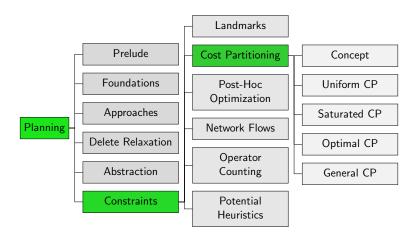
Planning and Optimization F7. Cost Partitioning

Malte Helmert and Gabriele Röger

Universität Basel

December 9, 2024



Introduction

Exploiting Additivity

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

Combining Heuristics (In)admissibly: Example

Let
$$h = h_1 + h_2 + h_3$$
.
 o_2, o_3, o_4
 o_2, o_3, o_4
 h_1
 O_1
 O_2
 O_3
 O_4
 O_1, o_4
 O_2
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_1, o_4
 O_2
 O_1
 O_2
 O_1
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_5
 O_5
 O_6
 O_7
 O_8
 O_9
 O

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4.

Combining Heuristics (In)admissibly: Example

Let
$$h = h_1 + h_2 + h_3$$
.
 o_2, o_3, o_4
 o_2, o_3, o_4
 h_1
 O_1
 O_2
 O_3
 O_4
 O_1, o_4
 O_2
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_1, o_3
 O_2
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_3
 O_4
 O_1
 O_2
 O_3
 O_4
 O_5
 O_1
 O_2
 O_3
 O_4
 O_5
 O_5
 O_5
 O_5
 O_6
 O_7
 O_8
 O_8
 O_9
 O_1
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_2
 O_3
 O_1
 O_2
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_2
 O_3
 O_1
 O_3
 O_1
 O_3
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_1
 O_2
 O_3
 O_1
 O_2
 O_2
 O_2
 O_1
 O_2
 O_1
 O_2
 O_2
 O_1
 O_2

 $\langle o_2, o_3, o_4 \rangle$ is a plan for $s = \langle B, A, A \rangle$ but h(s) = 4. Heuristics h_2 and h_3 both account for the single application of o_2 .

Solution: Cost Partitioning

Introduction 00000000

> The reason that h_2 and h_3 are not additive is because the cost of o₂ is considered in both.

Solution: Cost Partitioning

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Combining Heuristics Admissibly: Example

Let
$$h' = h_1 + h_2 + h'_3$$
, where $h'_3 = h^{v_3}$ assuming $cost_3(o_2) = 0$.

 o_2, o_3, o_4
 o_2, o_3, o_4
 o_1, o_2
 o_1, o_2
 o_2
 o_1, o_3
 o_1, o_2
 o_2
 o_1, o_2
 o_2
 o_3
 o_1, o_3
 o_1, o_3
 o_1, o_3
 o_1, o_3
 o_2
 o_3
 o_1, o_3
 o_1, o_3
 o_1, o_3
 o_2
 o_3
 o_1, o_3
 o_1, o_3
 o_1, o_3
 o_1, o_3

 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 3 an admissible estimate.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Introduction

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

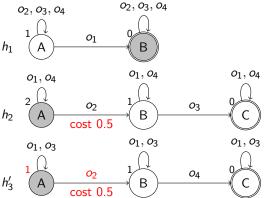
This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

Combining Heuristics Admissibly: Example

Let
$$h' = h'_1 + h'_2 + h'_3$$
, where $h'_i = h^{v_i}$ assuming $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$.



 $\langle o_2, o_3, o_4 \rangle$ is an optimal plan for $s = \langle B, A, A \rangle$ and h'(s) = 0 + 1.5 + 1.5 = 3 an admissible estimate.

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \leq cost(o) \text{ for all } o \in O$$

Solution: Cost Partitioning

The reason that h_2 and h_3 are not additive is because the cost of o_2 is considered in both.

Solution 1: We can ignore the cost of o_2 in all but one heuristic by setting its cost to 0 (e.g., $cost_3(o_2) = 0$).

This is a Zero-One cost partitioning.

Solution 2: We can equally distribute the cost of o_2 between the abstractions that use it (i.e. $cost_1(o_2) = 0$, $cost_2(o_2) = cost_3(o_2) = 0.5$).

This is a uniform cost partitioning.

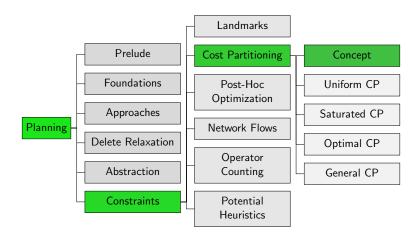
General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \leq cost(o) \text{ for all } o \in O$$

What about o_1 , o_3 and o_4 ?

Cost Partitioning

Content of the Course



Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- lacksquare $cost_i:O
 ightarrow\mathbb{R}^+_0$ for $1\leq i\leq n$ and

The cost partitioning induces a tuple $\langle \Pi_1, \dots, \Pi_n \rangle$ of planning tasks, where each Π_i is identical to Π except that the cost of each operator o is $cost_i(o)$.

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_i}^* \leq h_{\Pi}^*$.

Cost Partitioning: Admissibility (2)

Proof of Theorem.

If there is no plan for state s of Π , both sides are ∞ . Otherwise, let $\pi = \langle o_1, \dots, o_m \rangle$ be an optimal plan for s. Then

$$\sum_{i=1}^{n} h_{\Pi_{i}}^{*}(s) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} cost_{i}(o_{j}) \qquad (\pi \text{ plan in each } \Pi_{i})$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} cost_{i}(o_{j}) \qquad (comm./ass. \text{ of sum})$$

$$\leq \sum_{j=1}^{m} cost(o_{j}) \qquad (cost \text{ partitioning})$$

$$= h_{\Pi}^{*}(s) \qquad (\pi \text{ optimal plan in } \Pi)$$

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic h evaluated on task Π .

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \dots, \Pi_n \rangle$ be induced by a cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let $\langle \Pi_1, \ldots, \Pi_n \rangle$ be induced by a cost partitioning $\langle cost_1, \ldots, cost_n \rangle$.

If h_1, \ldots, h_n are consistent heuristics then $h = \sum_{i=1}^n h_{i,\Pi_i}$ is a consistent heuristic for Π .

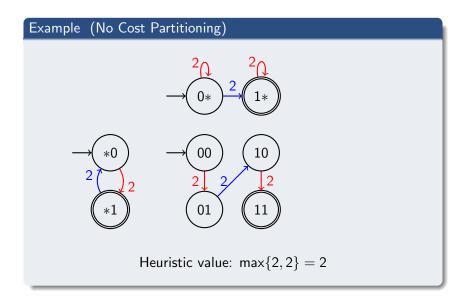
Proof.

Let o be an operator that is applicable in state s.

$$egin{aligned} h(s) &= \sum_{i=1}^n h_{i,\Pi_i}(s) \leq \sum_{i=1}^n (cost_i(o) + h_{i,\Pi_i}(s\llbracket o \rrbracket)) \ &= \sum_{i=1}^n cost_i(o) + \sum_{i=1}^n h_{i,\Pi_i}(s\llbracket o \rrbracket) \leq cost(o) + h(s\llbracket o \rrbracket) \end{aligned}$$

Example 10

Example 10



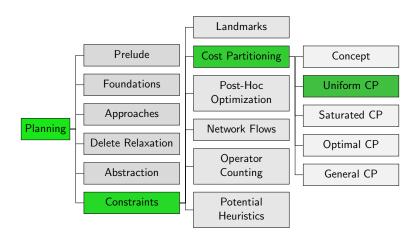
Example (Cost Partitioning 1) Heuristic value: 1 + 1 = 2

Example (Cost Partitioning 2) Heuristic value: 2 + 2 = 4

Example (Cost Partitioning 3) 10 Heuristic value: 0 + 0 = 0

- $h(s) = h_{1,\Pi_1}(s) + \cdots + h_{n,\Pi_n}(s)$ can be better or worse than any $h_{i,\Pi}(s)$ \rightarrow depending on cost partitioning
- strategies for defining cost-functions
 - uniform (now)
 - zero-one
 - saturated (afterwards)
 - optimal (next chapter)

Content of the Course



- Principal idea: Distribute the cost of each operator equally (= uniformly) among all heuristics.
- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
 - a disjunctive action landmark accounts for the contained operators,
 - a PDB heuristic accounts for all operators affecting the variables in the pattern.

Idea

- Principal idea: Distribute the cost of each operator equally (= uniformly) among all heuristics.
- But: Some heuristics do only account for the cost of certain operators and the cost of other operators does not affect the heuristic estimate. For example:
 - a disjunctive action landmark accounts for the contained operators,
 - a PDB heuristic accounts for all operators affecting the variables in the pattern.
- ⇒ Distribute the cost of each operator uniformly among all heuristics that account for this operator.

■ For disjunctive action landmark L of state s in task Π' , let $h_{l,\Pi'}(s)$ be the cost of L in Π' .

- Then $h_{L,\Pi'}(s)$ is admissible (in Π').
- Consider set $\mathcal{L} = \{L_1, \dots, L_n\}$ of disjunctive action landmarks for state s of task Π .
- Use cost partitioning $\langle cost_{L_1}, \ldots, cost_{L_n} \rangle$, where

$$cost_{L_i}(o) = \begin{cases} cost(o)/|\{L \in \mathcal{L} \mid o \in L\}| & \text{if } o \in L_i \\ 0 & \text{otherwise} \end{cases}$$

- Let $\langle \Pi_{L_1}, \dots, \Pi_{L_n} \rangle$ be the tuple of induced tasks.
- $h(s) = \sum_{i=1}^{n} h_{L_i, \Pi_{L_i}}(s)$ is an admissible estimate for s in Π .
- h is the uniform cost partitioning heuristic for landmarks.

Example: Uniform Cost Partitioning for Landmarks

Definition (Uniform Cost Partitioning Heuristic for Landmarks)

Let \mathcal{L} be a set of disjunctive action landmarks.

The uniform cost partitioning heuristic $h^{UCP}(\mathcal{L})$ is defined as

$$h^{UCP}(\mathcal{L}) = \sum_{L \in \mathcal{L}} \min_{o \in L} c'(o)$$
 with

$$c'(o) = cost(o)/|\{L \in \mathcal{L} \mid o \in L\}|.$$

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

$$L_1 = \{o_1, o_3\}, \ L_2 = \{o_1, o_2, o_4\}, \ L_3 = \{o_1, o_4, o_5\}$$

with operator cost function

$$c(o_1) = 6$$
, $c(o_2) = 4$, $c(o_3) = 1$, $c(o_4) = 6$, $c(o_5) = 3$

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

$$L_1 = \{o_1, o_3\}, L_2 = \{o_1, o_2, o_4\}, L_3 = \{o_1, o_4, o_5\}$$

with operator cost function

$$c(o_1) = 6$$
, $c(o_2) = 4$, $c(o_3) = 1$, $c(o_4) = 6$, $c(o_5) = 3$

UCP for landmarks uses adapted costs

$$c'(o_1) = 2$$
, $c'(o_2) = 4$, $c'(o_3) = 1$, $c'(o_4) = 3$, $c'(o_5) = 3$

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

$$L_1 = \{o_1, o_3\}, L_2 = \{o_1, o_2, o_4\}, L_3 = \{o_1, o_4, o_5\}$$

with operator cost function

$$c(o_1) = 6$$
, $c(o_2) = 4$, $c(o_3) = 1$, $c(o_4) = 6$, $c(o_5) = 3$

UCP for landmarks uses adapted costs

$$c'(o_1) = 2$$
, $c'(o_2) = 4$, $c'(o_3) = 1$, $c'(o_4) = 3$, $c'(o_5) = 3$

with resulting heuristic estimate

$$h^{UCP}(\{L_1, L_2, L_3\}) =$$

Example: Uniform Cost Partitioning for Landmarks

Example

Given disjunctive action landmarks

$$L_1 = \{o_1, o_3\}, L_2 = \{o_1, o_2, o_4\}, L_3 = \{o_1, o_4, o_5\}$$

with operator cost function

$$c(o_1) = 6$$
, $c(o_2) = 4$, $c(o_3) = 1$, $c(o_4) = 6$, $c(o_5) = 3$

UCP for landmarks uses adapted costs

$$c'(o_1) = 2$$
, $c'(o_2) = 4$, $c'(o_3) = 1$, $c'(o_4) = 3$, $c'(o_5) = 3$

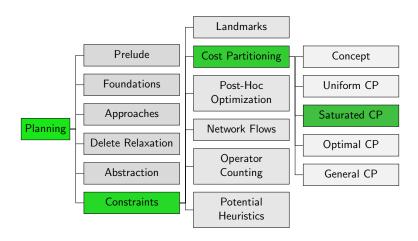
with resulting heuristic estimate

$$h^{UCP}(\{L_1, L_2, L_3\}) = 1 + 2 + 2 = 5.$$

(MHS heuristic estimate: 6)

Saturated Cost Partitioning

Content of the Course



Idea

Heuristics do not always "need" all operator costs

- Pick a heuristic and use minimum costs preserving all estimates
- Continue with remaining cost until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff between computation time and heuristic guidance in practice.

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and h be a heuristic.

A cost function scf is saturated for h and cost if

- \bullet scf(o) $\leq cost(o)$ for all operators o and
- 2 $h_{\prod_{s \in S}}(s) = h_{\prod}(s)$ for all states s, where Π_{scf} is Π with cost function scf.

Minimal Saturated Cost Function

For abstractions, there exists a unique minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction heuristic. The minimal saturated cost function for α is

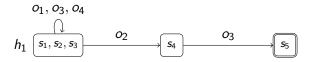
$$\operatorname{mscf}(o) = \max(\max_{\alpha(s) \stackrel{o}{\longrightarrow} \alpha(t)} h^{\alpha}(s) - h^{\alpha}(t), 0)$$

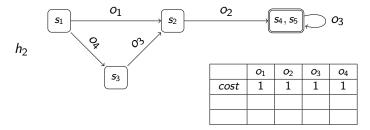
Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

- Pick a heuristic h_i that hasn't been picked before. Terminate if none is left.
- Compute h_i given current cost
- Ompute an (ideally minimal) saturated cost function scf; for h_i
- ① Decrease cost(o) by $scf_i(o)$ for all operators o $\langle scf_1, \dots, scf_n \rangle$ is saturated cost partitioning (SCP) for $\langle h_1, \ldots, h_n \rangle$ (in pick order)

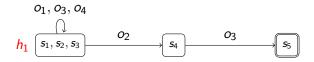
Consider the abstraction heuristics h_1 and h_2

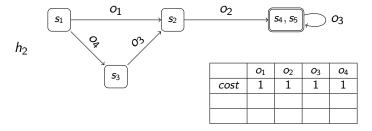




Consider the abstraction heuristics h_1 and h_2

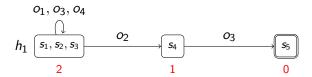
Pick a heuristic h_i

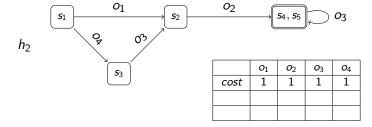




Consider the abstraction heuristics h_1 and h_2

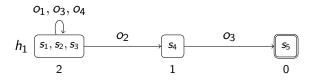
 \bigcirc Compute h_i

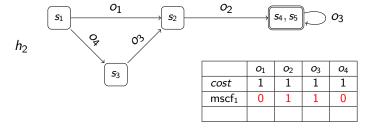




Consider the abstraction heuristics h_1 and h_2

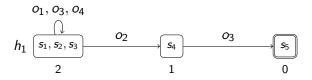
Compute minimal saturated cost function mscf_i for h_i

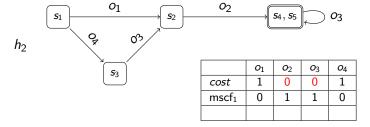




Consider the abstraction heuristics h_1 and h_2

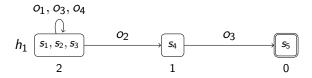
1 Decrease cost(o) by $mscf_i(o)$ for all operators o

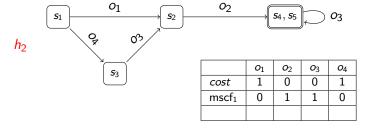




Consider the abstraction heuristics h_1 and h_2

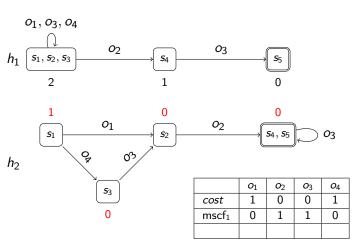
Pick a heuristic h_i





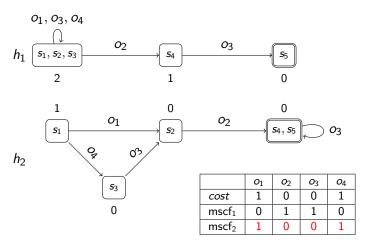
Consider the abstraction heuristics h_1 and h_2

 \bigcirc Compute h_i



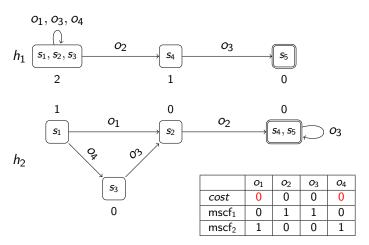
Consider the abstraction heuristics h_1 and h_2

3 Compute minimal saturated cost function $mscf_i$ for h_i



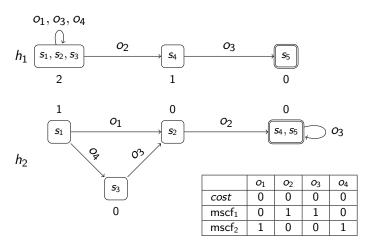
Consider the abstraction heuristics h_1 and h_2

1 Decrease cost(o) by $mscf_i(o)$ for all operators o



Consider the abstraction heuristics h_1 and h_2

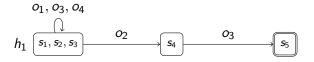
1 Pick a heuristic h_i . Terminate if none is left.

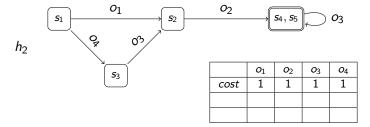


Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

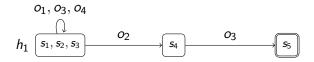
Consider the abstraction heuristics h_1 and h_2

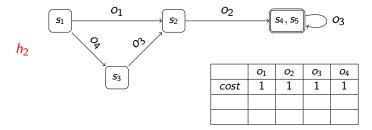




Consider the abstraction heuristics h_1 and h_2

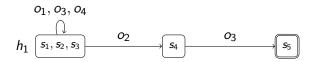
Pick a heuristic h_i

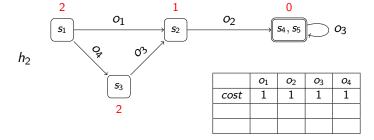




Consider the abstraction heuristics h_1 and h_2

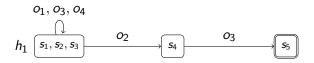
Compute h_i

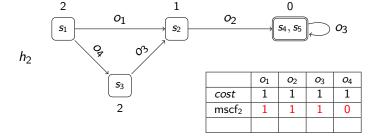




Consider the abstraction heuristics h_1 and h_2

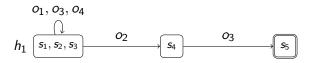
3 Compute minimal saturated cost function $mscf_i$ for h_i

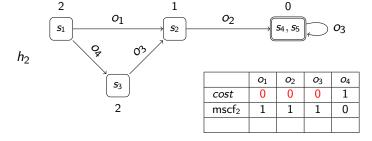




Consider the abstraction heuristics h_1 and h_2

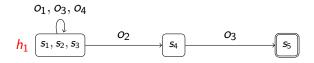
1 Decrease cost(o) by $mscf_i(o)$ for all operators o

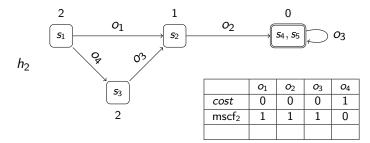




Consider the abstraction heuristics h_1 and h_2

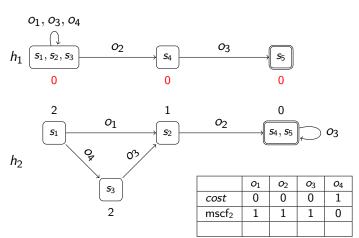
Pick a heuristic h_i





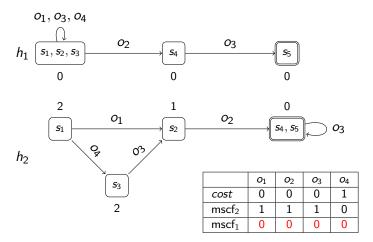
Consider the abstraction heuristics h_1 and h_2

Compute h_i



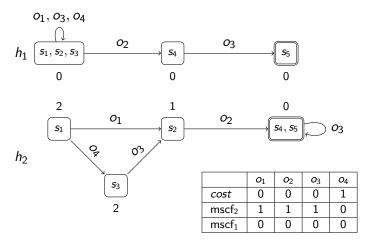
Consider the abstraction heuristics h_1 and h_2

3 Compute minimal saturated cost function $mscf_i$ for h_i



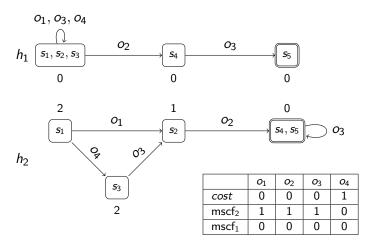
Consider the abstraction heuristics h_1 and h_2

① Decrease cost(o) by $mscf_i(o)$ for all operators o



Consider the abstraction heuristics h_1 and h_2

1 Pick a heuristic h_i . Terminate if none is left.



Influence of Selected Order

- quality highly susceptible to selected order
- there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for \mathcal{L} is

$$\operatorname{mscf}(o) = egin{cases} \min_{o \in \mathcal{L}} \operatorname{cost}(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

SCP for Disjunctive Action Landmarks

For disjunctive action landmarks we also know how to compute a minimal saturated cost function:

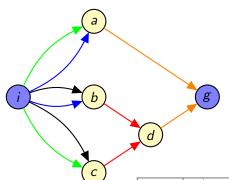
Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for \mathcal{L} is

$$\mathsf{mscf}(o) = egin{cases} \mathsf{min}_{o \in \mathcal{L}} \mathit{cost}(o) & \mathsf{if} \ o \in \mathcal{L} \\ 0 & \mathsf{otherwise} \end{cases}$$

Does this look familiar?

Reminder: LM-Cut



$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Saturated Cost Partitioning 0000000000000

round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
1	d	b	{o _{red} }	2
2	a	b	{o _{green} , o _{blue} }	4
3	d	С	$\{o_{green}, o_{black}\}$	1
			$h^{\text{LM-cut}}(I)$	7

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for \mathcal{L} is

$$\operatorname{mscf}(o) = egin{cases} \min_{o \in \mathcal{L}} \operatorname{cost}(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

Summary

Summary

- Cost partitioning allows to admissibly add up estimates of several heuristics.
- This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- Uniform cost partitioning distributes the cost of each operator uniformly among all heuristics that account for it.
- Saturated cost partitioning offers a good tradeoff between computation time and heuristic guidance.
- LM-Cut computes a SCP over disjunctive action landmarks.