Planning and Optimization F9. Post-hoc Optimization

Malte Helmert and Gabriele Röger

Universität Basel

December 11, 2024

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-28-0) December 11, 2024 1 / 29

Planning and Optimization December 11, 2024 — F9. Post-hoc Optimization

F9.1 [Introduction](#page-3-0)

F9.2 [Post-hoc Optimization](#page-7-0)

F9.3 [Comparison](#page-20-0)

F9.4 [Summary](#page-27-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 2/29

Content of the Course

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 3 / 29

F9.1 [Introduction](#page-3-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 4 / 29

Example Task (1)

Example (Example Task)

\nSAS⁺ task
$$
\Pi = \langle V, I, O, \gamma \rangle
$$
 with

\n $\blacktriangleright V = \{A, B, C\}$ with $\text{dom}(v) = \{0, 1, 2, 3, 4\}$ for all $v \in V$

\n $\blacktriangleright I = \{A \mapsto 0, B \mapsto 0, C \mapsto 0\}$

\n $\blacktriangleright O = \{inc_x^V \mid v \in V, x \in \{0, 1, 2\}\} \cup \{jump^V \mid v \in V\}$

\n $\blacktriangleright inc_x^V = \langle v = x, v := x + 1, 1 \rangle$

\n $\varphi = \langle \bigwedge_{v' \in V : v' \neq v} v' = 4, v := 3, 1 \rangle$

\n $\blacktriangleright \gamma = A = 3 \land B = 3 \land C = 3$

- ▶ Each optimal plan consists of three increment operators for each variable $\leadsto h^*(I)=9$
- ▶ Each operator affects only one variable.

Example Task (2)

- \blacktriangleright In projections on single variables we can reach the goal with a jump operator: $h^{\{A\}}(I) = h^{\{B\}}(I) = h^{\{C\}}(I) = 1.$
- ▶ In projections on more variables, we need for each variable three applications of increment operators to reach the abstract goal from the abstract initial state: $h^{\{A,B\}}(I) = h^{\{A,C\}}(I) = h^{\{B,C\}}(I) = 6$

Example (Canonical Heuristic)
\n
$$
C = \{\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}\}
$$
\n
$$
h^{C}(s) = \max\{h^{\{A\}}(s) + h^{\{B\}}(s) + h^{\{C\}}(s), h^{\{A\}}(s) + h^{\{B, C\}}(s),
$$
\n
$$
h^{\{B\}}(s) + h^{\{A, C\}}(s), h^{\{C\}}(s) + h^{\{A, B\}}(s)\}
$$
\n
$$
h^{C}(I) = 7
$$

Post-hoc Optimization Heuristic: Idea

Consider the example task:

- \triangleright type-v operator: operator modifying variable v
- $h^{\{A,B\}} = 6$
	- \Rightarrow in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$
	- \Rightarrow in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$
	- \Rightarrow in any plan operators of type B or C incur at least cost 6.
- \triangleright \Rightarrow any plan has at least cost ???.
- \blacktriangleright (let's use linear programming...)
- $\triangleright \Rightarrow$ any plan has at least cost 9.

Can we generalize this kind of reasoning?

F9.2 [Post-hoc Optimization](#page-7-0)

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning is the Post-hoc Optimization Heuristic (PhO)

- \triangleright can be computed for any kind of heuristic ...
- ▶ ... as long as we are able to determine relevance of operators
- \blacktriangleright if in doubt, it's always safe to assume an operator is relevant for a heuristic
- ▶ but for PhO to work well, it's important that the set of relevant operators is as small as possible

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels) Let $\mathcal T$ be a transition system, and let ℓ be one of its labels. We say that ℓ affects $\mathcal T$ if $\mathcal T$ has a transition $s \stackrel{\ell}{\to} t$ with $s \neq t.$

Definition (Operator Relevance in Abstractions) An operator o is relevant for an abstraction α if o affects $\mathcal{T}^\alpha.$

We can efficiently determine operator relevance for abstractions.

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 10 / 29

Linear Program (1)

For a given set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$, we construct a linear program:

- ▶ variable X_0 for each operator $o \in O$
- \blacktriangleright intuitively, X_0 is cost incurred by operator o
- ▶ abstraction heuristics are admissible

$$
\sum_{o \in O} X_o \ge h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}
$$

 \triangleright can tighten these constraints to

$$
\sum\nolimits_{o \in O : o \text{ relevant for }\alpha} \chi_o \geq h^\alpha(s) \quad \text{ for } \alpha \in \{\alpha_1,\ldots,\alpha_n\}
$$

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 11 / 29

Linear Program (2)

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables Non-negative variables X_0 for all operators $o \in O$

Objective Minimize $\sum_{o\in O} X_o$

Subject to \sum $\alpha \in O$:o relevant for $\alpha \times_{\scriptstyle O} \ \geq h^{\alpha}(\mathsf{s}) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$ $X_o \geq 0$ for all $o \in O$

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 12 / 29

Simplifying the LP

- \triangleright Reduce the size of the LP by aggregating variables which always occur together in constraints.
- ▶ Happens if several operators are relevant for exactly the same heuristics.
- ▶ Partitioning $O/∼$ induced by this equivalence relation
- ▶ One variable $X_{[o]}$ for each $[o] \in O \!/\!\!\!\sim$

Example

Example

- \triangleright only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
- ightharpoonly operators o_3 , o_4 , o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- \triangleright only operators o_1, o_2 and o_6 are relevant for h_3 and $h_3(s_0) = 8$

Which operators are relevant for exactly the same heuristics? What is the resulting partitioning?

Answer:
$$
o_1 \sim o_2
$$
 and $o_3 \sim o_4$
\n $\Rightarrow O/\sim = \{ [o_1], [o_3], [o_5], [o_6] \}$

Simplifying the LP: Example

LP before aggregation

Variables Non-negative variable X_1, \ldots, X_6 for operators o_1, \ldots, o_6

> Minimize $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$ subject to $X_1 + X_2 + X_3 + X_4$ > 11 $X_3 + X_4 + X_5 + X_6 > 11$ $X_1 + X_2$ $+ X₆ > 8$ $X_i > 0$ for $i \in \{1, ..., 6\}$

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 15 / 29

Simplifying the LP: Example

LP after aggregation

Variables Non-negative variable $X_{[1]}, X_{[3]}, X_{[5]}, X_{[6]}$ for equivalence classes $[o_1]$, $[o_3]$, $[o_5]$, $[o_6]$

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 16 / 29

PhO Heuristic

Definition (Post-hoc Optimization Heuristic) The post-hoc optimization heuristic $h^{\text{PhO}}_{\{\alpha_1,...,\alpha_n\}}$ for abstractions α_1,\ldots,α_n is the objective value of the following linear program: Minimize $\sum X_{[o]}$ subject to [o]∈O/∼ \sum $[\![o]\!\!]\in O\!\!/\!\!\sim:$ o relevant for ${}_\alpha\!X_{[\![o]\!]} \geq h^\alpha(\mathsf{s})\quad$ for all $\alpha\in\{\alpha_1,\ldots,\alpha_n\}$ $X_{[o]} \geq 0$ for all $[o] \in O \!/\!\!\!\sim,$ where $o\sim o'$ iff o and o' are relevant for exactly the same abstractions in $\alpha_1, \ldots, \alpha_n$.

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 17 / 29

PhO Heuristic

h PhO

- **1** Precompute all abstraction heuristics $h^{\alpha_1}, \ldots, h^{\alpha_n}.$
- **2** Create LP for initial state s_0 .
- **3** For each new state s:
	- **►** Look up $h^{\alpha}(s)$ for all $\alpha \in {\alpha_1, ..., \alpha_n}$.
	- Adjust LP by replacing bounds with the $h^{\alpha}(s)$ values.

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and $\{\alpha_1, \ldots, \alpha_n\}$ be a set of abstractions. We show that there is a feasible variable assignment with objective value equal to the cost of an optimal plan.

Let π be an optimal plan for state s and let $cost_\pi(O')$ be the cost incurred by operators from $O' \subset O$ in π .

Setting each $\lambda_{[\mathfrak{o}]}$ to $cost_{\pi}([\mathfrak{o}])$ is a feasible variable assignment: Constraints $X_{[o]} \geq 0$ are satisfied. \ldots

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 19 / 29

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each $\alpha \in {\alpha_1, \ldots, \alpha_n}$, π is a solution in the abstract transition system and the sum in the corresponding constraint equals the cost of the state-changing abstract state transitions (i.e.. not accounting for self-loops). As $h^{\alpha}(s)$ corresponds to the cost of an optimal solution in the abstraction, the inequality holds. For this assignment, the objective function has value $h^*(s)$

(cost of π), so the objective value of the LP is admissible.

F9.3 [Comparison](#page-20-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 21 / 29

Combining Estimates from Abstraction Heuristics

- ▶ Post-Hoc optimization combines multiple admissible heuristic estimates into one.
- ▶ We have already heard of two other such approaches for abstraction heuristics,
	- \blacktriangleright the canonical heuristic (for PDBs), and
	- ▶ optimal cost partitioning (not covered in detail).
- ▶ How does PhO compare to these?

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

- \blacktriangleright ... uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ▶ ... dominates the canonical heuristic, i.e. for the same pattern collection, it never gives lower estimates than $h^{\mathcal{C}}$.
- ▶ . . . is very expensive to compute

(recomputing all abstract goal distances in every state).

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in {\alpha_1, \ldots, \alpha_n}$

Objective Maximize $\sum_{\alpha\in\{\alpha_1,...,\alpha_n\}}h^\alpha(s)Y_\alpha$

Subject to \sum $\alpha{\in}\{\alpha_1,...,\alpha_n\}$:o relevant for $\alpha\stackrel{\textstyle Y_\alpha\leq 1} {\sim}$ for all $[o]\in O\!/\!\!\!\sim$ $Y_{\alpha} > 0$ for all $\alpha \in {\alpha_1, \dots, \alpha_n}$

We compute a state-specific cost partitioning that can only scale the operator costs within each heuristic by a factor $0 \le Y_{\alpha} \le 1$.

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment $\langle Y_{\alpha_1},\ldots,Y_{\alpha_n}\rangle$ for the variables of the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic for the same abstractions with cost partitioning $\langle Y_{\alpha_1}$ cost $,\ldots,Y_{\alpha_n}$ cost \rangle .

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{\mathcal{C}}(s)$.

Corollary The post-hoc optimization heuristic dominates the canonical heuristic for the same set of abstractions.

 h^{PhO} vs $h^{\mathcal{C}}$

- \blacktriangleright For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- \triangleright The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- \blacktriangleright The post-hoc optimization heuristic solves an LP in each state.
- ▶ With post-hoc optimization, a large number of small patterns works well.

F9.4 [Summary](#page-27-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) December 11, 2024 28 / 29

Summary

- ▶ Post-hoc optimization heuristic constraints express admissibility of heuristics
- \triangleright exploits (ir-)relevance of operators for heuristics
- ▶ explores the middle ground between canonical heuristic and optimal cost partitioning.
- \blacktriangleright For the same set of abstractions, the post-hoc optimization heuristic dominates the canonical heuristic.
- \blacktriangleright The computation can be done in polynomial time.