean circuits in hardware design
control flow graphs in compilers
pathfinding in video games
computer networks

neural networks

vVvyYyyvy

social networks

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 4 /20

C1. Introduction to Graphs

Graph Theory

» Graph theory was founded in 1736 by Leonhard Euler's study
of the Seven Bridges of Konigsberg problem.

» It remains one of the main areas of discrete mathematics
to this day.

More on Euler and the Seven Bridges of Konigsberg:

The Seven Bridges of Kénigsberg - Numberphile

SOLVTIO PROBLEMATIS

GEOMETRIAM SITVS

» The Seven Bridges of Konigsberg — Numberphile.
https://youtu.be/W18FDEA1jRQ

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025

Graphs and Directed Graphs

5 /20

https://youtu.be/W18FDEA1jRQ

C1. Introduction to Graphs

Graphs and Directed Graphs — Definitions

Graphs and Directed Graphs

Definition (Graph)
A graph (also: undirected graph) is a pair G = (V, E), where
> V is a finite set called the set of vertices, and

» EC{{u,v} C V| u+# v} is called the set of edges.
German: Graph, ungerichteter Graph, Knoten, Kanten

Definition (Directed Graph)

A directed graph (also: digraph) is a pair G = (N, A), where
» N is a finite set called the set of nodes, and
» AC N x N is called the set of arcs.

German: gerichteter Graph, Digraph, Knoten, Kanten/Pfeile

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 6 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Graphs and Directed Graphs — Pictorially

often described pictorially:

(A —(®) OEre
©

G e"a
© ©® &)
graph (V,E) directed graph (N, A)

» V={AB,CD,EF,G} > N=1{1,23,4,5)
» E={{A,B},{A,C},{B,C}, » A=1{(1,2),(1,3),(2,1),(3,5),
{C,E},{D,F}} (4,3),(4,4),(5.3).(5,4)}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 7 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Relationship to Relations

graphs vs. directed graphs:
> edges are sets of two elements, arcs are pairs

> arcs can be self-loops (v, v); edges cannot (why not?)

(di-)graphs vs. relations:

> A directed graph (N, A) is essentially identical to
(= contains the same information as)
an arbitrary relation Rp over the finite set N:
uRaviff (u,v) € A
» A graph (V, E) is essentially identical to
an irreflexive symmetric relation Rg over the finite set V:
uReviff {u,v}eE

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 8 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Other Kinds of Graphs

many variations exist, for example:
> self-loops may be allowed in edges (“non-simple” graphs)

> labeled graphs: additional information associated with
vertices and/or edges

weighted graphs: numbers associated with edges
multigraphs: multiple edges between same vertices allowed
mixed graphs: both edges and arcs allowed

hypergraphs: edges can involve more than 2 vertices

vvyyVyyvy

infinite graphs: may have infinitely many vertices/edges

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 9 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Graph Terminology

Definition (Graph Terminology)
Let (V, E) be a graph.
» u and v are the endpoints of the edge {u,v} € E
» u and v are incident to the edge {u,v} € E
» wuand v are adjacent if {u,v} € E
>

the vertices adjacent with v € V are its neighbours neigh(v):

neigh(v) ={w e V| {v,w} € E}
» the number of neighbours of v € V is its degree deg(v):
deg(v) = Ineigh(v)

German: Endknoten, inzident, adjazent/benachbart, Nachbarn,
Grad

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025

10 / 20

C1. Introduction to Graphs Graphs and Directed Graphs

Graph Terminology — Examples

(A —()
© e
()

© ©®

endpoints, incident, adjacent, neighbours, degree

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 11 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Directed Graph Terminology

Definition (Directed Graph Terminology)
Let (N, A) be a directed graph.
» u is the tail and v is the head of the arc (u, v) € A;
we say (u, v) is an arc from u to v
» u and v are incident to the arc (u,v) € A
» uis a predecessor of v and v is a successor of u if (u,v) € A

> the predecessors and successor of v are written as
pred(v) ={ue N | (u,v) € A} and
succ(v) ={w e N|(v,w) € A}

» the number of predecessors/successors of v € N is its
indegree /outdegree: indeg(v) = |pred(v),
outdeg(v) = |succ(v)|

German: Fuss, Kopf, inzident, Vorganger, Nachfolger,
Eingangs-/Ausgangsgrad

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 12 /20

C1. Introduction to Graphs Graphs and Directed Graphs

Directed Graph Terminology — Examples

head, tail, predecessors, successors, indegree, outdegree

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 13 /20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

C1.2 Induced Graphs and Degree
Lemma

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 14 / 20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Induced Graph of a Directed Graph

Definition (undirected graph induced by a directed graph)

Let G = (N, A) be a directed graph.

The (undirected) graph induced by G is the graph (N, E) with
E={{u,v}|(u,v)eAu#v}

German: induziert

Questions:
> Why require u # v?
» If [N| = n and |A] = m, how many vertices and edges
does the induced graph have?

» How does the answer change if G has no self-loops?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 15 /20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Induced Graph of a Directed Graph — Example

& e
(5 (5)
> N=1{1,2,3,4,5} > V =1{1,2,3,4,5}

> A:{(l 2) () ())’() > E:{{172}’{173}7{3’4}7
(4,3),(4,4),(5,3),(5,4)} {3,5},{4,5}}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 16 / 20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Degree Lemma

Lemma (degree lemma for directed graphs)
Let (N, A) be a directed graph.
Then), yindeg(v) = . outdeg(v) = |A].

Intuitively: every arc contributes 1 to the indegree of one node
and 1 to the outdegree of one node.

Lemma (degree lemma for undirected graphs)
Let (V,E) be a graph.
Then), .\ deg(v) = 2|E|.

Intuitively: every edge contributes 1 to the degree of two vertices.

Corollary
Every graph has an even number of vertices with odd degree.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 17 / 20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Degree Lemma — Example

(A —(8)
©
G

© ©®

3" deg()

= deg(A) + deg(B) + deg(C) + deg(D) + deg(E) + deg(F) + deg(G)
=24+2+3+1+1+1+40
=10=2-5=2|E|

4 vertices with odd degree

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 18 /20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Degree Lemma — Proof (1)

Proof of degree lemma for directed graphs.

Z indeg(v) = Z |pred(v)|

veN veN

= > Hulue N, (uv)e A}
velN

= > H(u,v) [ue N, (uv) e A}
velN

= U{(u,v) |ue N,(u,v)e A}
veN

= H{(u,v) [ue N,veN,(uv) e A}

= A

> _venoutdeg(v) = |A| is analogous. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 19 /20

C1. Introduction to Graphs Induced Graphs and Degree Lemma

Degree Lemma — Proof (2)

We omit the proof for undirected graphs,
which can be conducted similarly.

One possible proof strategy that reuses the result we proved:
» Define directed graph (V, A) from the graph (V, E)
by orienting each edge into an arc arbitrarily.

» Observe deg(v) = indeg(v) + outdeg(v), where deg refers to
the graph and indeg/outdeg to the directed graph.

» Use the degree lemma for directed graphs:

> vevdeg(v) = >y (indeg(v) + outdeg(v)) =
> veyindeg(v) + 3> .y outdeg(v) = |A| + |A| = 2|A| = 2|E]|

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 5, 2025 20 / 20

Discrete Mathematics in Computer Science
C2. Paths and Connectivity

Malte Helmert, Gabriele Roger

University of Basel

November 10, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 1/24

Discrete Mathematics in Computer Science
November 10, 2025 — C2. Paths and Connectivity

C2.1 Walks, Paths, Tours and Cycles

C2.2 Reachability

C2.3 Connected Components

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 2 /24

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

C2.1 Walks, Paths, Tours and Cycles

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 3 /24

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

Traversing Graphs

» When dealing with graphs, we are often not just interested
in the neighbours, but also in the neighbours of neighbours,
the neighbours of neighbours of neighbours, etc.

» Similarly, for digraphs we often want to follow longer chains
of successors (or chains of predecessors).

Examples:

> circuits: follow predecessors of signals to identify
possible causes of faulty signals

» pathfinding: follow edges/arcs to find paths

v

control flow graphs: follow arcs to identify dead code

» computer networks: determine if part of the network
is unreachable

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 4 /24

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

Walks

Definition (Walk)
A walk of length nin a graph (V, E) is a tuple
(Vo, Vi, ..., vp) € VT st {vi v} € Eforall 0<i < n.

A walk of length n in a digraph (N, A) is a tuple
(Vo, Vi, ..., vp) € Nl st (vi,viy1) € Aforall 0 <i < n.
German: Wanderung

Notes:
» The length of the walk does not equal the length of the tuple!
» The case n =0 is allowed.

> Vertices may repeat along a walk.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025

5

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

Walks — Example
(A —(®)
2 ¢ AV
Yo ® &

examples of walks: examples of walks:
> (B,C,A) > (4,4,4.4)
» (B,C,A,B) > (3,5,3,5)
» (D,F,D) > (2,1,3)
» (B,A,B,C,E) > (4)
> (B) > (4.4)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025

6 /24

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

Walks — Terminology

Definition
Let 7 = (vp, ..., Vv,) be a walk in a graph or digraph G.
> We say 7 is a walk from vy to v,.
» A walk with v; # v; for all 0 <7 < j < nis called a path.
» A walk of length 0 is called an empty walk/path.
> A walk with vy = v, is called a tour.
» A tour with n > 1 (digraphs) or n > 3 (graphs)
and v; # v; forall 1 <7< j < niscalled a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus

Note: Terminology is not very consistent in the literature.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 7 /24

C2. Paths and Connectivity Walks, Paths, Tours and Cycles

Walks, Paths, Tours, Cycles — Example

0‘9 O

OO
()
° o

Which walks are paths, tours, cycles?

> (B,C,A) > (4,4,4,4)
> (B,C,A,B) > (3,5,3,5)
» (D,F,D) > (2,1,3)
» (B,A,B,C,E) > (4)

> (B) > (4.4)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 8 /24

C2. Paths and Connectivity Reachability

C2.2 Reachability

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 9 /24

C2. Paths and Connectivity

Reachability

Definition (successor and reachability)

Let G be a graph (digraph).

The successor relation S¢ and reachability relation R¢g

are relations over the vertices/nodes of G defined as follows:

» (u,v) € Sq iff {u, v} is an edge ((u, v) is an arc) of G
» (u,v) € Rg iff there exists a walk from v to v
If (u,v) € Rg, we say that v is reachable from w.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025

Reachability

10 / 24

C2. Paths and Connectivity Reachability

Reachability as Closure

Recall the n-fold composition R, of a relation R over set S
(Chapter B4):

» Ry ={(x,x)| x €S}
» R,=RoR,_1forn>1

Theorem
Let G be a graph or digraph. Then:
(u,v) € (Sg)n iff there exists a walk of length n from u to v.

Corollary
Let G be a graph or digraph. Then Rg = J;2(S¢)n-

In other words, the reachability relation is the reflexive transitive
closure of the successor relation.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 11 /24

C2. Paths and Connectivity Reachability

Reachability as Closure — Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph.
Graphs are analogous.

Proof by induction over n.

induction base (n = 0):

By definition of the 0-fold composition, we have (u, v) € (Sg)o iff
u = v, and a walk of length 0 from u to v exists iff u = v.

Hence, the two conditions are equivalent.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 12 / 24

C2. Paths and Connectivity Reachability

Reachability as Closure — Proof (2)

Proof (continued).

induction step (n — n+ 1):

(=) : Let (u,v) € (Sg)nt1.

By definition of S,1, we get (u,v) € Sg o (Sg)n-

By definition of o there exists w with (u, w) € (S¢g)n and

(w,v) € Sg.

From the induction hypothesis, there exists a length-n walk
X0y -+ ,Xn) With xo = v and x, = w.

Then (xo, ..., Xn, V) is a length-(n + 1) walk from u to v.
(<) : Let (x0,...,Xnt1) be a length-(n+ 1) walk from v to v
(x0 = u, Xp1 = Vv). Then (X, Xp41) = (xn, v) € A.

Also, (xo,...,xn) is a length-n walk from xg to x.

From the IH we get (u, x,) = (x0,%n) € (S5¢)n-
Together with (xp, v) € S¢ this shows
(u, V) €S¢go (SG),, = (SG),,+1. L]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 13 /24

C2. Paths and Connectivity Connected Components

C2.3 Connected Components

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 14 / 24

C2. Paths and Connectivity Connected Components

Overview

» In this section, we study reachability of graphs in more depth.

> We show that it makes no difference whether we define
reachability in terms of walks or paths, and that reachability
in graphs is an equivalence relation.

» This leads to the connected components of a graph.

v

In digraphs, reachability is not always an equivalence relation.

» However, we can define two variants of reachability that
give rise to weakly or strongly connected components.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 15 / 24

C2. Paths and Connectivity Connected Components

Walks vs. Paths

Theorem
Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from wu.

Proof.
(=): obvious because paths are special cases of walks

(<=): Proof by contradiction. Assume there exist u, v such that
there exists a walk from u to v, but no path. Let 7 = (wp, ..., wp,)
be such a counterexample walk of minimal length.

Because 7 is not a path, some vertex/node must repeat.

Select 7 and j with i < j and w; = w;.

Then 7’ = (wo, ..., Wi, W41, ..., W,) also is a walk from u to v.

If 7’ is a path, we have a contradiction.

If not, it is a shorter counterexample: also a contradiction. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 16 / 24

C2. Paths and Connectivity Connected Components

Reachability in Graphs is an Equivalence Relation

Theorem
For every graph G, the reachability relation Rg
is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.
We already know reachability is reflexive and transitive.
To prove symmetry:

(u7 V) €Re¢
= there is a walk (wp, ..., w,) from u to v
= (Wp, ..., wp) is a walk from v to u

= (v,u) € Rg

0J

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 17 / 24

C2. Paths and Connectivity Connected Components

Connected Components

Definition (connected components, connected)
In a graph G, the equivalence classes

of the reachability relation of G

are called the connected components of G.

A graph is called connected if it has at most 1
connected component.

German: Zusammenhangskomponenten, zusammenhangend

Remark: The graph (0, 0) has 0 connected components.
It is the only such graph.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 18 / 24

C2. Paths and Connectivity Connected Components

Weakly Connected Components

Definition (weakly connected components, weakly connected)
In a digraph G, the equivalence classes

of the reachability relation of the induced graph of G

are called the weakly connected components of G.

A digraph is called weakly connected if it has at most 1
weakly connected component.

German: schwache Zshk., schwach zusammenhangend

Remark: The digraph (0, () has 0 weakly connected components.
It is the only such digraph.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 19 / 24

C2. Paths and Connectivity Connected Components

(Weakly) Connected Components — Example

D @
(3)e(4)
Yo @ %

connected components: weakly connected components:
» {A/B,C,E} > {1,2,3,4,5}
» {D,F}
> {G}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025

20 / 24

C2. Paths and Connectivity Connected Components

Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph.

Vertices/nodes u and v in G are called mutually reachable
if v is reachable from u and u is reachable from v.

We write Mg for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, Mg = Rg. (Why?)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025

21/

C2. Paths and Connectivity Connected Components

Mutual Reachability is an Equivalence Relation

Theorem
For every digraph G, the mutual reachability relation Mg
is an equivalence relation.

Proof.
Note that (u,v) € Mg iff (u,v) € Rg and (v,u) € Rg.
» reflexivity: for all v, we have (v, v) € Mg because (v, v) € Rg
» symmetry: Let (u,v) € Mg. Then (v, u) € Mg is obvious.
» transitivity: Let (u,v) € Mg and (v, w) € Mg.
Then: (u,v) € Rg, (v,u) € Rg, (v,w) € Rg, (w,v) € Rg.
Transitivity of R¢ yields (u, w) € Rg and (w, u) € Rg,
and hence (u, w) € Mg.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 22 /24

C2. Paths and Connectivity Connected Components

Strongly Connected Components

Definition (strongly connected components, strongly connected)
In a digraph G, the equivalence classes

of the mutual reachability relation

are called the strongly connected components of G.

A digraph is called strongly connected if it has at most 1
strongly connected component.

German: starke Zshk., stark zusammenhangend

Remark: The digraph (0, () has 0 strongly connected components.
It is the only such digraph.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 23 /24

C2. Paths and Connectivity Connected Components

Strongly Connected Components — Example

strongly connected components:

> {1,2}
> {3,4,5}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10, 2025 24 / 24

Discrete Mathematics in Computer Science
C3. Acyclicity

Malte Helmert, Gabriele Roger

University of Basel

November 10/12, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 1/28

Discrete Mathematics in Computer Science
November 10/12, 2025 — C3. Acyclicity

C3.1 Acyclic (Di-) Graphs
C3.2 Unique Paths in Trees
C3.3 Leaves and Edge Counts in Trees and Forests

C3.4 Characterizations of Trees

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 2 /28

C3. Acyclicity Acyclic (Di-) Graphs

C3.1 Acyclic (Di-) Graphs

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 3 /28

C3. Acyclicity Acyclic (Di-) Graphs

Acyclic

Similarly to connectedness, the presence or absence of cycles
is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)
A graph or digraph G is called acyclic if there exists no cycle in G.

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 4 /28

C3. Acyclicity Acyclic (Di-) Graphs

Acyclic (Di-) Graphs — Example

GO
D@
Yo @ Y

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 5 /28

C3. Acyclicity Acyclic (Di-) Graphs

Trees

Definition (tree)
A connected forest is called a tree.

German: Baum

> Tree is also a word for a recursive data structure,
which consists of either a leaf or a parent node
with one or more children, which are themselves trees.

» This other kind of tree is also called a rooted tree
to distinguish it from a tree as a graph.

» The two meanings of “tree” are distinct but closely related.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

6

C3. Acyclicit: Acyclic (Di-) Graphs
y Y

Tree Graphs vs. Rooted Trees — Example (1)

tree graph rooted tree with root A

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 7 /28

C3. Acyclicit: Acyclic (Di-) Graphs
y Y

Tree Graphs vs. Rooted Trees — Example (2)

©
o) WG e
& ® @ ©

tree graph rooted tree with root C

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 8 /28

C3. Acyclicit: Acyclic (Di-) Graphs
y Y

Tree Graphs vs. Rooted Trees — Example (3)

tree graph rooted tree with root F

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 9 /28

C3. Acyclicity Acyclic (Di-) Graphs

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:
> Select any vertex v. Make v the root of the tree.

> |Initially, v is the only pending vertex,
and there are no processed vertices.
> As long as there are pending vertices:

> Select any pending vertex u.

> Make all neighbours v of u that are not yet processed
children of u and mark them as pending.

» Change v from pending to processed.

We do not prove that this procedure always works. A proof of
correctness can be given based on the results we show next.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

10 /

28

C3. Acyclicity Unique Paths in Trees

C3.2 Unique Paths in Trees

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 11 /28

C3. Acyclicity Unique Paths in Trees

Unique Paths in Trees

Theorem

Let G = (V,E) be a graph.

Then G is a tree iff there exists exactly one path
from any vertex u € V to any vertex v € V.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 12/

C3. Acyclicity

Unique Paths In Trees — Proof (1)

Proof.

(=) Gisatree. Letu,veV.

We must show that there exists exactly one path from v to v.
We know that at least one path exists because G is connected.
It remains to show that there cannot be two paths from u to v.
If u= v, there is only one path (the empty one).

(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from v to v
(u # v) and derive a contradiction.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

13

Unique Paths in Trees

C3. Acyclicity

Unique Paths In Trees — Proof (2)

Proof (continued).

Let 7 = (vo, vi,...,Vn) and " = (v}, vq, ..., v},) be the two paths
(with vo = v§ = v and v, = v}, = v).

Let / be the smallest index with v; # v{, which must exist because
the two paths are different, and neither can be a prefix of the other
(else v would be repeated in the longer path).

We have i > 1 because vy = v{.

Let j > i be the smallest index such that v; = v, for some k > i.
Such an index must exist because v, = v/,..

Then (vi_1,...,Vj—1,V,,...,V/_;) is a cycle,

which contradicts the requirement that G is a tree.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

14

Unique Paths in Trees

C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees — Proof (3)

Proof (continued).
(«): For all u,v € V, there exists exactly one path from u to v.
We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all u to all v, G is connected.

Proof by contradiction: assume that there exists a cycle in G,
m={(u,vi,...,Vp, u) with n > 2.

(Note that all cycles have length at least 3.)

From the definition of cycles, we have v; # v,,.

Then (u,v1) and (u, vy, ..., v1) are two different paths

from u to vy, contradicting that there exists exactly one path
from every vertex to every vertex. Hence G must be acyclic.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 15 / 28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

C3.3 Leaves and Edge Counts in
Trees and Forests

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 16 / 28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Leaves in Trees

Definition
Let G = (V, E) be a tree.
A leaf of G is a vertex v € V with deg(v) < 1.

Note: The case deg(v) = 0 only occurs in single-vertex trees
(|lV] =1). In trees with at least two vertices, vertices with degree
0 cannot exist because this would make the graph unconnected.

Theorem

Let G = (V,E) be a tree with |V| > 2.
Then G has at least two leaves.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

17

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Leaves in Trees — Proof

Proof.
Let 7 = (vp, ..., Vv,) be path in G with maximal length
among all paths in G.
Because |V/| > 2, we have n > 1 (else G would not be connected).
We show that vertex v, has degree 1: v,_1 is a neighbour in G.
Assume that it were not the only neighbour of v, in G,
so u is another neighbour of v,. Then:
» If uis not on the path, then (v,..., vy, u)
is a longer path: contradiction.
» If uis on the path, then u = v; for some i # nand i # n— 1.
Then (v;, ..., vs, Vi) is a cycle: contradiction.

By reversing ™ we can show deg(vp) = 1 in the same way. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 18 / 28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees

Theorem
Let G =(V,E) be a tree with V # ().
Then |E| = |V|—1.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 19 / 28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees — Proof (1)

Proof.
Proof by induction over n = |V/|.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
Weget |[E|=0=1-1=|V|—-1

Induction step (n — n+1):

Let G = (V, E) be a tree with n+ 1 vertices (n > 1).
From the previous result, G has a leaf v.

Let v be the only neighbour of u.

Let e = {u, v} be the connecting edge.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 20 / 28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees — Proof (2)

Proof (continued).
Consider the graph G’ = (V' E')
with V/' =V \ {u} and E' = E \ {e}.
» G’ is acyclic: every cycle in G’ would also be present in G
(contradiction).

» G’ is connected: for all vertices w # u and w' # u,
G has a path 7 from w to w’ because G is connected.
Path 7 cannot include u because u has only one neighbour, so
traversing u requires repeating v. Hence 7 is also a path in G’.
Hence G’ is a tree with n vertices, and we can apply
the induction hypothesis, which gives |E’| = |V'| — 1.
It follows that
|E|=|E'|+1=(V|-1)+1=(V|+1)—-1=|V|-1. O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

21

C3. Acyclicity

Leaves and Edge Counts in Trees and Forests

Edges in Forests

Theorem

Let G = (V,E) be a forest.

Let C be the set of connected components of G.
Then |E| = |V|—|C]|.

This result generalizes the previous one.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 22 /28

C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Forests — Proof

Proof.
Let C = {Cl,...,Ck}.
For 1 < i<k, let G; =(C;, E;) be G restricted to G, i.e.,
the graph whose vertices are C;
and whose edges are the edges e € E with e C G;.
We have |V| = Zf'(:1 |Ci| because the connected components
form a partition of V.
We have |E| = Zf'(:l |Ei| because every edge belongs to exactly
one connected component. (Note that there cannot be edges
between different connected components.)
Every graph G; is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is acyclic. This implies |E;| = |G| — 1.
Putting this together, we get

k k k —
|El =iz Eil = 2 (1G] =1) = iy |Gl =k = [V[=|C]. [T

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025

23

C3. Acyclicity Characterizations of Trees

C3.4 Characterizations of Trees

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 24 /28

C3. Acyclicity Characterizations of Trees

Characterizations of Trees

Theorem
Let G = (V,E) be a graph with V' # ().
The following statements are equivalent:
Q G is a tree.
@ G is acyclic and connected.
@ G is acyclic and |E| = |V| — 1.
Q G is connected and |E| = |V| — 1.
© For all u,v € V there exists exactly one path from u to v.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 25 /28

C3. Acyclicity Characterizations of Trees

Characterizations of Trees — Proof (1)

Reminder:

(1) G is a tree.

(2) G is acyclic and connected.

(3) G is acyclic and |E| =|V|—1.

(4) G is connected and |E| =|V|— 1.
)

(5) For all u,v € V there exists exactly one path from u to v.
Proof.
We know already:
» (1) and (2) are equivalent by definition of trees.
» We have shown that (1) and (5) are equivalent.
» We have shown that (1) implies (3) and (4).
We complete the proof by showing (3) = (2) and (4) = (2).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 26 / 28

C3. Acyclicity Characterizations of Trees

Characterizations of Trees — Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E| = |V|— 1.

Proof (continued).

(3) = (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E| = |V| —|C|,

where C are the connected components of G.
But we also know |E| = |V/| — 1. This implies |C| = 1.
Hence G is connected and therefore a tree.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 27 / 28

C3. Acyclicity Characterizations of Trees

Characterizations of Trees — Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E| = |V]| — 1.

Proof (continued).

(4) = (2):

In graphs that are not acyclic, we can remove an edge without
changing the connected components: if (v, ..., vy, v) (n > 2)
is a cycle, remove the edge {vp, v1} from the graph.

Every walk using this edge can substitute (v, ..., vp, vp)

(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V, E’) is acyclic and connected and therefore a tree.

This implies |E’| = |V| — 1, but we also have |E| = |V]| — 1.

This yields |E| = |E’| and hence E’ = E: the number of edges
removable in this way must be 0. Hence G is already acyclic. [

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 10/12, 2025 28 / 28

Discrete Mathematics in Computer Science
C4. Further Topics in Graph Theory

Malte Helmert, Gabriele Roger

University of Basel

November 17/19, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 1/43

Discrete Mathematics in Computer Science
November 17/19, 2025 — C4. Further Topics in Graph Theory

C4.1 Subgraphs

C4.2 Isomorphism

C4.3 Planarity and Minors

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 2 /43

C4. Further Topics in Graph Theory Subgraphs

C4.1 Subgraphs

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 3 /43

C4. Further Topics in Graph Theory Subgraphs

Overview

» We conclude our discussion of (di-) graphs by giving
a brief tour of some further topics in graph theory
that we do not have time to discuss in depth.

» In the interest of brevity (and hence wider coverage of topics),
we do not give proofs for the results in this chapter.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 4 /43

C4. Further Topics in Graph Theory Subgraphs

Subgraphs

Definition (subgraph)
A subgraph of a graph (V, E) is a graph (V/, E')
with V/ C V and E' C E.

A subgraph of a digraph (N, A) is a digraph (N, A)
with N/ C N and A’ C A.

German: Teilgraph/Untergraph
Question: Can we choose V' and E’ arbitrarily?

The subgraph relationship defines a partial order on graphs
(and on digraphs).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 5 /43

C4. Further Topics in Graph Theory Subgraphs

Subgraphs — Example

(A —(&) (W)
¥ e § ®

Yo © ©

graph (V, E) subgraph (V’, E’)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 6 /43

C4. Further Topics in Graph Theory

Induced Subgraphs (1)

Definition (induced subgraph)

Let G = (V,E) be a graph, and let V' C V.

The subgraph of G induced by V' is the graph (V’, E')

with E' = {{u,v} € E|u,v e V'}.

We say that G’ is an induced subgraph of G = (V,E) if G’ is
the subgraph of G induced by V’ for any set of vertices V/ C V.

German: induzierter Teilgraph (eines Graphen)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025

Subgraphs

7/

C4. Further Topics in Graph Theory Subgraphs

Induced Subgraphs (2)

Definition (induced subgraph)

Let G = (N, A) be a digraph, and let N’ C N.

The subgraph of G induced by N is the digraph (N’, A")

with A" = {(u,v) € A| u,v e N'}.

We say that G’ is an induced subgraph of G = (N, A) if G’ is
the subgraph of G induced by N’ for any set of nodes N/ C N.

German: induzierter Teilgraph (eines gerichteten Graphen)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 8 /43

C4. Further Topics in Graph Theory Subgraphs

Induced Subgraphs — Example

B—® oG
¥ @ g
Yo © ©

graph (V,E) Is this an induced subgraph?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 9 /43

C4. Further Topics in Graph Theory Subgraphs

Induced Subgraphs — Example
RN L
© (© © ©
()
© ©® (©

graph (V,E) This is an induced subgraph.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 10 / 43

C4. Further Topics in Graph Theory Subgraphs

Induced Subgraphs — Discussion

» Induced subgraphs are subgraphs.

» They are the largest (in terms of the set of edges) subgraphs
with any given set of vertices.

P A typical example is a subgraph induced by
one connected component of a graph.

» The subgraphs induced by the connected components
of a forest are trees.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 11

43

C4. Further Topics in Graph Theory Subgraphs

Counting Subgraphs

» How many subgraphs does a graph (V, E) have?
» How many induced subgraph does a graph (V, E) have?

For the second question, the answer is 2/V1.

The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible (5) edges)
has > 7, (2)2(2) subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 12 / 43

C4. Further Topics in Graph Theory Isomorphism

C4.2 Isomorphism

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 13 / 43

C4. Further Topics in Graph Theory Isomorphism

Motivation

29 1

graph (V, E) graph (V' E')

What is the difference between these graphs?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 14 / 43

C4. Further Topics in Graph Theory

Isomorphism

» In many cases, the “names” of the vertices of a graph

do not have any particular semantic meaning.

> Often, we care about the structure of the graph,
i.e., the relationship between the vertices and edges,

but not what we call the different vertices.

» This is captured by the concept of isomorphism.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

November 17/19, 2025

Isomorphism

15 / 43

C4. Further Topics in Graph Theory Isomorphism

Isomorphism — Definition

Definition (Isomorphism)
Let G =(V,E) and G' = (V', E’) be graphs.

An isomorphism from G to G’ is a bijective function
o:V — V' such that for all u,v € V:

{u,v} € E iff {o(u),o0(v)}€E.
If there exists an isomorphism from G to G/,
we say that they are isomorphic, in symbols G = G’.
German: Isomorphismus, isomorph

» derives from Ancient Greek for “equally shaped/formed”

» analogous definition for digraphs omitted

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 16

43

C4. Further Topics in Graph Theory Isomorphism

Isomorphism — Example

DS E

graph (V E) graph (V', E')
» co={A—1,B—2C—3D—4E—5F—6G—T}

» for example: {A,B} € E and {o(A),c(B)} ={1,2} € E/
» for example: {A,D} ¢ E and {c(A),c(D)} = {1,4} ¢ E’

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 17 / 43

C4. Further Topics in Graph Theory Isomorphism

Isomorphism — Discussion

» The identity function is an isomorphism.
» The inverse of an isomorphism is an isomorphism.

» The composition of two isomorphisms is an isomorphism
(when defined over matching sets of vertices)

It follows that being isomorphic is an equivalence relation.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 18 / 43

C4. Further Topics in Graph Theory Isomorphism

Isomorphic or Not? (1)

G x.:»e
O ST

isomorphic
c={A—1B—3,C—5D—2E— 4}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 19 / 43

C4. Further Topics in Graph Theory Isomorphism

Isomorphic or Not? (2)

isomorphic
~ in fact, the same graph!
c={A—-AB~B,C—CD—D}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 20 / 43

C4. Further Topics in Graph Theory Isomorphism

Isomorphic or Not? (3)

not isomorphic
There does not even exist a bijection between the vertices.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 21 /43

C4. Further Topics in Graph Theory Isomorphism

Isomorphic or Not? (4)

isomorphic or not?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 22 /43

C4. Further Topics in Graph Theory Isomorphism

Proving and Disproving Isomorphism

> To prove that two graphs are isomorphic, it suffices to state
an isomorphism and verify that it has the required properties.
» To prove that two graphs are not isomorphic,
we must rule out all possible bijections.
> With n vertices, there are n! bijections.
> example n = 10: 10! = 3628800
> A common disproof idea is to identify a graph invariant,
i.e., a property of a graph that must be the same
in isomorphic graphs, and show that it differs.
P> examples: number of vertices, number of edges,
maximum /minimum degree, sorted sequence of all degrees,
number of connected components

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 23 /43

C4. Further Topics in Graph Theory

Isomorphic or Not? (5)

not isomorphic

Isomorphism

» The left graph has cycles of length 4 (e.g., (A, B, G, F,A)).

» The right graph does not.

» Having a cycle of a given length is an invariant.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

November 17/19, 2025 24 /43

C4. Further Topics in Graph Theory Isomorphism

Scientific Pop Culture

» Determining if two graphs are isomorphic
is an algorithmic problem that has been famously resistant
to studying its complexity.

» For more than 40 years, we have not known if polynomial
algorithms exist, and we also do not know if it belongs to
the famous class of NP-complete problems.

» In 2015, LaszIé Babai announced an algorithm
with quasi-polynomial (worse than polynomial,
better than exponential) runtime.

Further Reading

Martin Grohe, Pascal Schweitzer.

The Graph Isomorphism Problem.

Communications of the ACM 63(11):128-134, November 2020.
https://dl.acm.org/doi/10.1145/3372123

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 25 /43

https://dl.acm.org/doi/10.1145/3372123

C4. Further Topics in Graph Theory

Symmetries, Automorphisms and Group Theory

Isomorphism

» An isomorphism o between a graph G and itself
is called an automorphism or symmetry of G.
» For every graph, its symmetries are permutations of its vertices
that form a mathematical structure called a group:
P the identity function is a symmetry

> the composition of two symmetries is a symmetry
P the inverse of a symmetry is a symmetry

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 26 / 43

C4. Further Topics in Graph Theory Isomorphism

Automorphism Group of a Graph

What are the symmetries?

P one example is the rotation
o1={1—2,2—3,3—4,4—55+— 1}

» another example is the reflection
op={1—52—43—34—25—1}

» There are 10 symmetries in total, and they are all
generated by (= can be composed from) o1 and o».

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 27 / 43

C4. Further Topics in Graph Theory Planarity and Minors

C4.3 Planarity and Minors

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 28 / 43

C4. Further Topics in Graph Theory Planarity and Minors

Planarity

> We often draw graphs as 2-dimensional pictures.

» When we do so, we usually try to draw them
in such a way that different edges do not cross.

» This often makes the picture neater
and the edges easier to visualize.

» A picture of a graph with no edge crossings
is called a planar embedding.

» A graph for which a planar embedding exists is called planar.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 29 / 43

C4. Further Topics in Graph Theory Planarity and Minors

Planar Embeddings — Example

not a planar embedding planar embedding

The complete graph over 4 vertices is planar.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 30 /43

C4. Further Topics in Graph Theory Planarity and Minors

Planar Graphs

Definition (planar)

A graph G = (V, E) is called planar if there exists
a planar embedding of G, i.e., a picture of G
in the Euclidean plane in which no two edges intersect.

German: planar

Notes:

» We do not formally define planar embeddings,
as this is nontrivial and not necessary for our discussion.

» In general, we may draw edges as arbitrary curves.

> However, it is possible to show that a graph
has a planar embedding iff it has a planar embedding
where all edges are straight lines.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 31/ 43

C4. Further Topics in Graph Theory Planarity and Minors

Planar Graphs — Discussion

P Planar graphs arise in many practical applications.
» Many computational problems are easier for planar graphs.

» For example, every planar graph can be coloured with at most
4 colours (i.e., we can assign one of four colours to each vertex
such that two neighbours always have different colours).

> For this reason, planarity is of great practical interest.
> How can we recognize that a graph is planar?

» How can we prove that a graph is not planar?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 32 /43

C4. Further Topics in Graph Theory Planarity and Minors

Planar Graphs — Counterexample (1)

YT
D

—

The complete graph Ks over 5 vertices is not planar.
(We do not prove this result.)

—/

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 33 /43

C4. Further Topics in Graph Theory Planarity and Minors

Planar Graphs — Counterexample (2)

The complete bipartite graph K33 over 3 + 3 vertices is not planar.
(We do not prove this result.)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 34 /43

C4. Further Topics in Graph Theory Planarity and Minors

Non-Planarity in General

» The two non-planar graphs Ks and K33 are special:
they are the smallest non-planar graphs.

» In fact, something much more powerful holds:
a graph is planar iff it does not contain Ks or K3 3.

» The notion of containment we need here is related
to the notion of subgraphs that we introduced,
but a bit more complex. We will discuss it next.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 35 /43

C4. Further Topics in Graph Theory Planarity and Minors

Edge Contraction

We say that G’ = (V/, E’) can be obtained from graph G = (V, E)
by contracting the edge {u,v} € E if
> V' =(V\{u,v})U{uv}, where uv ¢ V is a new vertex
> E'={ecE|en{uv}=0}uU
Huv,w} |we V\{u v} {uw}eEor{v,w}eE}

In words, we combine the vertices v and v
(which must be connected by an edge) into a single vertex uv.

The neighbours of uv are the union of the neighbours of u
and the neighbours of v (excluding u and v themselves).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 36 / 43

C4. Further Topics in Graph Theory Planarity and Minors

Edge Contraction — Example

graph (V. E) after contracting {C,D}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 37/

43

C4. Further Topics in Graph Theory Planarity and Minors

Minor

Definition (minor)

We say that a graph G’ is a minor of a graph G
if it can be obtained from G through a sequence
of transformations of the following kind:

@ remove a vertex (of degree 0) from the graph
@ remove an edge from the graph

© contract an edge in the graph

German: Minor (plural: Minoren)

Notes:

> |If we only allowed the first two transformations,
we would obtain the regular subgraph relationship.

> [t follows that every subgraph is a minor,
but the opposite is not true in general.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 38 /43

C4. Further Topics in Graph Theory Planarity and Minors

Wagner's Theorem

Theorem (Wagner's Theorem)
A graph is planar iff it does not contain Ks or K33 as a minor.

German: Satz von Wagner

Note: There exist linear algorithms for testing planarity.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 39 /43

C4. Further Topics in Graph Theory Planarity and Minors

Minor-Hereditary Properties

» Being planar is what is called a minor-hereditary property:
if G is planar, then all its minors are also planar.

» There exist many other important such properties.
» One example is acyclicity.

How could one prove that a property is minor-hereditary?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 40 / 43

C4. Further Topics in Graph Theory Planarity and Minors

The Graph Minor Theorem

Theorem (Graph minor theorem)
Let T be a minor-hereditary property of graphs.

Then there exists a finite set of forbidden minors F(I)
such that the following result holds:

A graph has property T iff it does not have any graph
from F(I) as a minor.

German: Minorentheorem

Examples:
» the forbidden minors for planarity are K5 and K33

» the (only) forbidden minor for acyclicity is K3,
the complete graph with 3 vertices (a.k.a. the 3-cycle graph)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 41 / 43

C4. Further Topics in Graph Theory

Remarks on the Graph Minor Theorem (1)

Planarity and Minors

» The graph minor theorem is also known as the
Robertson-Seymour theorem.

» |t was proved by Robertson and Seymour in a series
of 20 papers between 1983-2004, totalling 500+ pages.

> |t is one of the most important results in graph theory.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 42 / 43

C4. Further Topics in Graph Theory Planarity and Minors

Remarks on the Graph Minor Theorem (2)

» In principle, for every fixed graph H, we can test if H is
a minor of a graph G in polynomial time in the size of G.
» This implies that every minor-hereditary property
can be tested in polynomial time.
» However, the constant factors involved in the known general

algorithms for testing minors (which depend on |H|) are so
astronomically huge as to make them infeasible in practice.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 17/19, 2025 43 / 43

Discrete Mathematics in Computer Science

D1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Roger

University of Basel

November 19/24, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 1/28

Discrete Mathematics in Computer Science
November 19/24, 2025 — D1. Syntax and Semantics of Propositional Logic

D1.1 Introduction to Formal Logic

D1.2 Syntax of Propositional Logic

D1.3 Semantics of Propositional Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 2 /28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

D1.1 Introduction to Formal Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 3 /28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Why Logic?

» formalizing mathematics

» What is a true statement?

» What is a valid proof?

» What can and cannot be proved?
» basis of many tools in computer science

» design of digital circuits
semantics of databases; query optimization
meaning of programming languages
verification of safety-critical hardware/software
knowledge representation in artificial intelligence
logic-based programming languages (e.g. Prolog)

vVvyvVvyVYyYVYY

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 4 /28

D1. Syntax and Semantics of Propositional Logic

Application: Logic Programming |

Introduction to Formal Logic

Declarative approach: Describe what to accomplish,
not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

DEUTSCHLAND.

anozzEey

This is a hard problem!

ITALIEN

CC BY-SA 3.0 Wikimedia Commons (TUBS)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 5 /28

D1. Syntax and Semantics of Propositional Logic

Application: Logic Programming Il

Prolog program

color(red). color(blue). color(green). color(yellow).

differentColor(ColorA, ColorB) :-
color(ColorA), color(ColorB),
ColorA \= ColorB.

switzerland (AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
Ju, LU, NE, Nw, OW, SG, SH, SO, Sz, TG,

TI, UR, VD, VS, ZG, ZH) :-
differentColor (AG, BE), differentColor(AG, BL),

differentColor(VD, VS), differentColor(ZH, ZG).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025

6/

Introduction to Formal Logic

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

What Logic is About

General Question:
> Given some knowledge about the world (a knowledge base)
» what can we derive from it?
» And on what basis may we argue?

~ logic

Goal: "mechanical” proofs
> formal “game with letters”

> detached from a concrete meaning

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 7/ 28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Running Example

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 8 /28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:
P propositions are statements that can be either true or false
P atomic propositions cannot be split into subpropositions

> logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage,
Junktoren/logische Verkniipfungen

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 9 /28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Examples for Building Blocks

If | don't drink beer to a meal, then |
always eat fish. Whenever | have fish and
beer with the same meal, | abstain from
ice cream. When | eat ice cream or don't
drink beer, then | never touch fish.

> Every sentence is a proposition that consists of
subpropositions (e. g., “eat ice cream or don't drink beer").
> atomic propositions “drink beer”, “eat fish”, “eat ice cream”

> logical connectives “and”, “or”, negation, “if, then"

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 10

/28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Examples for Building Blocks

If | don't drink beer to a meal, then |
always eat fish. \Whenever | have fish and
beer with the same meal, | abstain from
ice cream. \When | eat ice cream or don't
drink beer, then | never touch fish.

> Every sentence is a proposition that consists of
subpropositions (e. g., “eat ice cream or don't drink beer").
> atomic propositions “drink beer”, “eat fish”, “eat ice cream”

P logical connectives “and”, “or”, negation, “if, then”

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 11

/28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Challenges with Natural Language

If | don't drink beer to a meal, then |
always eat fish.

Whenever | have fish and beer with the
same meal, | abstain from ice cream.
When | eat ice cream or don't drink
beer, then | never touch fish.

» ‘“irrelevant” information

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 12 / 28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal

Challenges with Natural Language

If | don't drink beer, then | eat fish.
Whenever | have fish and beer, | abstain
from ice cream.

When | eat ice cream or don't drink
beer, then | never touch fish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025

Logic

13 /28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Challenges with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

> ‘“irrelevant” information
» different formulations for the same connective/proposition

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 14 / 28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

What is Next?

» What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatlceCream not or DrinkBeer and” not meaningful
— syntax
» What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
— semantics
» When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
— logical entailment

German: Syntax, Semantik, logische Folgerung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 15 / 28

D1. Syntax and Semantics of Propositional Logic Syntax of Propositional Logic

D1.2 Syntax of Propositional Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 16 / 28

D1. Syntax and Semantics of Propositional Logic Syntax of Propositional Logic

Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:
> Every atom a € A is a propositional formula over A.
> If ¢ is a propositional formula over A,
then so is its negation —¢.
» If ¢ and 1) are propositional formulas over A,
then so is the conjunction (¢ A).
» If ¢ and 1 are propositional formulas over A,
then so is the disjunction (¢ V).

The implication (¢ — 1) is an abbreviation for (= V 7).

The biconditional (¢ <> 1) is an abbrev. for ((¢ — ¥) A (Y — ©)).
German: atomare Aussage, aussagenlogische Formel, Atom,
Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 17 / 28

D1. Syntax and Semantics of Propositional Logic Syntax of Propositional Logic

Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences? Which kinds
of formula are they (atom, conjunction, ...)?

(AN (BVCQ))

—(A Rain V StreetWet)

—(Rain V StreetWet)

((EatFish A DrinkBeer) — —EatlceCream)
Rain A —Rain

—.(A = B)

(AN (B +)C)

((A <B)AC)
(AV (B« Q)
(AL AA2) V =(As > A2))

v

vVvVvvyVvYvVvyVvyVYyYVvYyy

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 18 / 28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

D1.3 Semantics of Propositional
Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 19 / 28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish A DrinkBeer) — —EatlceCream)?

> We need semantics!

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 20 / 28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)
A truth assignment (or interpretation) for a set of atomic
propositions A is a function Z : A — {0, 1}.

A propositional formula ¢ (over A) holds under 7
(written as Z |= ¢) according to the following definition:

ITka iff Z(a)=1 (for a € A)
TE - iff notZ o

TE(eAY) if TEgand T

ITE(pvy) iff ITkEepolly

Question: should we define semantics of (¢ —) and (¢ <> ¥)?

German: Wahrheitsbelegung/Interpretation, ¢ gilt unter Z

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 21 /28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics of Propositional Logic: Terminology

» For Z = ¢ we also say 7 is a model of ¢
and that ¢ is true under 7.

» If © does not hold under Z, we write this as Z (= ¢
and say that Z is no model of ¢
and that ¢ is false under Z.

» Note: [= is not part of the formula
but part of the meta language (speaking about a formula).

German: Z ist ein/kein Modell von ¢; ¢ ist wahr/falsch unter Z;
Metasprache

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 22 /28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Exercise

Consider the set A= {X,Y,Z} of atomic propositions
and formula ¢ = (X A 2Y).

Specify an interpretation Z for A with Z = .

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 23 /28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics: Example (1)

A = {DrinkBeer, EatFish, EatlceCream}
7 = {DrinkBeer — 1, EatFish — 0, EatlceCream — 1}
¢ = (—DrinkBeer — EatFish)

Do we have 7 = ¢?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025

24 /

28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics: Example (2)
Goal: prove 7 = ¢.
Let us use the definitions we have seen:

7 = ¢ iff T |= (—DrinkBeer — EatFish)
iff Z = (——DrinkBeer Vv EatFish)
iff Z = =—DrinkBeer or Z |= EatFish
This means that if we want to prove Z |= ¢, it is sufficient to prove

7 |= ——DrinkBeer

or to prove
7 = EatFish.

We attempt to prove the first of these statements.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025

25

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics: Example (3)

New goal: prove Z = ——DrinkBeer.

We again use the definitions:

Z = ——DrinkBeer iff not Z = —DrinkBeer
iff not not Z |= DrinkBeer
iff Z = DrinkBeer
iff Z(DrinkBeer) =1

The last statement is true for our interpretation Z.

To write this up as a proof of Z |= ¢,

we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025

26

28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Semantics: Example (4)

Let Z = {DrinkBeer + 1, EatFish — 0, EatlceCream + 1}.
Proof that Z |= (—DrinkBeer — EatFish):

Q@

@

We have Z |= DrinkBeer

(uses defn. of |= for atomic props. and fact

Z(DrinkBeer) = 1).

From (1), we get Z [~ —DrinkBeer

(uses defn. of |= for negations).

From (2), we get Z = ~—DrinkBeer

(uses defn. of |= for negations).

From (3), we get Z |= (—=—DrinkBeer V ¢) for all formulas 1,
in particular Z = (=—DrinkBeer V EatFish)

(uses defn. of |= for disjunctions).

From (4), we get Z |= (—DrinkBeer — EatFish)

(uses defn. of “—"). O

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 27 / 28

D1. Syntax and Semantics of Propositional Logic Semantics of Propositional Logic

Summary

propositional logic based on atomic propositions
syntax defines what well-formed formulas are

semantics defines when a formula is true

vvyyy

interpretations are the basis of semantics

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 19/24, 2025 28 / 28

Discrete Mathematics in Computer Science

D2. Properties of Formulas and Equivalences

Malte Helmert, Gabriele Roger

University of Basel

November 26, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 1/21

Discrete Mathematics in Computer Science
November 26, 2025 — D2. Properties of Formulas and Equivalences

D2.1 Properties of Propositional Formulas

D2.2 Equivalences

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 2/21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

D2.1 Properties of Propositional
Formulas

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 3/21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

The Story So Far

propositional logic based on atomic propositions
syntax: which formulas are well-formed?

semantics: when is a formula true?

vvyyy

interpretations: important basis of semantics

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025

4 /21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

> Every atom a € A is a propositional formula over A.

> If ¢ is a propositional formula over A,
then so is its negation —¢.

» If © and 1) are propositional formulas over A,
then so is the conjunction (¢ A 1)).

> If v and % are propositional formulas over A,
then so is the disjunction (¢ V).

The implication (¢ — 1) is an abbreviation for (= V 7).

The biconditional (¢ <> 1)) is an abbrev. for ((¢ —) A (¢ — ©)).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025

5/

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Reminder: Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function Z : A — {0, 1}.

A propositional formula ¢ (over A) holds under Z

(written as Z =) according to the following definition:

7k a iff
TE-p iff
Th(pAy) i
TE(pve) iff

I(a)=1
notZ = ¢
ITEyandZ Y
IEporIEY

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

(for a € A)

November 26, 2025

6/

21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Properties of Propositional Formulas

A propositional formula ¢ is
> satisfiable if ¢ has at least one model
> unsatisfiable if ¢ is not satisfiable
» valid (or a tautology) if ¢ is true under every interpretation

> falsifiable if ¢ is no tautology

German: erfiillbar, unerfiillbar, allgemeingiiltig/eine Tautologie,
falsifizierbar

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 7/21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Examples

How can we show that a formula has one of these properties?

» Show that (A A B) is satisfiable.

Z={Aw 1,Br 1} (+ simple proof that Z = (A A B))
» Show that (A A B) is falsifiable.

7 ={A+w+ 0,B+ 1} (+ simple proof that Z }= (A A B))
» Show that (A A B) is not valid.

Follows directly from falsifiability.
» Show that (A A B) is not unsatisfiable.

Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/
not satisfiable/not falsifiable?

~> must consider all possible interpretations

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 8 /21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Truth Tables

Evaluate for all possible interpretations
if they are models of the considered formula.

I(A) | TE-A
0 Yes
1 No
I(A) I(B) | Z}=(AAB) I(A) I(B)|ZE=(AVB)

0 0 No 0 0 No
0 1 No 0 1 Yes
1 0 No 1 0 Yes
1 1 Yes 1 1 Yes

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025

9

21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Truth Tables in General

Similarly in the case where we consider a formula whose building
blocks are themselves arbitrary unspecified formulas:

Ike TEY|IE(eAY)

No No No
No Yes No
Yes No No
Yes Yes Yes

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 10 /21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Truth Tables for Properties of Formulas

Is ¢ = ((A — B) vV (=B — A)) valid, unsatisfiable, ...?

I(A) IB) |IE-B IE(A—B) ITE(-B—A) Tk
0 0 Yes Yes No Yes
0 1 No Yes Yes Yes
1 0 Yes No Yes Yes
1 1 No Yes Yes Yes

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 11 /21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Connection Between Formula Properties and Truth Tables

A propositional formula ¢ is

> satisfiable if ¢ has at least one model
~> result in at least one row is “Yes"

> unsatisfiable if ¢ is not satisfiable
~~ result in all rows is “No”

» valid (or a tautology) if ¢ is true under every interpretation
~ result in all rows is “Yes"

> falsifiable if ¢ is no tautology
~~ result in at least one row is “No”

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 12 /21

D2. Properties of Formulas and Equivalences Properties of Propositional Formulas

Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

2 interpretations (rows)
4 interpretations (rows)
8 interpretations (rows)
77?7 interpretations

S W N

Some examples: 210 = 1024, 220 = 1048576, 230 = 1073741824

~> not viable for larger formulas; we need a different solution

» more on difficulty of satisfiability etc.:
Theory of Computer Science course

» practical algorithms: Foundations of Al course

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 13 /21

D2. Properties of Formulas and Equivalences Equivalences

D2.2 Equivalences

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 14 /21

D2. Properties of Formulas and Equivalences Equivalences

Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas ¢ and v over A are (logically)
equivalent (¢ =) if for all interpretations Z for A
it is true that Z |= ¢ if and only if Z = 4.

German: logisch aquivalent

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 15 /21

D2. Properties of Formulas and Equivalences

Equivalent Formulas: Example

((pVY)Vvx)=(pV(¥VX))

Equivalences

IE IE IE TE TE TE TE
e Y x [(eVY) @Vvx) (pVY)VX) (pV(¥VX)
No No No No No No No
No No Yes No Yes Yes Yes
No Yes No Yes Yes Yes Yes
No Yes Yes Yes Yes Yes Yes
Yes No No Yes No Yes Yes
Yes No Yes Yes Yes Yes Yes
Yes Yes No Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

November 26, 2025 16 / 21

D2. Properties of Formulas and Equivalences Equivalences

Some Equivalences (1)

(pAp)=

(V)= (idempotence)
(pAD)= (Y Ay

(V)= (V) (commutativity)

((eA)AX) = (oA (Y AX))
((eVY)VXx)=(pV (VX)) (associativity)

German: ldempotenz, Kommutativitat, Assoziativitat

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 17 / 21

D2. Properties of Formulas and Equivalences Equivalences

Some Equivalences (2)

(A (pVY)) =9

(pV(pAY))=¢ (absorption)
(AW VX)) =(eAY)VI(eAX)

(VW AX)=W(eVY)A(pVyx)) (distributivity)

German: Absorption, Distributivitat

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 18 / 21

D2. Properties of Formulas and Equivalences Equivalences

Some Equivalences (3)

——p = (double negation)
(P AY) = (mp V1)
(V)= (A1) (De Morgan'’s rules)
(¢ V) = ¢ if ¢ tautology
(¢ A) =9 if ¢ tautology (tautology rules)
(¢ vV ¢) =1 if unsatisfiable
(@ A1) = ¢ if unsatisfiable (unsatisfiability rules)

German: Doppelnegation, De Morgansche Regeln,
Tautologieregeln, Unerfiillbarkeitsregeln

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 19 /21

D2. Properties of Formulas and Equivalences Equivalences

Substitution Theorem

Theorem (Substitution Theorem)

Let v and ¢’ be equivalent propositional formulas over A.
Let 1) be a propositional formula with (at least)
one occurrence of the subformula .

Then) is equivalent to 1), where 1)’ is constructed from 1)
by replacing an occurrence of © in v with .

German: Ersetzbarkeitstheorem

(without proof)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 20 /21

D2. Properties of Formulas and Equivalences Equivalences

Application of Equivalences: Example

(PAQV-P)=((PAQ)V(PA-P)) (distributivity)
(PA=P)V(PAQ)) (commutativity)
=(PAQ) (unsatisfiability rule)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science November 26, 2025 21 /21

Discrete Mathematics in Computer Science

D3. Normal Forms and Logical Consequence

Malte Helmert, Gabriele Roger

University of Basel

December 1/3, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 1/36

Discrete Mathematics in Computer Science
December 1/3, 2025 — D3. Normal Forms and Logical Consequence

D3.1 Simplified Notation
D3.2 Normal Forms
D3.3 Knowledge Bases

D3.4 Logical Consequences

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 2 /36

D3. Normal Forms and Logical Consequence Simplified Notation

D3.1 Simplified Notation

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 3/36

D3. Normal Forms and Logical Consequence Simplified Notation

Parentheses

Associativity:

(e A (¥ AX))
(e V(¥ VX))

((pAP) A X)
(e V) Vx)

» Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.

> ditto for disjunctions of disjunctions

~> can omit parentheses and treat this
as if parentheses placed arbitrarily

» Example: (A1 A Ax A As A Ag) instead of
(A1 A (A2 AA3)) A Ag)
» Example: (=AV (BAC)V D) instead of ((-AV (BAC))VD)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 4 /36

D3. Normal Forms and Logical Consequence Simplified Notation

Parentheses

Does this mean we can always omit all parentheses
and assume an arbitrary placement? ~~ No!

((eAy)Vvx)Z (e A (¥ VX))
What should ¢ A ¢ V x mean?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 5/ 36

D3. Normal Forms and Logical Consequence Simplified Notation

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases
and an implicit placement is assumed:

» — binds more strongly than A
> A binds more strongly than Vv
» V binds more strongly than — or <+

~~ cf. PEMDAS/ “Punkt vor Strich”
Example

AV -CAB— AV -D stands for (AV (-CAB)) — (AV —D))

» often harder to read
» error-prone

~~ not used in this course

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 6 /36

D3. Normal Forms and Logical Consequence Simplified Notation

Short Notations for Conjunctions and Disjunctions

Short notation for addition:
n
Zi_lx,- =X1+X2+ -+ Xp
> X=x1+x 4+ +x
XE{X1,...,.Xn}

Analogously:

n

=1 Ao N Ay
L pi=(prVea V-V,

A,)
Vi)
/\%X = (1 A2 A Apn)
Voex)

=(p1 V2 V-V

for X = {p1,...,¢n}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 7/ 36

D3. Normal Forms and Logical Consequence Simplified Notation

Short Notation: Corner Cases

Is Z = 4 true for
v=\ radv=\ __ ¢
if X =0or X ={x}7

convention:

> /\@e(/) @ is a tautology.
> V,ep ¢ is unsatisfiable.

> Npepy # = Vpepy # = X

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 8 /36

D3. Normal Forms and Logical Consequence Simplified Notation

Exercise

Express A2, ?:1 @jj without A and /.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 9 /36

D3. Normal Forms and Logical Consequence Normal Forms

D3.2 Normal Forms

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 10 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Why Normal Forms?

> A normal form is a representation
with certain syntactic restrictions.

» condition for reasonable normal form: every formula
must have a logically equivalent formula in normal form
P> advantages:

P can restrict proofs to formulas in normal form
> can define algorithms to work only for formulas in normal form

German: Normalform

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 11 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Negation Normal Form

Definition (Negation Normal Form)

A formula is in negation normal form (NNF)

if it does not contain the abbreviations — and <

and if it contains no negation symbols except possibly
directly in front of atomic propositions.

German: Negationsnormalform
Example

(=P V(RAQ))A(PV=S))isin NNF.
(P A=(QVR))is not in NNF.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 12 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Construction of NNF

Algorithm to Construct NNF
@ Replace abbreviation <+ by its definition ((<)-elimination).
~ formula structure: only =, V, A, —
@ Replace abbreviation — by its definition ((—)-elimination).
~ formula structure: only —, Vv, A

© Repeatedly apply double negation and De Morgan rules
until no rules match any more (“move negations inside”):

» Replace == by ¢.
> Replace =(¢ A 1)) by (¢ V =),
> Replace =(¢ V ¢) by (mp A =),
~» formula structure: only atoms, negated atoms, V, A

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 13 /36

D3. Normal Forms and Logical Consequence Normal Forms

Constructing NNF: Example

Construction of Negation Normal Form
Given: p = ((PA-Q)VR) = (PVv—=(SVT)))

o=(-((PA=Q)VR)VPV=(SVT)) [Step 2]
=((-(PA-QA-R)VPV—(SVT)) [Step 3]
=(((-PV-"Q)A-R)VPV~(SVT)) [Step 3]
=(((-PVQ)A-R)VPV=(SVT)) [Step 3]
=(((-PVQ)A-R)VPV(=SA-T)) [Step 3]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 14 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Literals, Clauses and Monomials

> A literal is an atomic proposition
or the negation of an atomic proposition (e.g., A and —A).

> A clause is a disjunction of literals
(e.g., (QV =PV =SVR)).

> A monomial is a conjunction of literals
(e.g., (QA =P A=SAR)).
The terms clause and monomial are also used for the corner case
with only one literal.

German: Literal, Klausel, Monom

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 15 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Terminology: Examples

Examples
» (=Q AR) is a monomial

» (PV—Q)is a clause
» ((PV —=Q) A P) is neither literal nor clause nor monomial
» —P is a literal, a clause and a monomial
» (P — Q) is neither literal nor clause nor monomial
(but (=P Vv Q) is a clause!)
» (PVP)is a clause, but not a literal or monomial
» ——P is neither literal nor clause nor monomial

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 16 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i.e., if it has the form

n m;
AV L
i=1j=1
with n,m; > 0 (for 1 < i < n), where the Lj; are literals.

German: konjunktive Normalform (KNF)

Example
(P VQ)ARA(PV=S))isin CNF.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 17 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

n m;
V AL
i=1j=1
with n,m; > 0 (for 1 < i < n), where the Lj; are literals.

German: disjunktive Normalform (DNF)

Example
(P AQ) VRV (PA=S))isin DNF.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 18 / 36

D3. Normal Forms and Logical Consequence Normal Forms

NNF, CNF and DNF: Examples

Which of the following formulas are in NNF?
Which are in CNF? Which are in DNF?

((PV —=Q)AP)isin NNF and CNF
(RVQ)APA(RVS))isin NNF and CNF
(PV (=QAR))isin NNF and DNF

(P Vv ==Q) is in none of the normal forms

(

P — =Q) is in none of the normal forms,
but is in all three after expanding —

v

((PV —=Q) — P) is in none of the normal forms
P is in NNF, CNF and DNF

v

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 19 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Construction of CNF (and DNF)

Algorithm to Construct CNF

First, convert to NNF (steps 1-3).
~> formula structure: only literals, V, A

© Repeatedly apply distributivity or commutativity +
distributivity to distribute V over A:

> Replace (¢ V (v A X)) by (v V) AV X))
> Replace ((¢¥ A x) V) by (¢ V) A(x V)
~ formula structure: CNF

@ optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Note: For DNF, swap the roles of A and V in Step 4.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 20 / 36

D3. Normal Forms and Logical Consequence

Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: p = ((PA-Q)VR) = (PVv—=(SVT)))

e=(((-PVQ)A—-R)VPV(=SA-T)) [to NNF]
=((-PVQVPV(-SA-T))A
("RV PV (=S A-T))) [Step 4]
=(-RVPV(=SA-T)) [Step 5]
=((-RVPV-S)A(-RVPV-T)) [Step 4]

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025

Normal Forms

21 /36

D3. Normal Forms and Logical Consequence Normal Forms

Construct DNF: Example

Construction of Disjunctive Normal Form
Given: ¢ = (((PA—-Q)VR) = (PV—(SVT)))

((F-PVQ)A-R)VPV(=SA-T)) [to NNF]
((FPA-R)V(QA-R) VPV (=SA-T)) [Step 4]

¥

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 22 /36

D3. Normal Forms and Logical Consequence Normal Forms

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula ¢ there is a logically equivalent formula in NNF,
a logically equivalent formula in CNF

and a logically equivalent formula in DNF.

> “There is a" always means “there is at least one”.
Otherwise we would write “there is exactly one”.

» Intuition: algorithms to construct normal forms work
with any given formula and only use equivalence rewriting.

» actual proof would use induction over structure of formula

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 23 / 36

D3. Normal Forms and Logical Consequence Normal Forms

Size of Normal Forms

> In the worst case, a logically equivalent formula in CNF or
DNF can be exponentially larger than the original formula.

» Example: for (x; V y1) A+ A (xn V yn) there is no smaller
logically equivalent formula in DNF than:
Vsep(it,...n (/\ies Xi A Nieqa,...ni\s Yi)

> As a consequence, the construction of the CNF/DNF formula
can take exponential time.

» For NNF, we can generate an equivalent formula in linear time
if the original formula does not use <.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 24 / 36

D3. Normal Forms and Logical Consequence Normal Forms

More Theorems

Theorem
A formula in CNF is a tautology iff every clause is a tautology.

Theorem
A formula in DNF is satisfiable iff at least one of its monomials
is satisfiable.

~> both proved easily with semantics of propositional logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 25 / 36

D3. Normal Forms and Logical Consequence Knowledge Bases

D3.3 Knowledge Bases

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 26 / 36

D3. Normal Forms and Logical Consequence

Knowledge Bases: Example

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,

then not EatlceCream.

If EatlceCream or not DrinkBeer,
then not EatFish.

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)}

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025

27 /

Knowledge Bases

36

D3. Normal Forms and Logical Consequence Knowledge Bases

Models for Sets of Formulas

Definition (Model for Knowledge Base)
Let KB be a knowledge base over A,
i.e., a set of propositional formulas over A.

A truth assignment Z for A is a model for KB (written: 7 = KB)
if Z is a model for every formula ¢ € KB.

German: Wissensbasis, Modell

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025

28 / 36

D3. Normal Forms and Logical Consequence Knowledge Bases

Properties of Sets of Formulas

A knowledge base KB is
> satisfiable if KB has at least one model
» unsatisfiable if KB is not satisfiable
» valid (or a tautology) if every interpretation is a model for KB
> falsifiable if KB is no tautology

German: erfiillbar, unerfiillbar, giiltig, giiltig/eine Tautologie,
falsifizierbar

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 29 / 36

D3. Normal Forms and Logical Consequence Knowledge Bases

Example |

Which of the properties does KB = {(A A =B),=(B \V A)} have?

KB is unsatisfiable:
For every model Z with Z = (A A —=B) we have Z(A) = 1.
This means Z = (B V A) and thus Z [~ —(B V A).

This directly implies that KB is falsifiable, not satisfiable
and no tautology.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 30 / 36

D3. Normal Forms and Logical Consequence Knowledge Bases

Example I

Which of the properties does

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream Vv —DrinkBeer) — —EatFish)} have?

> satisfiable, e. g. with
7 = {EatFish — 1, DrinkBeer — 1, EatlceCream — 0}

» thus not unsatisfiable

> falsifiable, e. g. with
7 = {EatFish — 0, DrinkBeer — 0, EatlceCream +— 1}

» thus not valid

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 31/ 36

D3. Normal Forms and Logical Consequence Logical Consequences

D3.4 Logical Consequences

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 32 /36

D3. Normal Forms and Logical Consequence

Logical Consequences: Motivation

What's the secret of your long life?

| am on a strict diet: If | don't drink beer
to a meal, then | always eat fish. When-
ever | have fish and beer with the same
meal, | abstain from ice cream. When |
eat ice cream or don't drink beer, then |
never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schéning: Logik fiir Informatiker
Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025

33/

Logical Consequences

36

D3. Normal Forms and Logical Consequence Logical Consequences

Logical Consequences

Definition (Logical Consequence)
Let KB be a set of formulas and ¢ a formula.

We say that KB logically implies ¢ (written as KB =)
if all models of KB are also models of ¢.

also: KB logically entails ¢, ¢ logically follows from KB,
@ is a logical consequence of KB

German: KB impliziert ¢ logisch, ¢ folgt logisch aus KB,
 ist logische Konsequenz von KB

Attention: the symbol = is “overloaded”: KB = ¢ vs. 7 |= .

What if KB is unsatisfiable or the empty set?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 34 /36

D3. Normal Forms and Logical Consequence Logical Consequences

Logical Consequences: Example
Let ¢ = DrinkBeer and

KB = {(—DrinkBeer — EatFish),
((EatFish A DrinkBeer) — —EatlceCream),
((EatlceCream V —DrinkBeer) — —EatFish)}.

Show: KB = ¢

Proof sketch.

Proof by contradiction: assume Z = KB, but Z [~ DrinkBeer.
Then it follows that Z = —DrinkBeer.

Because Z is a model of KB, we also have

7 = (—DrinkBeer — EatFish) and thus Z = EatFish. (Why?)
With an analogous argumentation starting from

7 = ((EatlceCream V —DrinkBeer) — —EatFish)

we get 7 = —EatFish and thus Z [~ EatFish. ~» Contradiction!

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 35 / 36

D3. Normal Forms and Logical Consequence Logical Consequences

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)
KB U {p} = ifF KB = (¢ — 1)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KBU{¢} E ¢ iffKBU{y} E —¢
German: Kontrapositionssatz

Theorem (Contradiction Theorem)
KB U {¢} is unsatisfiable iff KB |= -y

German: Widerlegungssatz

(without proof)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 1/3, 2025 36 / 36

Discrete Mathematics in Computer Science

D4. Inference

Malte Helmert, Gabriele Roger

University of Basel

December 8, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025

1/

Discrete Mathematics in Computer Science
December 8, 2025 — D4. Inference

D4.1 Inference Rules and Calculi

D4.2 Summary

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 2/12

D4. Inference Inference Rules and Calculi

D4.1 Inference Rules and Calculi

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 3/12

D4. Inference

Inference: Motivation

» up to now: proof of logical consequence
with semantic arguments

» no general algorithm

» solution: produce formulas that are logical consequences
of given formulas with syntactic inference rules

» advantage: mechanical method that can easily
be implemented as an algorithm

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025

4/

Inference Rules and Calculi

D4. Inference

Inference Rules

» Inference rules have the form

P15 Pk
(0

> Meaning: “Every model of ¢1, ..., @ is a model of ."
» An axiom is an inference rule with kK = 0.
> A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkiil, Beweissystem

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025

5/

Inference Rules and Calculi

D4. Inference

Inference Rules and Calculi

Some Inference Rules for Propositional Logic

Modus ponens

Modus tollens

A-elimination

A-introduction

V-introduction

<s-elimination

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

o, (0 =)
(0

_'wv (90 — w)
—p
(eAY) (pAY)
® (%

o, P

(e A1)
@

(p V)

(¢ < 1)
(o = 1)

(p & 1)
(¥ —)

December 8, 2025

6 /12

D4. Inference Inference Rules and Calculi

Derivation

Definition (Derivation)
A derivation or proof of a formula ¢ from a knowledge base KB
is a sequence of formulas 1, ..., ¥k with

> Yy = ¢ and
» forallie{1,... k}:
>); € KB, or

P 1) is the result of the application of an inference rule
to elements from {1,...,¥;_1}.

German: Ableitung, Beweis

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 7/ 12

D4. Inference Inference Rules and Calculi

Derivation: Example

Example
Given: KB = {P,(P = Q),(P = R),((QAR) — S)}
Task: Find derivation of (S A R) from KB.

Q@ P (KB)

@ (P Q) (KB)

@ Q (1, 2, Modus ponens)

Q (P— R) (KB)

@ R (1, 4, Modus ponens)

@ (Q AR) (3,5, A-introduction)
@ ((RAR)—S) (KB)

@ S (6, 7, Modus ponens)

@ (S AR) (8, 5, A-introduction)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 8/ 12

D4. Inference Inference Rules and Calculi

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)
We write KB ¢ ¢ if there is a derivation of ¢ from KB
in calculus C.

(If calculus C is clear from context, also only KB I~ ¢.)

A calculus C is correct if for all KB and ¢
KB F¢ ¢ implies KB |= ¢.

A calculus C is complete if for all KB and ¢
KB = ¢ implies KB ¢ .

Consider calculus C, consisting of the derivation rules seen earlier.

Question: Is C correct?
Question: Is C complete?

German: korrekt, vollstandig

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025

9/

D4. Inference Summary

D4.2 Summary

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 10 / 12

D4. Inference

Summary (Consequence and Inference)

P> knowledge base: set of formulas describing given information;
satisfiable, valid etc. used like for individual formulas

» logical consequence KB = ¢ means that ¢ is true
whenever (= in all models where) KB is true

» A logical consequence KB = ¢ allows to conclude that KB
implies ¢ based on the semantics.

» A correct calculus supports such conclusions
on the basis of purely syntactical derivations KB I .

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025

Summary

11/

D4. Inference Summary

Further Topics

There are many aspects of propositional logic
that we do not cover in this course.

P resolution: a commonly used proof system for formulas in CNF
» other proof systems, for example tableaux proofs

» algorithms for model construction, such as the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

~+ Foundations of Al course

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8, 2025 12

/ 12

Discrete Mathematics in Computer Science
D5. Syntax and Semantics of Predicate Logic

Malte Helmert, Gabriele Roger

University of Basel

December 8/10/15, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 1/28

Discrete Mathematics in Computer Science
December 8/10/15, 2025 — D5. Syntax and Semantics of Predicate Logic

D5.1 Syntax of Predicate Logic

D5.2 Semantics of Predicate Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 2 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

D5.1 Syntax of Predicate Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 3 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Limits of Propositional Logic

Cannot be expressed well in propositional logic:
P> “Everyone who does the exercises passes the exam.”

> “If someone with administrator privileges presses ‘delete’,
all data is gone.”

» “Everyone has a mother.”

> “If someone is the father of some person,
the person is his child.”

> need more expressive logic
~ predicate logic (a.k.a. first-order logic)

German: Pradikatenlogik (erster Stufe)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 4 /28

D5. Syntax and Semantics of Predicate Logic

Syntax: Building Blocks

Syntax of Predicate Logic

» Signatures define allowed symbols.
analogy: atom set A in propositional logic

P> Terms are associated with objects by the semantics.
no analogy in propositional logic

» Formulas are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 5 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Signatures: Definition

Definition (Signature)
A signature (of predicate logic) is a 4-tuple S = (V,C, F,P)
consisting of the following four disjoint sets:

> a finite or countable set V of variable symbols

> a finite or countable set C of constant symbols

» a finite or countable set F of function symbols

> a finite or countable set P of predicate symbols
(or relation symbols)

Every function symbol f € F and predicate symbol P € P
has an associated arity ar(f), ar(P) € N; (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Pradikat- und
Relationssymbole; Stelligkeit

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 6 /28

D5. Syntax and Semantics of Predicate Logic

Signatures: Terminology and Conventions

terminology:
» k-ary (function or predicate) symbol:
symbol s with arity ar(s) = k.
P also: unary, binary, ternary

German: k-stellig, unar, binar, ternar

conventions (in this course):

> variable symbols written in Jtalics,
other symbols upright.

» predicate symbols begin with capital letter,
other symbols with lower-case letters

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

Syntax of Predicate Logic

December 8/10/15, 2025

7/

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Signatures: Examples

Example: Arithmetic
> V={x,y,z,x1,X2, X3, ...}
» C = {zero,one}
» F = {sum, product}
» P = {Positive, SquareNumber}
ar(sum) = ar(product) = 2, ar(Positive) = ar(SquareNumber) =1

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 8 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Signatures: Examples

Example: Genealogy

> V={x,y,z,x1,X2, X3, ...}

» C = {roger-federer, lisa-simpson}

> F=0

» P = {Female, Male, Parent}
ar(Female) = ar(Male) = 1, ar(Parent) = 2

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 9 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Terms: Definition

Definition (Term)

Let S = (V,C, F,P) be a signature.

A term (over S) is inductively constructed
according to the following rules:

» Every variable symbol v € V is a term.

» Every constant symbol c € C is a term.

» If t1,...,tx are terms and f € F is a function symbol
with arity k, then f(t1,..., tx) is a term.

German: Term

examples:
> x4
> lisa-simpson
» sum(xs, product(one, xs))

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 10 / 28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Formulas: Definition

Definition (Formula)

For a signature § = (V,C, F, P) the set of predicate logic formulas
(over S) is inductively defined as follows:

> If t1,...,tx are terms (over §) and P € P is a k-ary predicate
symbol, then the atomic formula (or the atom) P(t1,.. ., tx)
is a formula over S.

» If t; and to are terms (over S), then the identity (t; = t2)
is a formula over S.

> If x €V is a variable symbol and ¢ a formula over S,
then the universal quantification Vx ¢
and the existential quantification 3x ¢ are formulas over S.

German: atomare Formel, Atom, ldentitat,
Allquantifizierung, Existenzquantifizierung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025

11

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Formulas: Definition
Definition (Formula)
For a signature § = (V,C, F, P) the set of predicate logic formulas
(over S) is inductively defined as follows:
> If ¢ is a formula over S, then so is its negation —.

> If v and 1) are formulas over S, then so are
the conjunction (¢ A 1) and the disjunction (¢ V 9).

German: Negation, Konjunktion, Disjunktion

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 12 / 28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Formulas: Examples

Examples: Arithmetic and Genealogy
> Positive(x?)
Vx (—SquareNumber(x) V Positive(x))
Ix3 (SquareNumber(x3) A —Positive(x3))
Vx(x =y)
Vx (sum(x, x) = product(x, one))
Vx3y (sum(x, y) = zero)
Vx3y (Parent(y, x) A Female(y))

vVvYVvyVvVvyYVvyy

Terminology: The symbols V and 3 are called quantifiers.

German: Quantoren

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 13 /28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Abbreviations and Placement of Parentheses by Convention

abbreviations:
» (¢ — 1) is an abbreviation for (=p V).
> (¢ <> 1) is an abbreviation for ((¢ —) A (Y — ¢)).

> Sequences of the same quantifier can be abbreviated.
For example:

> YxVyVz o ~» Vxyz ¢
> Ixdydzp ~» dxyz
> YwIxIyVz o ~» YwixyVz o
placement of parentheses by convention:
» analogous to propositional logic
» quantifiers V and 3 bind more strongly than anything else.

» example: Vx P(x) — Q(x) corresponds to (VxP(x) — Q(x)),
not Vx (P(x) — Q(x)).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 14 / 28

D5. Syntax and Semantics of Predicate Logic Syntax of Predicate Logic

Exercise

S = ({x,y,z}.{c}. {f, 8, h},{Q,R,S}) with

ar(f) = 3,ar(g) = ar(h) = 1,ar(Q) = 2,ar(R) = ar(S) =1
> f(x,y)

(8(x) = R(y))

(8(x) = f(y, ¢, h(x)))

(R(x) A ¥xS(x))

Ve Q(c, x)

(Vx3Jy (g(x) = y) V (h(x) = ¢))

Which expressions are syntactically correct formulas or terms for §7
What kind of term/formula?

vvyyy

v

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 15 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

D5.2 Semantics of Predicate Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 16 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics: Motivation

P interpretations in propositional logic:
truth assignments for the propositional variables

» There are no propositional variables in predicate logic.

P instead: interpretation determines meaning
of the constant, function and predicate symbols.

» meaning of variable symbols not determined by interpretation
but by separate variable assignment

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 17 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Interpretations and Variable Assignments

Let S = (V,C, F,P) be a signature.

Definition (Interpretation, Variable Assignment)
An interpretation (for S) is a pair Z = (U, -Z) of:
P a non-empty set U called the universe and

» a function - that assigns a meaning to the constant,
function, and predicate symbols:

» £ ¢ U for constant symbols c € C
» . Uk — U for k-ary function symbols f € F
» PZ C U for k-ary predicate symbols P € P

A variable assignment (for S and universe U)
is a function o : V — U.

German: Interpretation, Universum (or Grundmenge),
Variablenzuweisung

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 18 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Interpretations and Variable Assignments: Example

Example

signature: S = (V,C, F,P) with V = {x,y, z},

C = {zero,one}, F = {sum, product}, P = {SquareNumber}
ar(sum) = ar(product) = 2, ar(SquareNumber) =1

T =(U,-T) with

> U - {u07 uy, uz, us, Us, Us, U6}

zero® = uy

one? = iy

>

>

> sum?(u;, uj) = U(i+j) mod 7 for all i, j € {0,...,6}

> product” (u;, uj) = U(ij) mod 7 for all i,j € {0,...,6}
>

SquareNumber? = {up, uy, us, ug}
a={xr us,y — us,z— up}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 19 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics: Informally

Example: (Vx(Block(x) — Red(x)) A Block(a))
“For all objects x: if x is a block, then x is red.
Also, the object called a is a block.”

» Terms are interpreted as objects.

» Unary predicates denote properties of objects
(to be a block, to be red, to be a square number, ...).

» General predicates denote relations between objects
(to be someone’s child, to have a common divisor, ...).

» Universally quantified formulas (“V") are true
if they hold for every object in the universe.

» Existentially quantified formulas (“3") are true
if they hold for at least one object in the universe.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 20 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Interpretations of Terms

Let S = (V,C, F,P) be a signature.

Definition (Interpretation of a Term)
Let Z = (U, 1) be an interpretation for S,

and let « be a variable assignment for S and universe U.

Let t be a term over S.
The interpretation of t under Z and «, written as tho
is the element of the universe U defined as follows:

» If t = x with x € V (t is a variable term):

xT = a(x)
» If t = cwith c € C (t is a constant term):
CI,a — CI

> If t=1f(t1,...,) (|s 2 function term):

t
f(tr, ..,)0 = (60 .., t0%)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025

21/

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Interpretations of Terms: Example

Example
signature: S = (V,C, F,P)
with V = {x,y, z}, C = {zero,one}, F = {sum, product},

ar(sum) = ar(product) = 2

T = (U,-) with
> U= {Uo, uy, uz, us, Us, Us, Uﬁ}

> zerol

z

= UO
» one
> sum?(uj, uj) = U(i+j) mod 7 for all i, j € {0,...,6}

» product®(u;, Uj) = U(i.jy mod 7 for all i,j € {0,...,6}

:ul

a={xr us,y — us,z— Up}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 22/

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Interpretations of Terms: Example (ctd.)

Example (ctd.)
Lo

» zero
[yI,a —

> sum(x,y)b =

> product(one, sum(x, zero))> =

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 23 /28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics of Predicate Logic Formulas
Let S = (V,C, F,P) be a signature.

Definition (Formula is Satisfied or True)

Let Z = (U, 1) be an interpretation for S,

and let « be a variable assignment for S and universe U.
We say that Z and « satisfy a predicate logic formula ¢
(also: ¢ is true under Z and «), written: Z, o = ¢,
according to the following inductive rules:

T,ab=P(ty,...,t) iff (7%, 0% e PT
Lok (h=1t) iffti*="
T,aE=—p ffZ,alp
Z,aE(pANY) ffZ,aEeand Z,a =9
Z,aE(pVvy) ffaEgor I,alE=1

German: Z und « erfiillen ¢ (also: ¢ ist wahr unter Z und «)

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 24 /28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics of Predicate Logic Formulas

Let S = (V,C, F,P) be a signature.

Definition (Formula is Satisfied or True)

I,a =% iff Z,alx:=u] =g forallue U
Z,a = 3Ixp iff Z,a[x := u] = ¢ for at least one u € U

where a[x := u] is the same variable assignment as «,
except that it maps variable x to the value w.
Formally:

(alx == u))(z) = {

u if z=x

a(z) ifz#x

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 25 /28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics: Example

Example

signature: S = (V,C, F,P)

with V = {x,y,z}, C ={a,b}, F =0, P = {Block, Red},
ar(Block) = ar(Red) = 1.

T = (U, T) with

> U= {u1,upu3,ug,us}
> al =y
> bl = u3
> Block? = {uy, s}
> Red? = {uy, us, us, us}
a={x—u,y— u,z—u}

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 26 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Semantics: Example (ctd.)

Example (ctd.)
Questions:

» 7.« = (Block(b) V —Block(b))?

» 7,a = (Block(x) — (Block(x) V =Block(y)))?
» 7,a = (Block(a) A Block(b))?

» 7,a = Vx(Block(x) — Red(x))?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 27 / 28

D5. Syntax and Semantics of Predicate Logic Semantics of Predicate Logic

Summary

P Predicate logic is more expressive than propositional logic
and allows statements over objects and their properties.
» Objects are described by terms that are built
from variable, constant and function symbols.
> Properties and relations are described by formulas
that are built from predicates, quantifiers
and the usual logical operators.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 8/10/15, 2025 28 / 28

Discrete Mathematics in Computer Science
D6. Advanced Concepts in Predicate Logic and Outlook

Malte Helmert, Gabriele Roger

University of Basel

December 15, 2025

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 1/24

Discrete Mathematics in Computer Science
December 15, 2025 — D6. Advanced Concepts in Predicate Logic and Outlook

D6.1 Free and Bound Variables

D6.2 Reasoning in Predicate Logic

D6.3 Summary and Outlook

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 2 /24

D6. Advanced Concepts in Predicate Logic and Outlook Free and Bound Variables

D6.1 Free and Bound Variables

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 3 /24

D6. Advanced Concepts in Predicate Logic and Outlook Free and Bound Variables

Free and Bound Variables: Motivation

Question:

» Consider a signature with variable symbols {x1, x2, x3,... }
and an interpretation Z.

» Which parts of the definition of « are relevant to decide
whether Z, a = (Vxa(R(xa, x2) V (f(x3) = xa)) V 3x35(x3, x2))?

> a(x1), a(xs), a(xs), a(x7), ...are irrelevant
since those variable symbols occur in no formula.

» «(xs) also is irrelevant: the variable occurs in the formula,
but all occurrences are bound by a surrounding quantifier.

> ~ only assighments for free variables x» and x3 relevant

German: gebundene und freie Variablen

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 4 /24

Free and Bound Variables

D6. Advanced Concepts in Predicate Logic and Outlook

Variables of a Term

Definition (Variables of a Term)
Let t be a term. The set of variables that occur in t,
written as var(t), is defined as follows:
> var(x) = {x}
for variable symbols x
> var(c) =10
for constant symbols ¢
> var(f(ti,..., tx)) = var(t1) U--- U var(ty)
for function terms

terminology: A term t with var(t) = () is called ground term.

German: Grundterm

example: var(product(x,sum(k, y))) =

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science

December 15, 2025

5/

D6. Advanced Concepts in Predicate Logic and Outlook Free and Bound Variables

Free and Bound Variables of a Formula

Definition (Free Variables)
Let ¢ be a predicate logic formula. The set of free variables of ¢,
written as free(y), is defined as follows:

> free(P(t1,...,tk)) = var(ty) U--- U var(ty)
free((t1 = tp)) = var(ty) U var(tz)
free(—p) = free(y)

free((¢ A) = free((p V 1)) = free(p) U free(y))
free(Vx) = free(3x) = free(p) \ {x}

vvyyy

Example: free((Vxa(R(xa,x2) V (f(x3) = xa)) V 3x35(x3, x2)))

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 6 /24

D6. Advanced Concepts in Predicate Logic and Outlook Free and Bound Variables

Closed Formulas/Sentences

Note: Let ¢ be a formula and let & and 3 variable assignments
with a(x) = B(x) for all free variables x of .

Then Z,a E ¢ iff Z,8 E .

In particular, « is completely irrelevant if free(y) = (0.

Definition (Closed Formulas/Sentences)

A formula ¢ without free variables (i.e., free() = 0)
is called closed formula or sentence.

If ¢ is a sentence, then we often write 7 = ¢
instead of Z, a = ¢, since the definition of « does not influence
whether ¢ is true under Z and « or not.

Formulas with at least one free variable are called open.
Closed formulas with no quantifiers are called ground formulas.

German: geschlossene Formel/Satz, offene Formel,
Grundformel /variablenfreie Formel

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 7 /24

D6. Advanced Concepts in Predicate Logic and Outlook Free and Bound Variables

Closed Formulas/Sentences: Examples

Question: Which of the following formulas are sentences?
» (Block(b) v =Block(b))
» (Block(x) — (Block(x) V —Block(y)))
> (Block(a) A Block(b))
> Vx(Block(x) — Red(x))

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 8 /24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

D6.2 Reasoning in Predicate Logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 9 /24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Terminology for Formulas

The terminology we introduced for propositional logic
equally applies to predicate logic:

P Interpretation Z and variable assignment «
form a model of the formula ¢ if Z, a0 |= ¢.

» Formula ¢ is satisfiable if Z, « |= ¢ for at least one Z, a.
» Formula ¢ is falsifiable if Z, « [~ . for at least one Z, «
» Formula ¢ is valid if Z, a |= ¢ for all Z, .

» Formula ¢ is unsatisfiable if Z, a [~ ¢ for all Z, a.
German: Modell, erfuillbar, falsifizierbar, gultig, unerfiillbar
All concepts can be used for the special case of sentences.

In this case we usually omit ce. Examples:
> Interpretation Z is a model of a sentence ¢ if Z |= .
> Sentence ¢ is unsatisfiable if Z [~ ¢ for all Z.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 10 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Sets of Formulas: Semantics

Definition (Satisfied/True Sets of Formulas)

Let S be a signature, ¢ a set of formulas over S,

7 an interpretation for S and « a variable assignment for S
and the universe of Z.

We say that Z and « satisfy the formulas ®
(also: @ is true under Z and «), written as: Z, v = &,
if Z,a = for all p € &.

German: Z und « erfillen ®, ® ist wahr unter Z und «

We may again write Z |= & if all formulas in ® are sentences.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025

11/

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Logical Equivalence and Logical Consequences

We again we use the same concepts and notations
as in propositional logic.

> A set of formulas ® logically entails/implies formula v,
written as ® = 1), if all models of ® are models of 1).

» For a single formula ¢, we may write ¢ = 1 for {p} = 1.

» Formulas ¢ and v are logically equivalent, written as ¢ = 1),
if they have the same models.

> Note that ¢ = ¢ iff p =4 and ¢ | ¢.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 12 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)
KB U {p} = ifF KB = (¢ — 1)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KBU{¢} E ¢ iffKBU{y} E -
German: Kontrapositionssatz

Theorem (Contradiction Theorem)
KB U {¢} is unsatisfiable iff KB |= -y

German: Widerlegungssatz

These can be proved exactly the same way as in propositional logic.

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 13 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Logical Equivalences

» All logical equivalences of propositional logic
also hold in predicate logic (e.g., (¢ V¢) = (¢ V ¢)). (Why?)
» Additionally the following equivalences and implications hold:

(Vxp A VX)) = Vx(o A1)
(Vxp VVx) E Vx(¢ V) but not the converse
(Vxp A1) = Vx(p A) if x ¢ free(v))
(Vxp Vb)) = Vx(p V) if x & free(v))
—Vxp = Ix—p
(e V w) = (Ixp vV 3Ixy)
Ix(p A1) | (Bxe A Ix)) but not the converse
(Ixe V) = Ix(p V) if x & free(v))
(Fxp A) = Ix(e AY) if x & free(v)
—dxp = Vx—p

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025

14 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Normal Forms (1)

Analogously to DNF and CNF for propositional logic
there are several normal forms for predicate logic, such as

» negation normal form (NNF):
negation symbols (—) are only allowed in front of atoms
or identities
» prenex normal form:
quantifiers must form the outermost part of the formula
» Skolem normal form:
prenex normal form without existential quantifiers
German: Negationsnormalform, Pranexnormalform,
Skolemnormalform

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025

15

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Normal Forms (2)

Efficient methods transform formula ¢
P into an equivalent formula in negation normal form,
> into an equivalent formula in prenex normal form, or
> into an equisatisfiable formula in Skolem normal form.

German: erfiillbarkeitsaquivalent

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 16 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Reasoning in Predicate Logic

Inference Rules and Calculi

There exist correct and complete proof systems (calculi)
for predicate logic.

P> An example is the natural deduction calculus.
» This is (essentially) Godel's Completeness Theorem (1929).

» However, one can show that correct and complete algorithms
that prove that a given formula does not follow
from a given set of formulas cannot exist.

» How are these statements reconcilable?

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 17 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

D6.3 Summary and Outlook

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 18 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Summary

> Predicate logic is more expressive than propositional logic
and allows statements over objects and their properties.

» Objects are described by terms that are built
from variable, constant and function symbols.

> Properties and relations are described by formulas
that are built from predicates, quantifiers
and the usual logical operators.

» Bound vs. free variables: to decide if Z, o |= ¢,
only free variables in o matter

» Sentences (closed formulas): formulas without free variables

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 19

24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Summary

Once the basic definitions are in place, predicate logic
can be developed in the same way as propositional logic:

> logical consequence

deduction theorem etc.

>
> logical equivalences
» normal forms

>

inference rules, proof systems, resolution

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 20 / 24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Other Logics (1)

» We considered first-order predicate logic.

» Second-order predicate logic allows
quantifying over predicate symbols.

P There are intermediate steps, e. g., monadic second-order logic
(all quantified predicates are unary) and description logics
(foundation of the semantic web).

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 21 /24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Second-Order Logic Example

Second-order logic example:

» “T is the transitive closure of R”

» conjunction of
> VxVy(R(x,y) = T(x,y))
“T is a superset of R"
> YxvyVz((T(x,y) A T(y,2)) = T(x,2))
“T is transitive”
> VQ((VxVy(R(x,y) = Q(x,¥)) A
VxVyVz((Q(x,y) A Q(y, z)) — Q(x, 2)))
= VxVy(T(x,y) = Q(x,¥))))

“All supersets Q of R that are transitive are supersets of T"

» impossible to express in first-order logic

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025

22 /24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Other Logics (2)

» Modal logics have new operators [and ¢.

> classical meaning: Uy for “p is necessary”,
QO for “p is possible”.
> temporal logic: Oy for “¢ is always true in the future”,
O for “p is true at some point in the future”
> epistemic logic: Oy for “p is known",
O for “p is possible”
> doxastic logic: Oy for “p is believed”,
QO for “p is considered possible”
> deontic logic: O for “p is obligatory”,
Qi for “p is permitted”
>

> very important in computer-aided verification

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 23 /24

D6. Advanced Concepts in Predicate Logic and Outlook Summary and Outlook

Other Logics (3)

» In fuzzy logic, formulas are not true or false
but have values between 0 and 1.

P Intuitionist logic is “constructive” and excludes indirect
proof methods such as the principle of the excluded third.

» Non-monotonic logics have rules with exceptions
(e.g., default logic, cumulative logic).

» . ..and there is a lot more

M. Helmert, G. Roger (University of Basel) Discrete Mathematics in Computer Science December 15, 2025 24 /24

