Planning and Optimization F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 4, 2024

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 4, 2024 1 / 26

Planning and Optimization December 4, 2024 — F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

F5.1 i-g Form

F5.2 Cut Landmarks

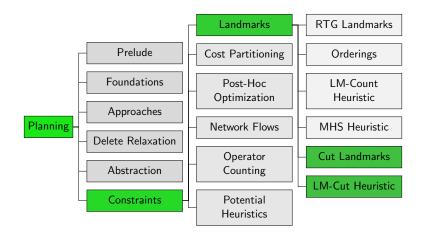
F5.3 The LM-Cut Heuristic

F5.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Content of the Course



M. Helmert, G. Röger (Universität Basel)

Roadmap for this Chapter

- We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- We then present a method that computes disjunctive action landmarks for such tasks.
- We conclude with the LM-cut heuristic that builds on this method.

F5.1 i-g Form

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 4, 2024 5 / 26

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in i-g form if

- V contains atoms i and g
- Initially exactly *i* is true: I(v) = T iff v = i
- g is the only goal atom: $\gamma = \{g\}$
- Every action has at least one precondition.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- ▶ If *i* or *g* are in *V* already, rename them everywhere.
- Add i and g to V.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- Replace all operator preconditions \top with *i*.
- Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto T\} \cup \{v \mapsto F \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators

optimal solution to reach g from i:

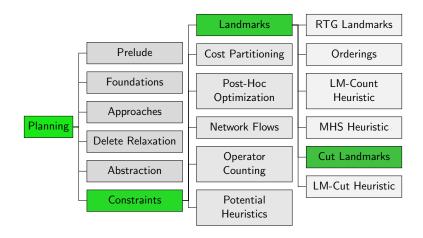
F5.2 Cut Landmarks

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 4, 2024 9 / 26

Content of the Course



Justification Graphs

Definition (Precondition Choice Function) A precondition choice function (pcf) $P: O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The justification graph for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

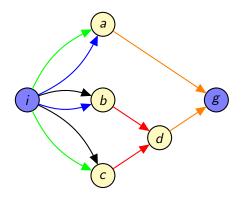
- \blacktriangleright the vertices are the variables from V, and
- *E* contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

Example: Justification Graph

Example (Precondition Choice Function)

$$P(o_{blue}) = P(o_{green}) = P(o_{black}) = i, P(o_{red}) = b, P(o_{orange}) = a$$

 $P'(o_{blue}) = P'(o_{green}) = P'(o_{black}) = i, P'(o_{red}) = c, P'(o_{orange}) = d$

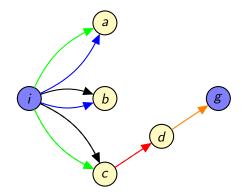


$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$\mathcal{O}_{\mathrm{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 angle$

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 angle$
$\textit{o}_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$\mathcal{O}_{\mathrm{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

Cuts are Disjunctive Action Landmarks

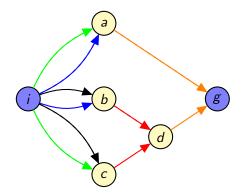
Theorem (Cuts are Disjunctive Action Landmarks) Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a cut in the justification graph for P. The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for I.

Proof idea:

- The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example: Cuts in Justification Graphs

Example (Landmarks) $L_1 = \{o_{\text{orange}}\} (\text{cost} = 0) \quad \blacktriangleright \quad L_2 = \{o_{\text{green}}, o_{\text{black}}\} (\text{cost} = 3) \\ L_3 = \{o_{\text{red}}\} (\text{cost} = 2) \quad \blacktriangleright \quad L_4 = \{o_{\text{green}}, o_{\text{blue}}\} (\text{cost} = 4)$



$o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$
$o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 angle$
$o_{black} = \langle \{i\}, \{b,c\}, \{\}, 3 angle$
$o_{red} = \langle \{b,c\}, \{d\}, \{\}, 2 angle$
$\textit{o}_{\rm orange} = \langle \{a,d\}, \{g\}, \{\}, 0\rangle$

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state 1. Then $h^{MHS}(\mathcal{L}) = h^+(1)$.

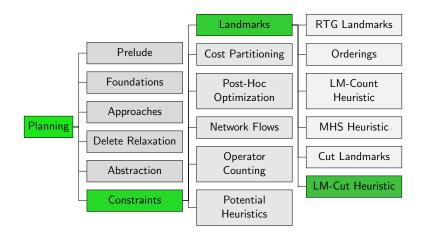
 \rightsquigarrow Hitting set heuristic for $\mathcal L$ is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for L and plans, i.e., each hitting set for L corresponds to a plan, and vice versa.

F5.3 The LM-Cut Heuristic

Content of the Course



LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- As a side effect, it computes a
 - a cost partitioning over multiple instances of h^{\max} that is also
 - a saturated cost partitioning over disjunctive action landmarks. ~ next week

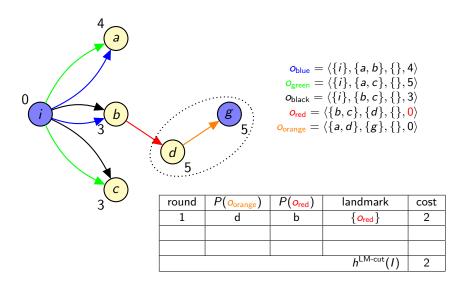
LM-Cut Heuristic

 $h^{\text{LM-cut}}$: Helmert & Domshlak (2009) Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- Compute h^{\max} values of the variables. Stop if $h^{\max}(g) = 0$.
- Compute justification graph G for the P that chooses preconditions with maximal h^{max} value
- Determine the goal zone V_g of G that consists of all nodes that have a zero-cost path to g.
- Compute the cut L that contains the labels of all edges (v, o, v') such that v ∉ V_g, v' ∈ V_g and v can be reached from i without traversing a node in V_g. It is guaranteed that cost(L) > 0.
- Increase $h^{\text{LM-cut}}(I)$ by cost(L).
- Decrease cost(o) by cost(L) for all $o \in L$.

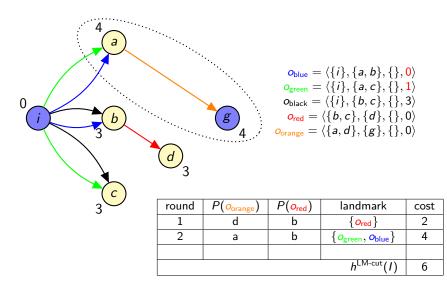
F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Computation of LM-Cut

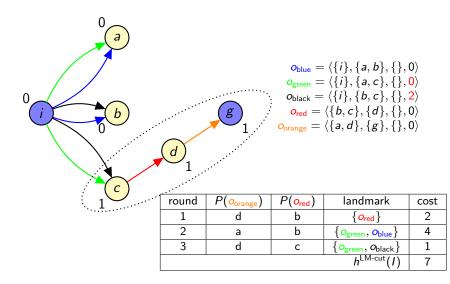


F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Computation of LM-Cut



Example: Computation of LM-Cut



F5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Properties of LM-Cut Heuristic

Theorem Let $\langle V, I, O, \gamma \rangle$ be a delete-free STRIPS task in i-g normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

Proof omitted.

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bounded by h^+ .

F5.4 Summary

M. Helmert, G. Röger (Universität Basel)

Summary

- Cuts in justification graphs are a general method to find disjunctive action landmarks.
- The minimum hitting set over all cut landmarks is a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.