Planning and Optimization F10. Network Flow Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

December 11, 2024

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 11, 2024 1 / 34

Planning and Optimization December 11, 2024 — F10. Network Flow Heuristics

F10.1 Introduction

F10.2 Transition Normal Form

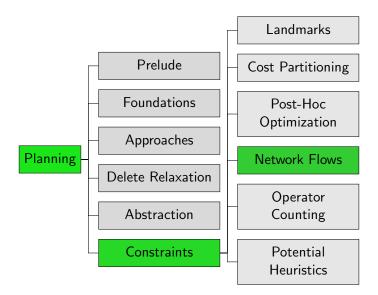
F10.3 Flow Heuristic

F10.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Content of the Course



F10.1 Introduction

Reminder: SAS⁺ Planning Tasks

- For a SAS⁺ planning task $\Pi = \langle V, I, O, \gamma \rangle$:
 - V is a set of finite-domain state variables,
 - Each atom has the form v = d with $v \in V, d \in dom(v)$.
 - Operator preconditions and the goal formula are satisfiable conjunctions of atoms.
 - Operator effects are conflict-free conjunctions of atomic effects of the form v₁ := d₁ ∧ · · · ∧ v_n := d_n.

Example Task (1)

- One package, two trucks, two locations
- Variables:
 - *pos-p* with dom(*pos-p*) = { loc_1, loc_2, t_1, t_2 }
 - ▶ *pos-t-i* with dom(*pos-t-i*) = { loc_1, loc_2 } for $i \in \{1, 2\}$
- The package is at location 1 and the trucks at location 2,

 $\blacktriangleright I = \{pos-p \mapsto loc_1, pos-t-1 \mapsto loc_2, pos-t-2 \mapsto loc_2\}$

The goal is to have the package at location 2 and truck 1 at location 1.

$$\blacktriangleright \ \gamma = (\textit{pos-p} = \textit{loc}_2) \land (\textit{pos-t-1} = \textit{loc}_1)$$

Example Task (2)

• Operators: for $i, j, k \in \{1, 2\}$: $load(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = loc_j, pos-p := t_i, 1 \rangle$ $unload(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = t_i, pos-p := loc_j, 1 \rangle$ $drive(t_i, loc_j, loc_k) = \langle pos-t-i = loc_j, pos-t-i := loc_j, 1 \rangle$

Example Task: Observations

Consider some atoms of the example task:

- pos-p = loc1 initially true and must be false in the goal
 > at location 1 the package must be loaded one time more often than unloaded.
- pos-p = loc₂ initially false and must be true in the goal
 at location 2 the package must be unloaded one time more often than loaded.
- *pos-p* = t₁ initially false and must be false in the goal
 ▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let #o denote the number of occurrences of operator o in π . Then the following holds:

pos-p = loc₁ initially true and must be false in the goal
 ▷ at location 1 the package must be loaded
 one time more often than unloaded.
 #load(t₁, loc₁) + #load(t₂, loc₁) =
 1 + #unload(t₁, loc₁) + #unload(t₂, loc₁)

pos-p = t₁ initially false and must be false in the goal
same number of load and unload actions for truck 1.
#unload(t₁, loc₁) + #unload(t₁, loc₂) =
#load(t₁, loc₁) + #load(t₁, loc₂)

Network Flow Heuristics: General Idea

- Formulate flow constraints for each atom.
- These are satisfied by every plan of the task.
- The cost of a plan is $\sum_{o \in O} cost(o) \# o$
- The objective value of an integer program that minimizes this cost subject to the flow constraints is a lower bound on the plan cost (i.e., an admissible heuristic estimate).
- As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

How to Derive Flow Constraints?

- The constraints formulate how often an atom can be produced or consumed.
- "Produced" (resp. "consumed") means that the atom is false (resp. true) before an operator application and true (resp. false) in the successor state.
- For general SAS⁺ operators, this depends on the state where the operator is applied: effect v := d only produces v = d if the operator is applied in a state s with s(v) ≠ d.
- For general SAS⁺ tasks, the goal does not have to specify a value for every variable.
- All this makes the definition of flow constraints somewhat involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

F10.2 Transition Normal Form

Variables Occurring in Conditions and Effects

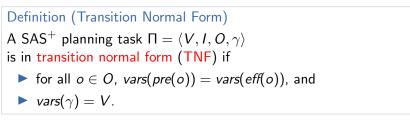
- Many algorithmic problems for SAS⁺ planning tasks become simpler when we can make two further restrictions.
- These are related to the variables that occur in conditions and effects of the task.

Definition $(vars(\varphi), vars(e))$

For a logical formula φ over finite-domain variables V, vars(φ) denotes the set of finite-domain variables occurring in φ .

For an effect e over finite-domain variables V, vars(e) denotes the set of finite-domain variables occurring in e.

Transition Normal Form



In words, an operator in TNF must mention the same variables in the precondition and effect, and a goal in TNF must mention all variables (= specify exactly one goal state).

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

- There exists a variable $v \in vars(pre(o)) \setminus vars(eff(o))$.
- There exists a variable $v \in vars(eff(o)) \setminus vars(pre(o))$.

The first case is easy to address: if v = d is a precondition with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d but no precondition on v, how can we add a precondition on v without changing the meaning of the operator?

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

While there exists an operator o and a variable v ∈ vars(eff(o)) with v ∉ vars(pre(o)):

- For each d ∈ dom(v), add a new operator that is like o but with the additional precondition v = d.
- Remove the original operator.
- Repeat the previous step until no more such variables exist.

Problem:

- If an operator o has n such variables, each with k values in its domain, this introduces kⁿ variants of o.
- Hence, this is an exponential transformation.

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

- For every variable v, add a new auxiliary value u to its domain.
- Por every variable v and value d ∈ dom(v) \ {u}, add a new operator to change the value of v from d to u at no cost: (v = d, v := u, 0).
- For all operators o and all variables v ∈ vars(eff(o)) \ vars(pre(o)), add the precondition v = u to pre(o).

Properties:

- Transformation can be computed in linear time.
- Due to the auxiliary values, there are new states and transitions in the induced transition system, but all path costs between original states remain the same.

Converting Goals to TNF

- The auxiliary value idea can also be used to convert the goal γ to TNF.
- For every variable $v \notin vars(\gamma)$, add the condition v = u to γ .

With these ideas, every SAS⁺ planning task can be converted into transition normal form in linear time.

F10. Network Flow Heuristics

TNF for Example Task (1)

The example task is not in transition normal form:

- Load and unload operators have preconditions on the position of some truck but no effect on this variable.
- ▶ The goal does not specify a value for variable *pos-t-2*.

TNF for Example Task (2)

Operators in transition normal form: for $i, j, k \in \{1, 2\}$:

$$load(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = loc_j, \\ pos-p := t_i \land pos-t-i := loc_j, 1 \rangle$$

 $unload(t_i, loc_j) = \langle pos-t-i = loc_j \land pos-p = t_i, \\ pos-p := loc_j \land pos-t-i := loc_j, 1 \rangle$
 $drive(t_i, loc_j, loc_k) = \langle pos-t-i = loc_j, \\ pos-t-i := loc_k, 1 \rangle$

TNF for Example Task (3)

To bring the goal in normal form,

add an additional value u to dom(pos-t-2)

• add zero-cost operators

$$o_1 = \langle pos-t-2 = loc_1, pos-t-2 := \mathbf{u}, 0 \rangle$$
 and
 $o_2 = \langle pos-t-2 = loc_2, pos-t-2 := \mathbf{u}, 0 \rangle$

Add
$$pos-t-2 = \mathbf{u}$$
 to the goal:
 $\gamma = (pos-p = loc_2) \land (pos-t-1 = loc_1) \land (pos-t-2 = \mathbf{u})$

F10.3 Flow Heuristic

Notation

- In SAS⁺ tasks, states are variable assignments, conditions are conjunctions over atoms, and effects are conjunctions of atomic effects.
- In the following, we use a unifying notation to express that an atom is true in a state/entailed by a condition/ made true by an effect.
- For state s, we write $(v = d) \in s$ to express that s(v) = d.
- For a conjunction of atoms φ, we write (v = d) ∈ φ to express that φ has a conjunct v = d (or alternatively φ ⊨ v = d).
- For effect e, we write (v = d) ∈ e to express that e contains the atomic effect v := d.

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

Let *o* be an operator in transition normal form. Then:

- o produces atom a iff $a \in eff(o)$ and $a \notin pre(o)$.
- o consumes atom a iff $a \in pre(o)$ and $a \notin eff(o)$.
- Otherwise *o* is **neutral** wrt. atom *a*.

 $\rightsquigarrow {\sf State-independent}$

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

The constraint depends on the current state s and the goal γ . If γ mentions all variables (as in TNF), the following holds:

- If a ∈ s and a ∈ γ then atom a must be equally often produced and consumed.
- Analogously for $a \notin s$ and $a \notin \gamma$.
- If a ∈ s and a ∉ γ then a must be consumed one time more often than it is produced.
- If a ∉ s and a ∈ γ then a must be produced one time more often than it is consumed.

Iverson Bracket

The dependency on the current state and the goal can concisely be expressed with lverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be evaluated to true or false). Then

 $[P] = \begin{cases} 1 & \text{if } P \text{ is true} \\ 0 & \text{if } P \text{ is false.} \end{cases}$

Example: $[2 \neq 3] = 1$

Flow Constraints (3)

Definition (Flow Constraint) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form. The flow constraint for atom *a* in state *s* is $[a \in s] + \sum_{o \in O: a \in eff(o)} Count_o = [a \in \gamma] + \sum_{o \in O: a \in pre(o)} Count_o$

- Count_o is an LP variable for the number of occurrences of operator o.
- Neutral operators either appear on both sides or on none.

Flow Heuristic

Definition (Flow Heuristic)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a SAS⁺ task in transition normal form and let $A = \{(v = d) \mid v \in V, d \in dom(v)\}$ be the set of atoms of Π .

The flow heuristic $h^{\text{flow}}(s)$ is the objective value of the following LP or ∞ if the LP is infeasible:

$$\begin{array}{ll} \text{minimize} & \sum_{o \in O} cost(o) \cdot \text{Count}_o & \text{subject to} \\ [a \in s] + & \sum_{o \in O: a \in eff(o)} \text{Count}_o = [a \in \gamma] + & \sum_{o \in O: a \in pre(o)} \text{Count}_o \text{ for all } a \in A \\ & \text{Count}_o \geq 0 & \text{ for all } o \in O \end{array}$$

M. Helmert, G. Röger (Universität Basel)

F10. Network Flow Heuristics

Flow Heuristic

Flow Heuristic on Example Task

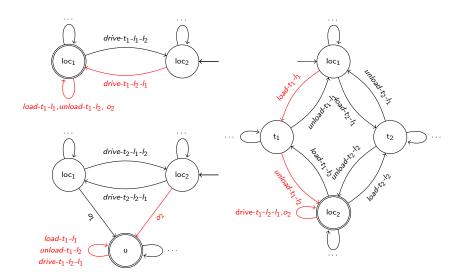
\rightsquigarrow Blackboard/Demo

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 11, 2024 29 / 34

Visualization of Flow in Example Task



Flow Heuristic: Properties (1)

Theorem

The flow heuristic h^{flow} is goal-aware, safe, consistent and admissible.

Proof Sketch. It suffices to prove goal-awareness and consistency. Goal-awareness: If $s \models \gamma$ then $Count_o = 0$ for all $o \in O$ is feasible and the objective function has value 0. As $Count_o \ge 0$ for all variables and operator costs are nonnegative, the objective value cannot be smaller.

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and let $s' = s[\![o]\!]$.

Increasing Count_o by one in an optimal feasible assignment for the LP for state s' yields a feasible assignment for the LP for state s, where the objective function is $h^{flow}(s') + cost(o)$.

This is an upper bound on
$$h^{\text{flow}}(s)$$
, so in total $h^{\text{flow}}(s) \leq h^{\text{flow}}(s') + cost(o)$.

F10.4 Summary

M. Helmert, G. Röger (Universität Basel)

Summary

- A flow constraint for an atom describes how the number of producing operator applications is linked to the number of consuming operator applications.
- The flow heuristic computes a lower bound on the cost of each operator sequence that satisfies these constraints for all atoms.
- The flow heuristic only considers the number of occurrences of each operator, but ignores their order.