Planning and Optimization F11. Operator Counting

Malte Helmert and Gabriele Röger

Universität Basel

December 16, 2024

Content of the Course

[Introduction](#page-2-0)

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe how often operators must be used in each plan.

Example (Flow Constraints)

Let Π be a planning problem with operators $\{o_{\text{red}}, o_{\text{green}}, o_{\text{blue}}\}$. The flow constraint for some atom a is the constraint

$$
1 + \text{Count}_{o_{\text{green}}} = \text{Count}_{o_{\text{red}}} \text{ if }
$$

- \blacksquare a is true in the initial state \Box O_{green} produces a
- \blacksquare a is false in the goal \Box O_{red} consumes a

In natural language, the flow constraint expresses that

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe how often operators must be used in each plan.

Example (Flow Constraints)

Let Π be a planning problem with operators $\{o_{\text{red}}, o_{\text{green}}, o_{\text{blue}}\}$. The flow constraint for some atom a is the constraint

$$
1 + \text{Count}_{o_{\text{green}}} = \text{Count}_{o_{\text{red}}} \text{ if }
$$

- \blacksquare a is true in the initial state \Box O_{green} produces a
- \blacksquare a is false in the goal \Box O_{red} consumes a
- In natural language, the flow constraint expresses that

every plan uses o_{red} once more than o_{green} .

· · ·

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters the operator count solution space.

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters the operator count solution space.

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters the operator count solution space.

[Introduction](#page-2-0) [Operator-counting Framework](#page-8-0) [Properties](#page-22-0) [Summary](#page-28-0)

[Operator-counting Framework](#page-8-0)

Operator Counting

Operator counting

- **Exercializes this idea to a framework that allows to** admissibly combine different heuristics.
- uses linear constraints ...
- \blacksquare ... that describe number of occurrences of an operator ...
- \blacksquare ... and must be satisfied by every plan.
- provides declarative way to describe knowledge about solutions.
- **Example 1** allows reasoning about solutions to derive heuristic estimates.

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let Π be a planning task with operators O and let s be a state. Let V be the set of integer variables Count_o for each $o \in O$.

A linear inequality over V is called an operator-counting constraint for s if for every plan π for s setting each Count_o to the number of occurrences of σ in π is a feasible variable assignment.

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP_C for a set C of operator-counting constraints for state s is

Minimize
$$
\sum_{o \in O} cost(o) \cdot Count_o
$$
 subject to
C and Count_o ≥ 0 for all $o \in O$,

where O is the set of operators.

The IP heuristic $h^{\text{IP}}_{\mathcal{C}_n}$ is the objective value of IP_C, the LP heuristic h_C^{LP} is the objective value of its LP-relaxation. If the IP/LP is infeasible, the heuristic estimate is ∞ .

Operator-counting Constraints

- **Adding more constraints can only remove feasible solutions.**
- **F** Fewer feasible solutions can only increase the objective value.
- \blacksquare Higher objective value means better informed heuristic
- \Rightarrow Have we already seen other operator-counting constraints?

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable $\mathsf{Applied}_o$ for each operator o

Objective

Minimize $\sum_o cost(o) \cdot \mathsf{Applied}_o$

$$
\sum_{o \in L} \text{Applied}_o \ge 1 \text{ for all landmarks } L
$$

Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable $Count_o$ for each operator o

Objective

Minimize $\sum_o cost(o) \cdot \textsf{Count}_o$

$$
\sum_{o \in L} \text{Count}_o \ge 1 \text{ for all landmarks } L
$$

Reminder: Post-hoc Optimization Heuristic

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Objective

Minimize $\sum_{o\in O} X_o$

$$
\sum_{o \in O : o \text{ relev. for } \alpha} X_o \ge h^{\alpha}(s) \text{ for } \alpha \in \{\alpha_1, ..., \alpha_n\}
$$

$$
X_o \ge 0 \text{ for all } o \in O
$$

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables Non-negative variables Count_o for all operators $o \in O$ Count_o · cost(o) is cost incurred by operator o

Objective

Minimize $\sum_{o\in O} cost(o)\cdot\textsf{Count}_o$

$$
\sum_{o \in O: o \text{ relev. for } \alpha} cost(o) \cdot Count_o \geq h^{\alpha}(s) \text{ for } \alpha \in \{\alpha_1, ..., \alpha_n\}
$$

$$
cost(o) \cdot Count_o \geq 0 \text{ for all } o \in O
$$

[Introduction](#page-2-0) [Operator-counting Framework](#page-8-0) [Properties](#page-22-0) [Summary](#page-28-0)

[Introduction](#page-2-0) [Operator-counting Framework](#page-8-0) [Properties](#page-22-0) [Summary](#page-28-0)

Further Examples?

- \blacksquare The definition of operator-counting constraints can be extended to groups of constraints and auxiliary variables.
- With this extended definition we could also cover more heuristics, e.g., the perfect relaxation heuristic h^+

[Introduction](#page-2-0) [Operator-counting Framework](#page-8-0) [Properties](#page-22-0) [Summary](#page-28-0)

[Properties](#page-22-0)

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Proof.

Let C be a set of operator-counting constraints for state s and π be an optimal plan for s. The number of operator occurrences of π are a feasible solution for C . As the IP/LP minimizes the total plan cost, the objective value cannot exceed the cost of π and is therefore an admissible estimate.

Dominance

Theorem

Let C and C' be sets of operator-counting constraints for s and let $C \subseteq C'$. Then $IP_C \le IP_{C'}$ and $LP_C \le LP_{C'}$.

Proof.

Every feasible solution of C' is also feasible for C. As the LP/IP is a minimization problem, the objective value subject to C can therefore not be larger than the one subject to $C^{\prime}.$

Adding more constraints can only improve the heuristic estimate.

Heuristic Combination

Operator counting as heuristic combination

- **Multiple operator-counting heuristics can be combined by** computing $h_C^{\text{LP}}/h_C^{\text{IP}}$ for the union of their constraints.
- **This is an admissible combination.**
	- **Never worse than maximum of individual heuristics**
	- Sometimes even better than their sum
- We already know a way of admissibly combining heuristics: cost partitioning.
	- \Rightarrow How are they related?

Connection to Cost Partitioning

Theorem

Let C_1, \ldots, C_n be sets of operator-counting constraints for s and $\mathcal{C} = \bigcup_{i=1}^n C_i$. Then $h_\mathcal{C}^{\mathsf{LP}}$ is the optimal general cost partitioning over the heuristics $h^{\text{LP}}_{C_i}$.

Proof Sketch.

In LP c , add variables Count $_o^i$ and constraints Count $_o =$ Count $_o^i$ for all operators o and $1 \le i \le n$. Then replace Count_o by Count^{i} in C_i . Dualizing the resulting LP shows that $h^{\sf LP}_{\cal C}$ computes a cost partitioning. Dualizing the component heuristics of that cost partitioning shows that they are $h^{\sf LP}_{C_i}$.

Comparison to Optimal Cost Partitioning

- some heuristics are more compact if expressed as operator counting
- some heuristics cannot be expressed as operator counting
- operator counting IP even better than optimal cost partitioning
- Cost partitioning maximizes, so heuristics must be encoded perfectly to guarantee admissibility. Operator counting minimizes, so missing information just makes the heuristic weaker.

[Introduction](#page-2-0) [Operator-counting Framework](#page-8-0) [Properties](#page-22-0) [Summary](#page-28-0)

[Summary](#page-28-0)

Summary

- **Many heuristics can be formulated in terms of** operator-counting constraints.
- The operator counting heuristic framework allows to combine the constraints and to reason on the entire encoded declarative knowledge.
- **The heuristic estimate for the combined constraints** can be better than the one of the best ingredient heuristic but never worse.
- Operator counting is equivalent to optimal general cost partitioning over individual constraints.