

F6. Linear & Integer Programming

Motivation

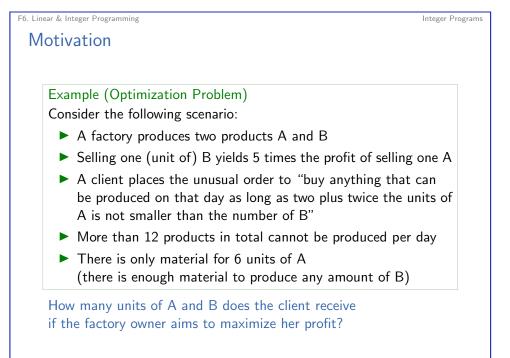
- This goes on beyond Computer Science
- Active research on IPs and LPs in
 - Operation Research
 - Mathematics
- Many application areas, for instance:
 - Manufacturing
 - Agriculture
 - Mining
 - Logistics
 - Planning
- As an application, we treat LPs / IPs as a blackbox
- We just look at the fundamentals
- However, even on the application side there is much more (e.g., modelling tricks or solver parameters to speed up computation)

Planning and Optimization

Integer Programs

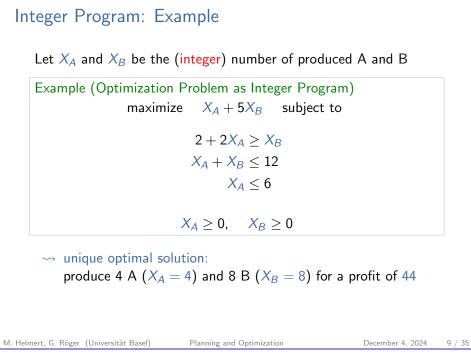
7 / 35

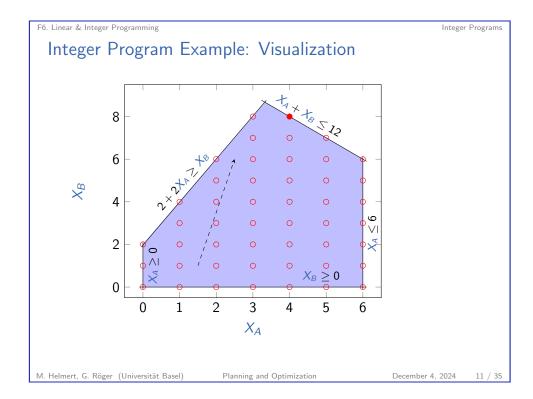
F6. Linear & Integer Pro	ogramming		Integer I	Programs
		Programs		
M. Helmert, G. Röger (I	Universität Basel)	Planning and Optimization	December 4, 2024	6 / 35



M. Helmert, G. Röger (Universität Basel)

F6. Linear & Integer Programming





F6. Linear & Integer Programming

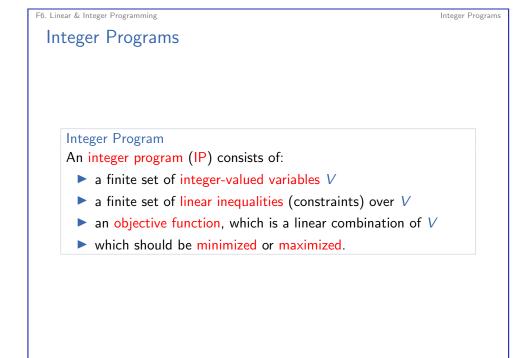
M. Helmert, G. Röger (Universität Basel)

Integer Programs

Integer Programs

Same Program as Input for the CPLEX Solver

Maximize obj: X_A + 5 X_B		
Subject To c1: -2 X_A + X_B <= 2		
c1: $-2 \times A + \times B <= 12$ c2: $X_A + X_B <= 12$		
Bounds		
0 <= X_A <= 6		
0 <= X_B		
General		
X_A X_B		
End		
ightarrow Demo		
lelmert, G. Röger (Universität Basel) Planning and Optim	ization December 4	, 2024 10 /



F6. Linear & Integer Programming

Terminology

- An integer program is feasible if there is such a feasible assignment. Otherwise it is infeasible.
- ► A feasible maximum (resp. minimum) problem is unbounded if the objective function can assume arbitrarily large positive (resp. negative) values at feasible assignments. Otherwise it is bounded.
- The objective value of a bounded feasible maximum (resp. minimum) problem is the maximum (resp. minimum) value of the objective function with a feasible assignment.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 4, 2024 13 / 35

Integer Programs

Integer Programs

F6. Linear & Integer Programming

Complexity of Solving Integer Programs	
As an IP can compute an MHS, solving an IP must be at least as complex as computing an MHS	
 Reminder: MHS is a "classical" NP-complete problem Good news: Solving an IP is not harder ~> Finding solutions for IPs is NP-complete. 	
Removing the requirement that solutions must be integer-valued leads to a simpler problem	

F6. Linear & Integer Programming

Example

Another Example

minimize $3X_{o_1} + 4X_{o_2} + 5X_{o_3}$ subject to

 $X_{04} \geq 1$ $X_{o_1} + X_{o_2} \ge 1$ $X_{o_1} + X_{o_3} \ge 1$ $X_{o_2} + X_{o_3} \ge 1$

 $X_{o_1} \ge 0, \quad X_{o_2} \ge 0, \quad X_{o_3} \ge 0, \quad X_{o_4} \ge 0$

Planning and Optimization

What example from a recent chapter does this IP encode?

 \rightsquigarrow the minimum hitting set from Chapter F4

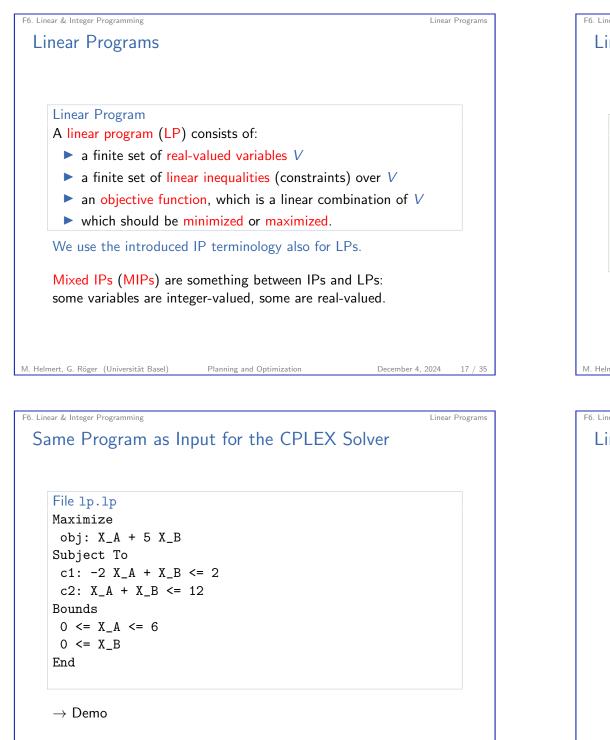
M. Helmert, G. Röger (Universität Basel)

December 4, 2024

Integer Programs

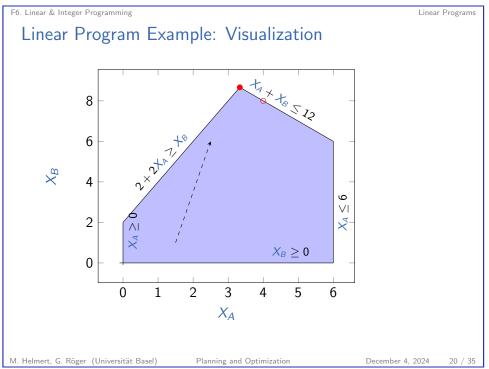
14 / 35

M. Helmert, G. Röger (Universität Basel)

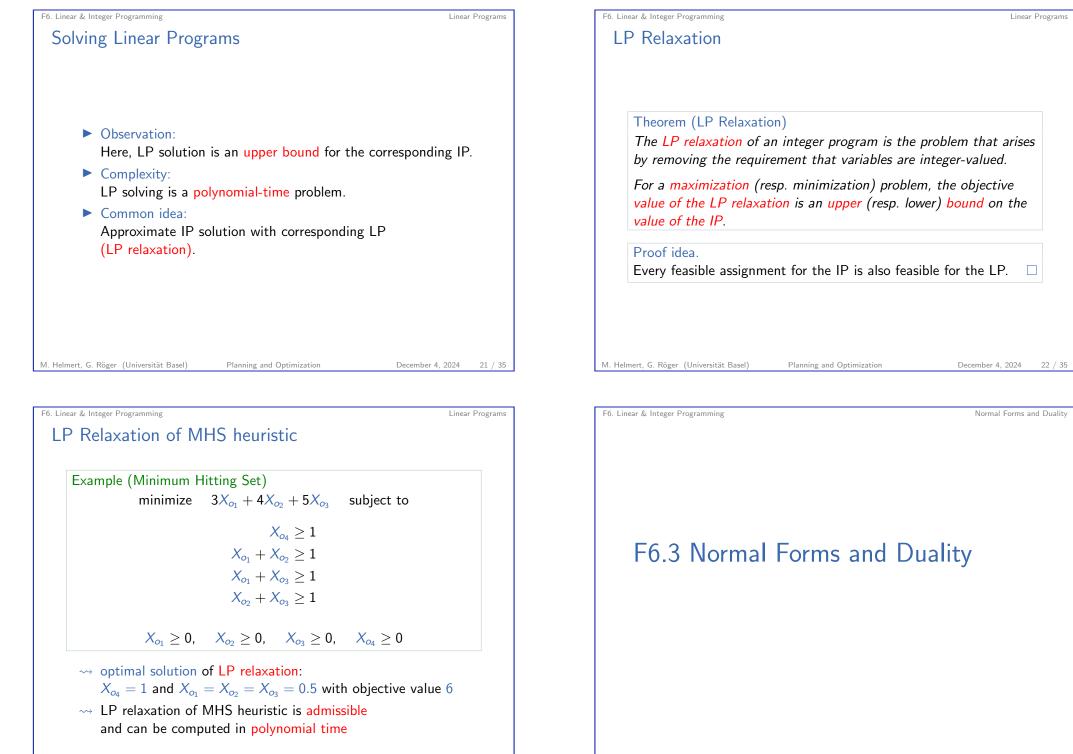


Planning and Optimization

F6. Linear & Integer Programming	Linear Programs
Linear Program: Example	
Let X_A and X_B be the (real-valued) number of produced A	and B
Example (Optimization Problem as Linear Program)	
maximize $X_A + 5X_B$ subject to	
$2+2X_A > X_B$	
$X_A + X_B < 12$	
$X_A \leq 6$	
$X_A \ge 0, X_B \ge 0$	
→ unique optimal solution: $X_A = 3\frac{1}{3}$ and $X_B = 8\frac{2}{3}$ with objective value $46\frac{2}{3}$	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization Decembe	r 4, 2024 18 / 35

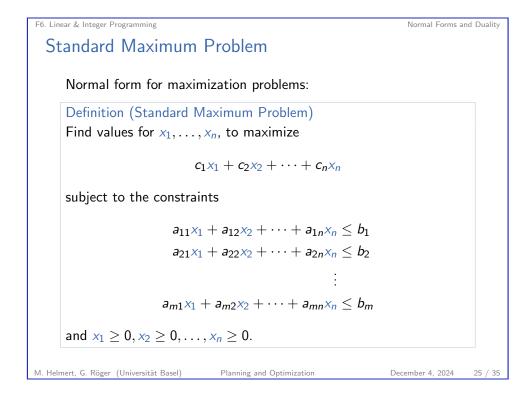


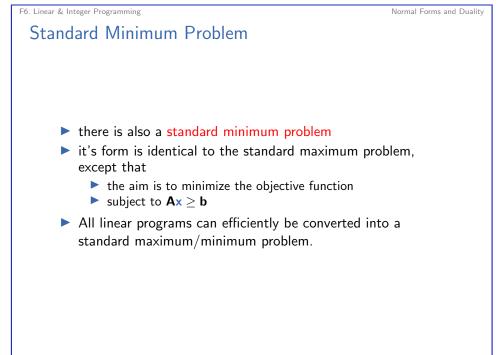
19 / 35



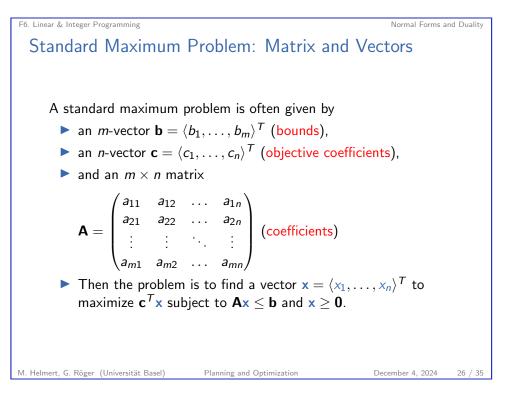
23 / 35

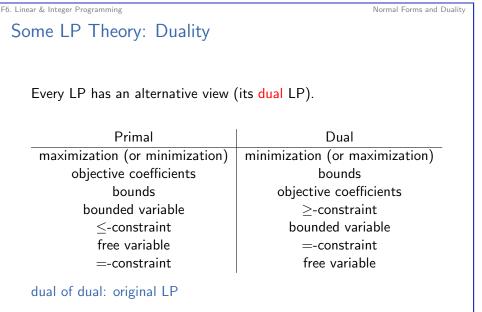
Planning and Optimization



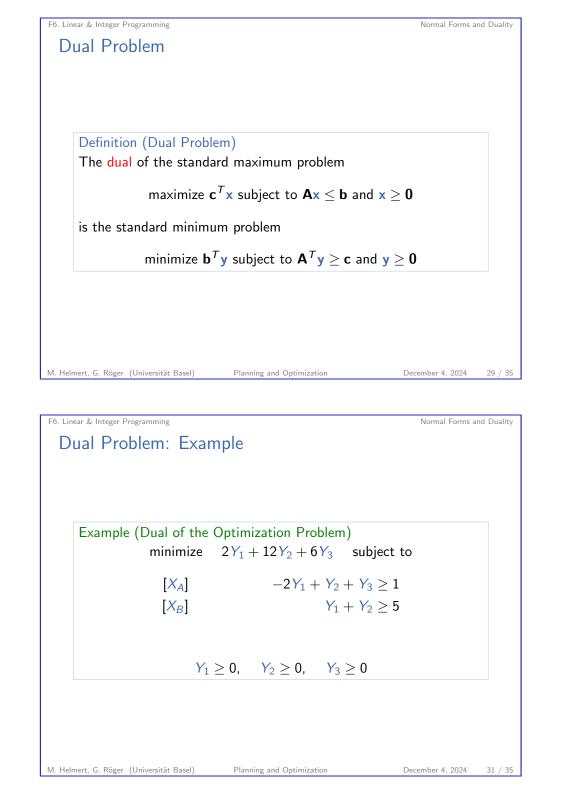


Planning and Optimization

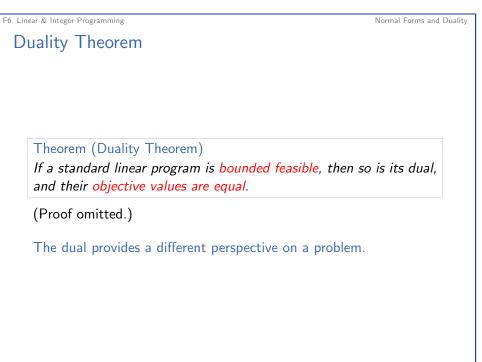


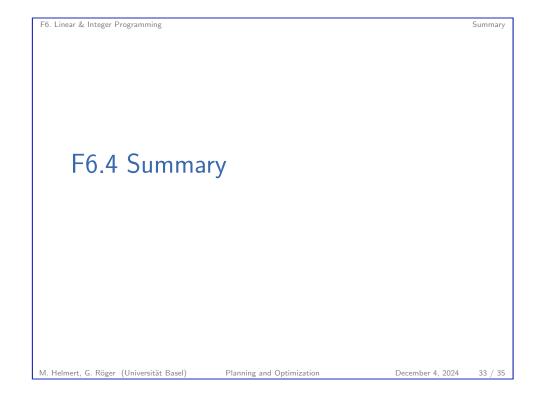


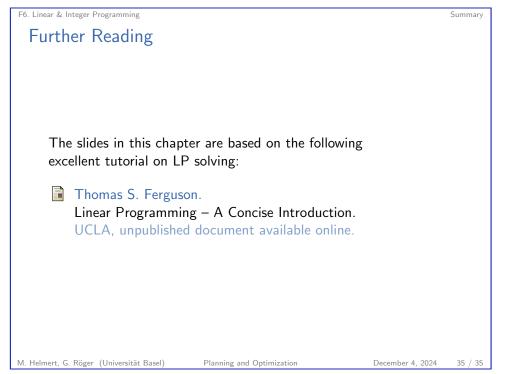
27 / 35



Example	(Dual of the Opti	mization Problem)	
	maximize	$X_A + 5X_B$ subject to	
	$[Y_1]$	$-2X_A + X_B \le 2$	
	[<i>Y</i> ₂]	$X_A + X_B \le 12$	
	[<i>Y</i> ₃]	$X_A \leq 6$	
	X	$X_B \ge 0, X_B \ge 0$	







F6. Linear & Integer Programming	Summary
Summary	
Linear (and integer) programs consist of an objective function	า
that should be maximized or minimized subject to a set of	
given linear constraints.	
Finding solutions for integer programs is NP-complete.	
LP solving is a polynomial time problem.	
The dual of a maximization LP is a minimization LP	
and vice versa.	
The dual of a bounded feasible LP has the	
same objective value.	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 4, 2024	34 / 35