Planning and Optimization F10. Network Flow Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

December 11, 2024

Content of the Course

[Introduction](#page-2-0)

Reminder: $SAS⁺$ Planning Tasks

For a SAS⁺ planning task $\Pi = \langle V, I, O, \gamma \rangle$:

- \blacksquare V is a set of finite-domain state variables,
- Each atom has the form $v = d$ with $v \in V$, $d \in \text{dom}(v)$.
- **Operator preconditions and the goal formula** γ are satisfiable conjunctions of atoms.
- Operator effects are conflict-free conjunctions of atomic effects of the form $v_1 := d_1 \wedge \cdots \wedge v_n := d_n$.

Example Task (1)

- One package, two trucks, two locations
- **Variables:**
	- pos-p with dom(pos-p) = { loc_1, loc_2, t_1, t_2 }
	- pos-t-i with dom(pos-t-i) = { loc_1, loc_2 } for $i \in \{1, 2\}$
- \blacksquare The package is at location 1 and the trucks at location 2,
	- $I = \{pos-p \mapsto loc_1, pos-t-1 \mapsto loc_2, pos-t-2 \mapsto loc_2\}$
- \blacksquare The goal is to have the package at location 2 and truck 1 at location 1.

$$
\blacksquare \ \gamma = (\textit{pos-p} = \textit{loc}_2) \land (\textit{pos-t-1} = \textit{loc}_1)
$$

Example Task (2)

■ Operators: for $i, j, k \in \{1, 2\}$:

$$
load(t_i, loc_j) = \langle pos\text{-}t\text{-}i = loc_j \land pos\text{-}p = loc_j, \newline pos\text{-}p := t_i, 1 \rangle
$$
\n
$$
unload(t_i, loc_j) = \langle pos\text{-}t\text{-}i = loc_j \land pos\text{-}p = t_i, \newline pos\text{-}p := loc_j, 1 \rangle
$$
\n
$$
drive(t_i, loc_j, loc_k) = \langle pos\text{-}t\text{-}i = loc_j, \newline pos\text{-}t\text{-}i = loc_k, 1 \rangle
$$

Example Task: Observations

Consider some atoms of the example task:

- pos- $p = loc_1$ initially true and must be false in the goal \triangleright at location 1 the package must be loaded ▷ one time more often than unloaded.
- pos- $p = loc_2$ initially false and must be true in the goal \triangleright at location 2 the package must be unloaded ▷ one time more often than loaded.
- pos- $p = t_1$ initially false and must be false in the goal ▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let $\#$ o denote the number of occurrences of operator o in π . Then the following holds:

- pos- $p = loc_1$ initially true and must be false in the goal \triangleright at location 1 the package must be loaded ▷ one time more often than unloaded. # load(t_1 , loc₁) + # load(t_2 , loc₁) = $1 + #$ unload $(t_1, loc_1) + #$ unload (t_2, loc_1)
- pos- $p = t_1$ initially false and must be false in the goal \triangleright same number of load and unload actions for truck 1. $\#$ unload(t₁, loc₁) + $\#$ unload(t₁, loc₂) = #load(t_1 , loc₁) + #load(t_1 , loc₂)

Network Flow Heuristics: General Idea

- **Formulate flow constraints for each atom.**
- \blacksquare These are satisfied by every plan of the task.
- The cost of a plan is $\sum_{o\in O} cost(o)\# o$
- The objective value of an integer program that minimizes this cost subject to the flow constraints is a lower bound on the plan cost (i.e., an admissible heuristic estimate).
- As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

How to Derive Flow Constraints?

- **The constraints formulate how often an atom can be** produced or consumed.
- **T** "Produced" (resp. "consumed") means that the atom is false (resp. true) before an operator application and true (resp. false) in the successor state.
- For general SAS^+ operators, this depends on the state where the operator is applied: effect $v := d$ only produces $v = d$ if the operator is applied in a state s with $s(v) \neq d$.
- For general SAS^+ tasks, the goal does not have to specify a value for every variable.
- **All this makes the definition of flow constraints somewhat** involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

[Transition Normal Form](#page-10-0)

Variables Occurring in Conditions and Effects

- **Many algorithmic problems for SAS**⁺ planning tasks become simpler when we can make two further restrictions.
- **These are related to the variables that occur** in conditions and effects of the task.

Definition (vars(φ), vars(e))

For a logical formula φ over finite-domain variables V, vars(φ) denotes the set of finite-domain variables occurring in φ .

For an effect e over finite-domain variables V,

 $vars(e)$ denotes the set of finite-domain variables occurring in e .

Transition Normal Form

Definition (Transition Normal Form)

A SAS⁺ planning task
$$
\Pi = \langle V, I, O, \gamma \rangle
$$

is in transition normal form (TNF) if
■ for all $o \in O$, vars $(pre(o)) = vars(eff(o))$, and
■ vars $(\gamma) = V$.

In words, an operator in TNF must mention the same variables in the precondition and effect, and a goal in TNF must mention all variables $(=$ specify exactly one goal state).

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

- **■** There exists a variable $v \in \text{vars}(pre(o)) \setminus \text{vars}(eff(o))$.
- **There exists a variable** $v \in \text{vars}(\text{eff}(o)) \setminus \text{vars}(\text{pre}(o)).$

The first case is easy to address: if $v = d$ is a precondition with no effect on v, just add the effect $v := d$.

The second case is more difficult: if we have the effect $v := d$ but no precondition on v , how can we add a precondition on v without changing the meaning of the operator?

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

- \bullet While there exists an operator \circ and a variable $v \in \text{vars}(\text{eff}(o))$ with $v \notin \text{vars}(\text{pre}(o))$:
	- For each $d \in \text{dom}(v)$, add a new operator that is like o but with the additional precondition $v = d$.
	- \blacksquare Remove the original operator.
- 2 Repeat the previous step until no more such variables exist.

Problem:

- If an operator o has n such variables, each with k values in its domain, this introduces k^n variants of o .
- \blacksquare Hence, this is an exponential transformation.

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

- \bullet For every variable v, add a new auxiliary value u to its domain.
- **2** For every variable v and value $d \in \text{dom}(v) \setminus \{u\},\$ add a new operator to change the value of ν from d to u at no cost: $\langle v = d, v := u, 0 \rangle$.
- **3** For all operators o and all variables $v \in \text{vars}(\text{eff}(o)) \setminus \text{vars}(\text{pre}(o)),$ add the precondition $v = u$ to pre(o).

Properties:

- Transformation can be computed in linear time.
- Due to the auxiliary values, there are new states and transitions in the induced transition system, but all path costs between original states remain the same.

Converting Goals to TNF

- The auxiliary value idea can also be used to convert the goal γ to TNF.
- For every variable $v \notin \text{vars}(\gamma)$, add the condition $v = u$ to γ .

With these ideas, every SAS^+ planning task can be converted into transition normal form in linear time.

TNF for Example Task (1)

The example task is not in transition normal form:

- **E** Load and unload operators have preconditions on the position of some truck but no effect on this variable.
- \blacksquare The goal does not specify a value for variable pos-t-2.

TNF for Example Task (2)

Operators in transition normal form: for $i, j, k \in \{1, 2\}$:

$$
load(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = loc_j,
$$

\n
$$
pos-p := t_i \land pos-t-i := loc_j, 1 \rangle
$$

\n
$$
unload(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = t_i,
$$

\n
$$
pos-p := loc_j \land pos-t-i := loc_j, 1 \rangle
$$

\n
$$
drive(t_i, loc_j, loc_k) = \langle pos-t-i = loc_j,
$$

\n
$$
pos-t-i := loc_k, 1 \rangle
$$

TNF for Example Task (3)

To bring the goal in normal form,

add an additional value **u** to dom($pos-t-2$)

add zero-cost operators

$$
o_1 = \langle pos\text{-}t\text{-}2 = loc_1, pos\text{-}t\text{-}2 := \mathbf{u}, 0 \rangle \text{ and } \\ o_2 = \langle pos\text{-}t\text{-}2 = loc_2, pos\text{-}t\text{-}2 := \mathbf{u}, 0 \rangle
$$

Add
$$
pos-t-2 = \mathbf{u}
$$
 to the goal:
\n $\gamma = (pos-p = loc_2) \land (pos-t-1 = loc_1) \land (pos-t-2 = \mathbf{u})$

[Flow Heuristic](#page-20-0)

Notation

- In SAS⁺ tasks, states are variable assignments, conditions are conjunctions over atoms, and effects are conjunctions of atomic effects.
- In the following, we use a unifying notation to express that an atom is true in a state/entailed by a condition/ made true by an effect.
- For state s, we write $(v = d) \in s$ to express that $s(v) = d$.
- **For a conjunction of atoms** φ **, we write** $(v = d) \in \varphi$ **to express** that φ has a conjunct $v = d$ (or alternatively $\varphi \models v = d$).
- For effect e, we write $(v = d) \in e$ to express that e contains the atomic effect $v = d$.

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

Let o be an operator in transition normal form. Then:

- **n** o produces atom a iff $a \in \text{eff}(o)$ and $a \notin \text{pre}(o)$.
- **o** consumes atom *a* iff $a \in pre(o)$ and $a \notin eff(o)$.
- \blacksquare Otherwise o is neutral wrt. atom a.
- \rightsquigarrow State-independent

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

The constraint depends on the current state s and the goal γ . If γ mentions all variables (as in TNF), the following holds:

- If $a \in s$ and $a \in \gamma$ then atom a must be equally often produced and consumed.
- Analogously for $a \notin S$ and $a \notin \gamma$.
- **■** If $a \in s$ and $a \notin \gamma$ then a must be consumed one time more often than it is produced.
- If $a \notin s$ and $a \in \gamma$ then a must be produced one time more often than it is consumed.

Iverson Bracket

The dependency on the current state and the goal can concisely be expressed with Iverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be evaluated to true or false). Then

$$
[P] = \begin{cases} 1 & \text{if } P \text{ is true} \\ 0 & \text{if } P \text{ is false.} \end{cases}
$$

Example: $[2 \neq 3] = 1$

Flow Constraints (3)

Definition (Flow Constraint)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form. The flow constraint for atom a in state s is

$$
[a \in s] + \sum_{o \in O : a \in \text{eff}(o)} \text{Count}_o = [a \in \gamma] + \sum_{o \in O : a \in \text{pre}(o)} \text{Count}_o
$$

 \blacksquare Count_o is an LP variable for the number of occurrences of operator o.

Neutral operators either appear on both sides or on none.

Flow Heuristic

Definition (Flow Heuristic)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a SAS⁺ task in transition normal form and let $A = \{(v = d) | v \in V, d \in dom(v)\}\)$ be the set of atoms of Π .

The flow heuristic $h^{\text{flow}}(s)$ is the objective value of the following LP or ∞ if the LP is infeasible:

minimize
$$
\sum_{o \in O} cost(o) \cdot Count_o
$$
 subject to
\n
$$
[a \in s] + \sum_{o \in O : a \in eff(o)} Count_o = [a \in \gamma] + \sum_{o \in O : a \in pre(o)} Count_o \text{ for all } a \in A
$$
\nCount_o ≥ 0 for all $o \in O$

[Introduction](#page-2-0) [Transition Normal Form](#page-10-0) [Flow Heuristic](#page-20-0) [Summary](#page-31-0)

Flow Heuristic on Example Task

\rightsquigarrow Blackboard/Demo

Visualization of Flow in Example Task

Flow Heuristic: Properties (1)

Theorem

The flow heuristic h^{flow} is goal-aware, safe, consistent and admissible.

Proof Sketch.

It suffices to prove goal-awareness and consistency.

Goal-awareness: If $s \models \gamma$ then Count_o = 0 for all $o \in O$ is feasible and the objective function has value 0. As $Count_0 > 0$ for all variables and operator costs are nonnegative, the objective value cannot be smaller.

 \Box

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and $\det s' = s[\![o]\!].$

Increasing $Count_o$ by one in an optimal feasible assignment for the LP for state s' yields a feasible assignment for the LP for state s , where the objective function is $h^{\mathsf{flow}}(s') + cost(o).$

This is an upper bound on $\mathit{h}^{\mathsf{flow}}(s)$, so in total $h^{\mathsf{flow}}(s) \leq h^{\mathsf{flow}}(s') + \mathit{cost}(o).$

[Introduction](#page-2-0) [Transition Normal Form](#page-10-0) [Flow Heuristic](#page-20-0) [Summary](#page-31-0)

[Summary](#page-31-0)

Summary

- A flow constraint for an atom describes how the number of producing operator applications is linked to the number of consuming operator applications.
- The flow heuristic computes a lower bound on the cost of each operator sequence that satisfies these constraints for all atoms.
- The flow heuristic only considers the number of occurrences of each operator, but ignores their order.