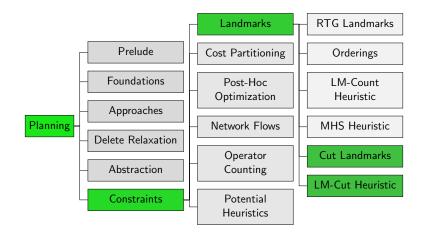
Planning and Optimization F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 4, 2024

Content of the Course



Roadmap for this Chapter

- We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- We then present a method that computes disjunctive action landmarks for such tasks.
- We conclude with the LM-cut heuristic that builds on this method.

Summary 00

i-g Form

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in i-g form if

- V contains atoms i and g
- Initially exactly *i* is true: I(v) = T iff v = i
- g is the only goal atom: $\gamma = \{g\}$
- Every action has at least one precondition.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- Add *i* and *g* to *V*.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- Replace all operator preconditions \top with *i*.
- Replace initial state and goal.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- Add *i* and *g* to *V*.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- Replace all operator preconditions \top with *i*.
- Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto T\} \cup \{v \mapsto F \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators

•
$$o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$$
,

•
$$o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$$

•
$$o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$$

•
$$o_{\mathsf{red}} = \langle \{b,c\}, \{d\}, \{\}, 2
angle$$
, and

•
$$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle.$$

optimal solution?

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto T\} \cup \{v \mapsto F \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators

•
$$o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$$
,

•
$$o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$$

•
$$o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$$

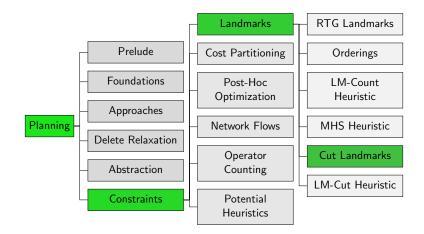
•
$$o_{\mathsf{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$$
, and

optimal solution to reach g from i:

Summary 00

Cut Landmarks

Content of the Course



Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) $P: O \to V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

Let *P* be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The justification graph for *P* is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

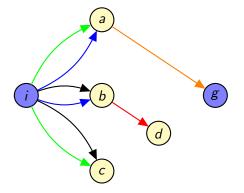
- the vertices are the variables from V, and
- *E* contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

Summary 00

Example: Justification Graph

Example (Precondition Choice Function)

$$P(o_{\text{blue}}) = P(o_{\text{green}}) = P(o_{\text{black}}) = i, P(o_{\text{red}}) = b, P(o_{\text{orange}}) = a$$

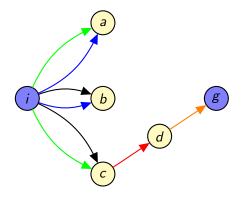


$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\mathbf{\textit{o}}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Example: Justification Graph

Example (Precondition Choice Function)

$$\begin{split} P(o_{\text{blue}}) &= P(o_{\text{green}}) = P(o_{\text{black}}) = i, \ P(o_{\text{red}}) = b, \ P(o_{\text{orange}}) = a \\ P'(o_{\text{blue}}) &= P'(o_{\text{green}}) = P'(o_{\text{black}}) = i, \ P'(o_{\text{red}}) = c, \ P'(o_{\text{orange}}) = d \end{split}$$

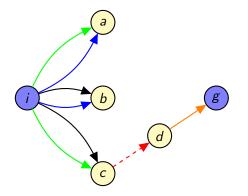


$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{ ext{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.

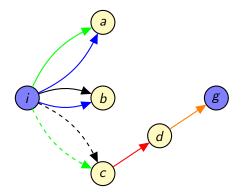


 $\begin{array}{l} o_{\mathsf{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4\rangle \\ o_{\mathsf{green}} = \langle \{i\}, \{a, c\}, \{\}, 5\rangle \\ o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3\rangle \\ o_{\mathsf{red}} = \langle \{b, c\}, \{d\}, \{\}, 2\rangle \\ o_{\mathsf{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0\rangle \end{array}$

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$\mathcal{O}_{orange} = \langle \{ a, d \}, \{ g \}, \{ \}, 0 angle$

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a cut in the justification graph for P.

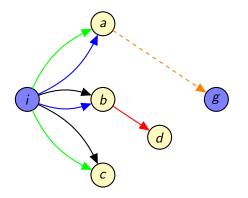
The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for I.

Proof idea:

- The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example: Cuts in Justification Graphs

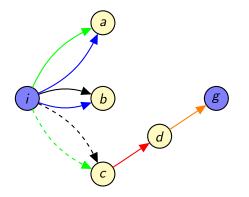
•
$$L_1 = \{o_{\text{orange}}\} (\text{cost} = 0)$$



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\mathbf{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Example: Cuts in Justification Graphs

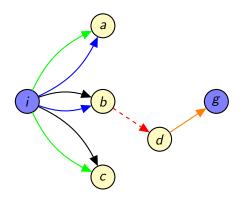
•
$$L_1 = \{o_{\text{orange}}\} \text{ (cost} = 0)$$
 • $L_2 = \{o_{\text{green}}, o_{\text{black}}\} \text{ (cost} = 3)$



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b,c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 angle$

Example: Cuts in Justification Graphs

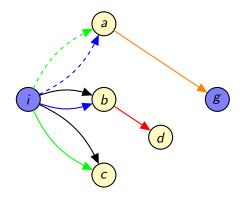
•
$$L_1 = \{o_{\text{orange}}\} (\text{cost} = 0)$$
 • $L_2 = \{o_{\text{green}}, o_{\text{black}}\} (\text{cost} = 3)$
• $L_3 = \{o_{\text{red}}\} (\text{cost} = 2)$



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\mathbf{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Example: Cuts in Justification Graphs

$$L_1 = \{o_{\text{orange}}\} (\text{cost} = 0) \quad L_2 = \{o_{\text{green}}, o_{\text{black}}\} (\text{cost} = 3)$$
$$L_3 = \{o_{\text{red}}\} (\text{cost} = 2) \quad L_4 = \{o_{\text{green}}, o_{\text{blue}}\} (\text{cost} = 4)$$



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 angle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Summary 00

Power of Cuts in Justification Graphs

• Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

 \rightsquigarrow Hitting set heuristic for ${\cal L}$ is perfect.

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

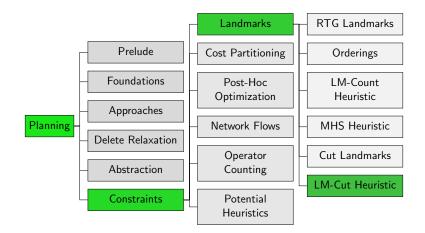
 \rightsquigarrow Hitting set heuristic for $\mathcal L$ is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for L and plans, i.e., each hitting set for L corresponds to a plan, and vice versa.

The LM-Cut Heuristic

Content of the Course



LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- As a side effect, it computes a
 - a cost partitioning over multiple instances of h^{\max} that is also
 - a saturated cost partitioning over disjunctive action landmarks. → next week

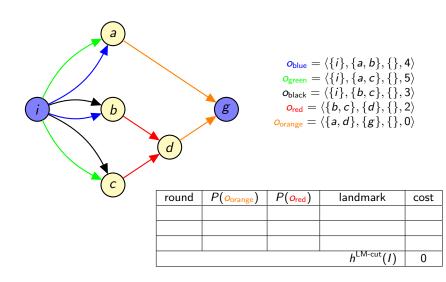
LM-Cut Heuristic

h^{LM-cut}: Helmert & Domshlak (2009)

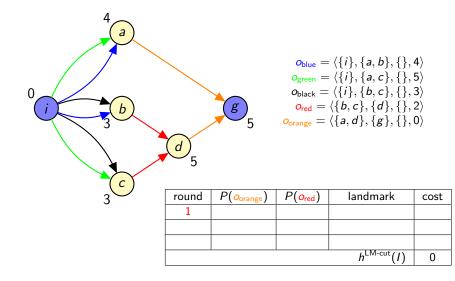
Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- Compute h^{\max} values of the variables. Stop if $h^{\max}(g) = 0$.
- Compute justification graph G for the P that chooses preconditions with maximal h^{max} value
- Determine the goal zone V_g of G that consists of all nodes that have a zero-cost path to g.
- Compute the cut L that contains the labels of all edges ⟨v, o, v'⟩ such that v ∉ V_g, v' ∈ V_g and v can be reached from i without traversing a node in V_g. It is guaranteed that cost(L) > 0.
- **Increase** $h^{\text{LM-cut}}(I)$ by cost(L).
- Decrease cost(o) by cost(L) for all $o \in L$.

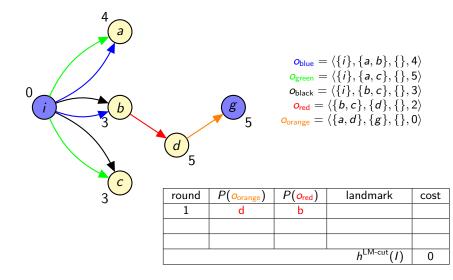
Example: Computation of LM-Cut



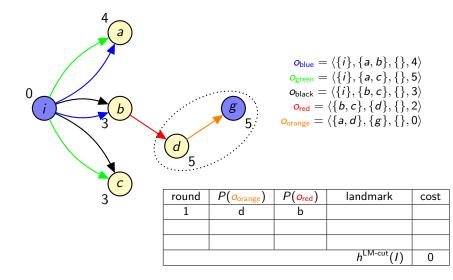
() Compute h^{\max} values of the variables



2 Compute justification graph



Oetermine goal zone

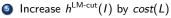


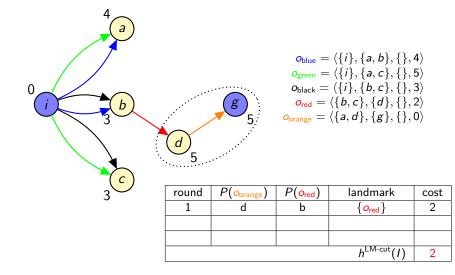
The LM-Cut Heuristic $0000 \bullet 0$

Example: Computation of LM-Cut

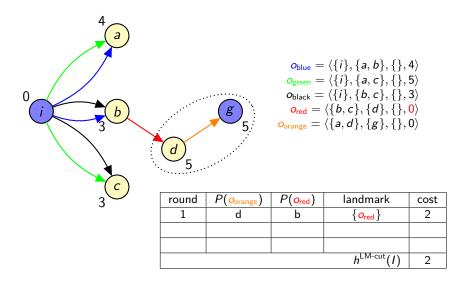
Compute cut

	d 5	g ₅	Ogreen = O _{black} = O _{red} = O _{orange} =	$\{\langle \{i\}, \{a, b\}, \{\}, \{c, c\}, \{a, c\}, \{a, c\}, \{a, c\}, \{a, c\}, \{b, c\}, \{b, c\}, \{d\}, \{c\}, \{d\}, \{c\}, \{d\}, \{d\}, \{g\}, \{d\}, \{d\}, \{g\}, \{d\}, \{d\}, \{d\}, \{d\}, \{d\}, \{d\}, \{d\}, \{d$	5) 3) 2)
3	round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
-	1	d	b	$\{O_{red}\}$	2
				$h^{LM-cut}(I)$	0

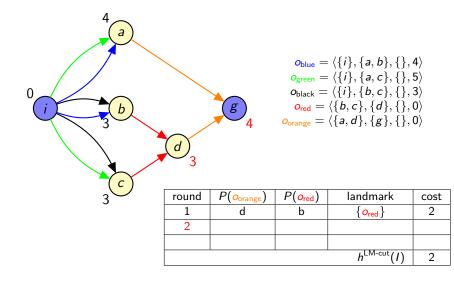




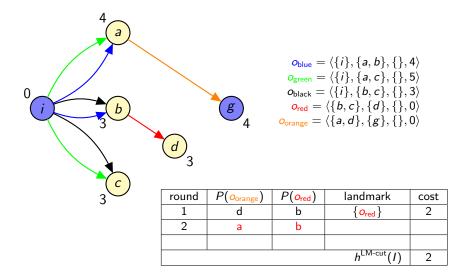
() Decrease cost(o) by cost(L) for all $o \in L$



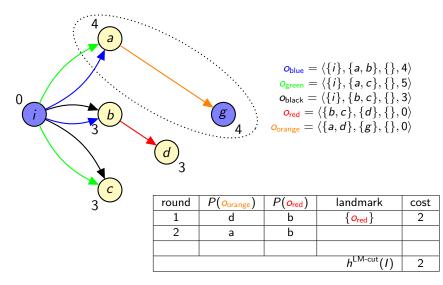
() Compute h^{\max} values of the variables



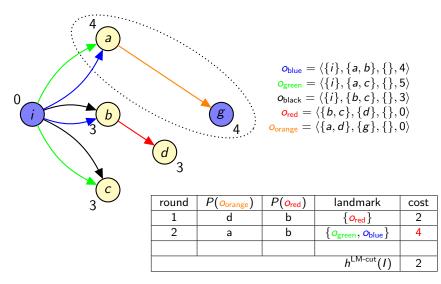
2 Compute justification graph



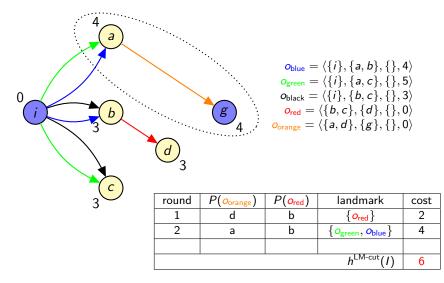
Oetermine goal zone



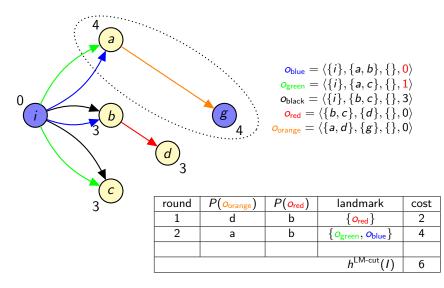
Ompute cut



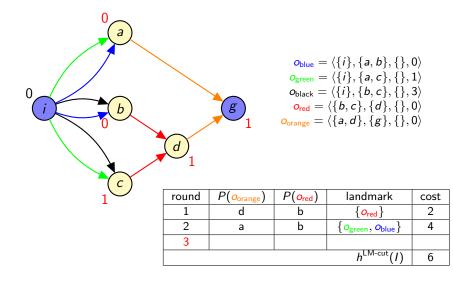
(5) Increase $h^{\text{LM-cut}}(I)$ by cost(L)



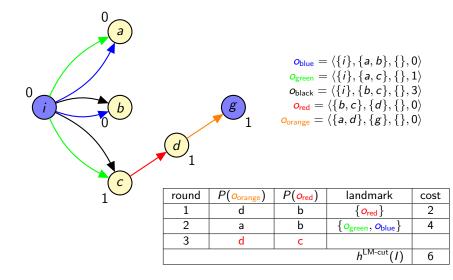
• Decrease cost(o) by cost(L) for all $o \in L$



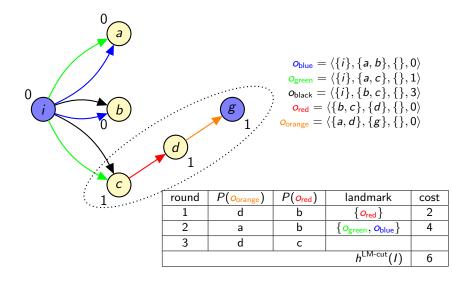
() Compute h^{\max} values of the variables



2 Compute justification graph



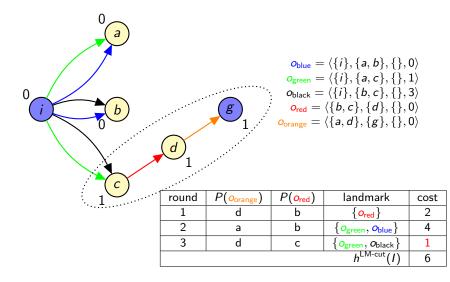
Oetermine goal zone

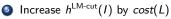


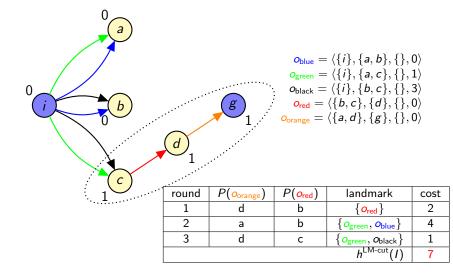
The LM-Cut Heuristic

Example: Computation of LM-Cut

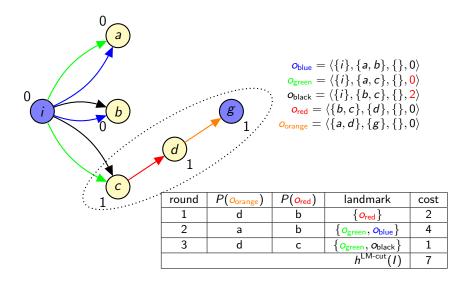
Compute cut



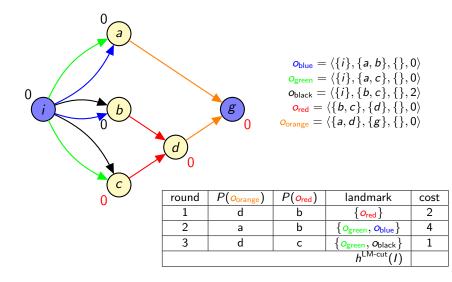




• Decrease cost(o) by cost(L) for all $o \in L$



() Compute h^{\max} values of the variables. Stop if $h^{\max}(g) = 0$.



The LM-Cut Heuristic

Properties of LM-Cut Heuristic

Theorem

Let $\langle V, I, O, \gamma \rangle$ be a delete-free STRIPS task in i-g normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

Proof omitted.

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bounded by h^+ .

The LM-Cut Heuristic

Summary

Summary

- Cuts in justification graphs are a general method to find disjunctive action landmarks.
- The minimum hitting set over all cut landmarks is a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.