Planning and Optimization F3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 2, 2024

[Landmark Orderings](#page-1-0)

Content of the Course

Why Landmark Orderings?

- \blacksquare To compute a landmark heuristic estimate for state s we need landmarks for s.
- We could invest the time to compute them for every state from scratch.
- **Alternatively, we can compute landmarks once and** propagate them over operator applications.
- **Example 2** Landmark orderings are used to detect landmarks that should be further considered because they (again) need to be satisfied later.
- \blacksquare (We will later see yet another approach, where heuristic computation and landmark computation are integrated \rightsquigarrow LM-Cut.)

Example

Consider task
$$
\langle \{a, b, c, d\}, I, \{o_1, o_2, \ldots, o_n\}, d \rangle
$$
 with
\n $I(v) = \bot$ for $v \in \{a, b, c, d\},$

$$
\blacksquare \ o_1 = \langle \top, a \wedge b \rangle, \text{ and}
$$

o $o_2 = \langle a, c \wedge \neg a \wedge \neg b \rangle$ (plus some more operators).

You know that a, b, c and d are all fact landmarks for I .

■ What landmarks are still required to be made true in state $I\llbracket \langle o_1, o_2 \rangle \rrbracket$?

Example

Consider task
$$
\langle \{a, b, c, d\}, I, \{o_1, o_2, \ldots, o_n\}, d \rangle
$$
 with
\n $I(v) = \bot$ for $v \in \{a, b, c, d\},$

$$
\quad \text{ \quad }o_1=\langle \top, a\wedge b\rangle, \text{ and }
$$

 \bullet \circ \circ \leq \langle a, c \land \neg a \land \neg b \rangle (plus some more operators).

You know that a, b, c and d are all fact landmarks for I .

- What landmarks are still required to be made true in state $I\llbracket \langle o_1, o_2 \rangle \rrbracket$?
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?

Terminology

Let $\pi = \langle o_1, \ldots, o_n \rangle$ be a sequence of operators applicable in state I and let φ be a formula over the state variables.

- $\Box \varphi$ is true at time *i* if $I[[\langle o_1, \ldots, o_i \rangle]] \models \varphi$.
- Also special case $i = 0$: φ is true at time 0 if $I \models \varphi$.
- No formula is true at time $i < 0$.
- \bullet φ is added at time *i* if it is true at time *i* but not at time *i* − 1.
- \bullet is first added at time *i* if it is true at time *i* but not at any time $i < i$. We denote this *i* by first(φ , π).
- **last(** φ , π) denotes the last time in which φ is added in π .

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a a natural ordering between φ and ψ (written $\varphi \rightarrow \psi$) if in each plan π it holds that first(φ, π) $<$ first(ψ, π). " φ must be true some time strictly before ψ is first added."

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

- **a** a natural ordering between φ and ψ (written $\varphi \rightarrow \psi$) if in each plan π it holds that first(φ , π) $<$ first(ψ , π). " φ must be true some time strictly before ψ is first added."
- **a** a greedy-necessary ordering between φ and ψ (written $(\varphi \rightarrow_{\text{gn}} \psi)$ if for every plan $\pi = \langle o_1, \ldots, o_n \rangle$ it holds that $\mathcal{S}[\![\langle o_1, \ldots, o_{\text{first}(\psi, \pi)-1} \rangle]\!] \models \varphi.$
"

" φ must be true immediately before ψ is first added."

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

- **a** a natural ordering between φ and ψ (written $\varphi \rightarrow \psi$) if in each plan π it holds that $first(\varphi, \pi) < first(\psi, \pi)$. " φ must be true some time strictly before ψ is first added."
- **a** a greedy-necessary ordering between φ and ψ (written $(\varphi \rightarrow_{\text{gn}} \psi)$ if for every plan $\pi = \langle o_1, \ldots, o_n \rangle$ it holds that $\mathcal{S}[\![\langle o_1, \ldots, o_{\text{first}(\psi, \pi)-1} \rangle]\!] \models \varphi.$
"

" φ must be true immediately before ψ is first added."

a weak ordering between φ and ψ (written $\varphi \rightarrow_w \psi$) if in each plan π it holds that first(φ, π) $<$ last(ψ, π). " φ must be true some time before ψ is last added."

Not covered: reasonable orderings, which generalize weak orderings

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written $\varphi \to \psi$) if in each plan π it holds that first(φ, π) $<$ first(ψ, π).

- \blacksquare We can directly determine natural orderings from the LM sets computed from the simplified relaxed task graph.
- For fact landmarks v, v' with $v \neq v'$, if $n_{v'} \in LM(n_v)$ then $v' \to v$.

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between φ and ψ (written $\varphi \rightarrow_{\text{gn}} \psi$) if in each plan where ψ is first added at time *i*, φ is true at time $i-1$.

■ We can again determine such orderings from the sRTG.

- For an OR node n_v , we define the set of first achievers as $FA(n_v) = \{n_o \mid n_o \in succ(n_v) \text{ and } n_v \notin LM(n_o)\}.$
- Then $v' \rightarrow_{gn} v$ if $n_{v'} \in succ(n_o)$ for all $n_o \in FA(n_v)$.

[Landmark Propagation](#page-12-0)

Example Revisited

Consider task
$$
\langle \{a, b, c, d\}, I, \{o_1, o_2, \ldots, o_n\}, d \rangle
$$
 with
\n $I(v) = \bot$ for $v \in \{a, b, c, d\},$
\n $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state $I\Vert \langle o_1, o_2 \rangle$ all not achieved yet on the state path
- \blacksquare You get the additional information that variable a must be true immediately before d is first made true. Any changes? Exploit orderings to determine landmarks that are still required.

Example Revisited

Consider task
$$
\langle \{a, b, c, d\}, I, \{o_1, o_2, \ldots, o_n\}, d \rangle
$$
 with
\n $I(v) = \perp$ for $v \in \{a, b, c, d\},$
\n $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state $I\Vert \langle o_1, o_2 \rangle$ all not achieved yet on the state path
- \blacksquare You get the additional information that variable a must be true immediately before d is first made true. Any changes? Exploit orderings to determine landmarks that are still required.
- \blacksquare There is another path to the same state where b was never true. What now?

Example Revisited

Consider task
$$
\langle \{a, b, c, d\}, I, \{o_1, o_2, \ldots, o_n\}, d \rangle
$$
 with

\n\n $I(v) = \perp$ for $v \in \{a, b, c, d\}$,

\n\n \bullet $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).\n

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state $I\Vert \langle o_1, o_2 \rangle$ all not achieved yet on the state path
- \blacksquare You get the additional information that variable a must be true immediately before d is first made true. Any changes? Exploit orderings to determine landmarks that are still required.

 \blacksquare There is another path to the same state where b was never true. What now? Exploit information from multiple paths.

In the following, \mathcal{L}_I is always a set of formula landmarks for the initial state with set of orderings $\mathcal{O}_I.$

- In the following, \mathcal{L}_I is always a set of formula landmarks for the initial state with set of orderings $\mathcal{O}_I.$
- The set $\mathcal{L}^*_\text{past}(s)$ of past landmarks of a state s contains all landmarks from \mathcal{L}_I that are at some point true in every path from the initial state to s.

- In the following, \mathcal{L}_I is always a set of formula landmarks for the initial state with set of orderings $\mathcal{O}_I.$
- The set $\mathcal{L}^*_\text{past}(s)$ of past landmarks of a state s contains all landmarks from \mathcal{L}_I that are at some point true in every path from the initial state to s.
- The set $\mathcal{L}^*_{\text{fut}}(s)$ of future landmarks of a state s contains all landmarks from \mathcal{L}_I that are also landmarks of s but not true in s.

- In the following, \mathcal{L}_I is always a set of formula landmarks for the initial state with set of orderings $\mathcal{O}_I.$
- The set $\mathcal{L}^*_\text{past}(s)$ of past landmarks of a state s contains all landmarks from \mathcal{L}_I that are at some point true in every path from the initial state to s.
- The set $\mathcal{L}^*_{\text{fut}}(s)$ of future landmarks of a state s contains all landmarks from \mathcal{L}_I that are also landmarks of s but not true in s.
- **Past landmarks are important for inferring which orderings are** still relevant, future landmarks are relevant for the heuristic estimates.

- In the following, \mathcal{L}_I is always a set of formula landmarks for the initial state with set of orderings $\mathcal{O}_I.$
- The set $\mathcal{L}^*_\text{past}(s)$ of past landmarks of a state s contains all landmarks from \mathcal{L}_I that are at some point true in every path from the initial state to s.
- The set $\mathcal{L}^*_{\text{fut}}(s)$ of future landmarks of a state s contains all landmarks from \mathcal{L}_I that are also landmarks of s but not true in s.
- **Past landmarks are important for inferring which orderings are** still relevant, future landmarks are relevant for the heuristic estimates.
- Since the exact sets are defined over all paths between certain states, we use approximations.

Landmark State

Definition

Let \mathcal{L}_I be a set of formula landmarks for the initial state. A landmark state L is \perp or a pair $\langle \mathcal{L}_{\text{past}}, \mathcal{L}_{\text{fut}} \rangle$ such that $\mathcal{L}_{\mathsf{fut}} \cup \mathcal{L}_{\mathsf{past}} = \mathcal{L}_{I}.$

Landmark State

Definition

Let \mathcal{L}_I be a set of formula landmarks for the initial state. A landmark state L is \perp or a pair $\langle \mathcal{L}_{\text{past}}, \mathcal{L}_{\text{fut}} \rangle$ such that $\mathcal{L}_{\mathsf{fut}} \cup \mathcal{L}_{\mathsf{past}} = \mathcal{L}_{I}.$ \mathbb{L} is valid in state s if \blacksquare \blacksquare \bot and \blacksquare has no s-plan, or $\mathbb{L}=\langle\mathcal{L}_{\mathsf{past}},\mathcal{L}_{\mathsf{fut}}\rangle$ with $\mathcal{L}_{\mathsf{past}}\supseteq\mathcal{L}_{\mathsf{past}}^*$ and $\mathcal{L}_{\mathsf{fut}}\subseteq\mathcal{L}_{\mathsf{fut}}^*.$

Context in Search: LM-BFS Algorithm

```
\mathbb{L}(\textsf{init}), \mathcal{L}_I, \mathcal{O}_I := \textsf{compute\_landmark\_info}(\textsf{init}())if h(int(), \mathbb{L} (init)) < \infty then
      open.insert(\langleinit(), 0, h(init(), \mathbb{L}(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()
      if v < h(s, \mathbb{L}(s)) then
            open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
      else if g < distances(s) then
            distances(s) := gif is \text{goal}(s) then return extract plan(s);
             foreach \langle a, s' \rangle \in succ(s) do
                   \mathbb{L}' := \mathsf{progress}\_\mathsf{land} \mathsf{mark}\_\mathsf{state}(\mathbb{L}(s), \langle s, a, s' \rangle)\mathbb{L}(s')\!:=\!\mathsf{merge}\_\mathsf{landmark}\_\mathsf{states}(\mathbb{L}(s'), \mathbb{L}')if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                         open.\overline{\text{insert}(\langle s', g + cost(a), h(s', \mathbb{L}(s')))}
```
 $\mathbb{L}(\mathcal{s}) := \langle \mathcal{L}_I, \emptyset \rangle$ and $\mathit{distances}(s) := \infty$ if read before set.

Context: Exploit Information from Multiple Paths

```
\mathbb{L}(\textsf{init}), \mathcal{L}_I, \mathcal{O}_I := \textsf{compute\_landmark\_info}(\textsf{init}())if h(int(), \mathbb{L} (init)) < \infty then
      open.insert(\langleinit(), 0, h(init(), \mathbb{L}(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()
      if v < h(s, \mathbb{L}(s)) then
            open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
      else if g < distances(s) then
            distances(s) := gif is \text{goal}(s) then return extract plan(s);
             foreach \langle a, s' \rangle \in succ(s) do
                   \mathbb{L}' := \mathsf{progress}\_\mathsf{land} \mathsf{mark}\_\mathsf{state}(\mathbb{L}(s), \langle s, a, s' \rangle)\mathbb{L}(s')\!:=\!\mathsf{merge}\_\mathsf{landmark}\_\mathsf{states}(\mathbb{L}(s'), \mathbb{L}')if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                         open.\overline{\text{insert}(\langle s', g + cost(a), h(s', \mathbb{L}(s')))}
```
 $\mathbb{L}(\mathcal{s}) := \langle \mathcal{L}_I, \emptyset \rangle$ and $\mathit{distances}(s) := \infty$ if read before set.

Merging Landmark States

Merging combines the information from two landmark states.

m erge_landmark_states $(\mathbb{L},\mathbb{L}^\prime)$

```
if \mathbb{L} = \bot or \mathbb{L}' = \bot then return \bot;
\langle \mathcal{L}_{\text{past}}, \mathcal{L}_{\text{fut}} \rangle := \mathbb{L}\langle \mathcal{L}'_\mathsf{past}, \mathcal{L}'_\mathsf{fut} \rangle := \mathbb{L}'return \langle \mathcal{L}_{\mathsf{past}} \cap \mathcal{L}_{\mathsf{past}}^\prime, \mathcal{L}_{\mathsf{fut}} \cup \mathcal{L}_{\mathsf{fut}}^\prime \rangle
```
Theorem

If $\mathbb L$ and $\mathbb L'$ are valid in a state s then also merge_landmark_states(\mathbb{L}, \mathbb{L}') is valid in s.

Context: Progression for a Transition

```
\mathbb{L}(\textsf{init}), \mathcal{L}_I, \mathcal{O}_I := \textsf{compute\_landmark\_info}(\textsf{init}())if h(int(), \mathbb{L}(init)) < \infty then
      open.insert(\langleinit(), 0, h(init(), \mathbb{L}(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()if v < h(s, \mathbb{L}(s)) then
            open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
      else if g < distances(s) then
            distances(s) := gif is \text{goal}(s) then return extract plan(s);
             foreach \langle a, s' \rangle \in succ(s) do
                   \mathbb{L}' := \overline{\mathsf{progress}\_\mathsf{land} \mathsf{mark}\_\mathsf{state}(\mathbb{L}(s), \langle s, a, s' \rangle)}\mathbb{L}(s')\!:=\!\mathsf{merge}\_\mathsf{landmark}\_\mathsf{states}(\mathbb{L}(s'), \mathbb{L}')if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                         open.\overline{\text{insert}(\langle s', g + cost(a), h(s', \mathbb{L}(s')))}
```
 $\mathbb{L}(\mathcal{s}) := \langle \mathcal{L}_I, \emptyset \rangle$ and $\mathit{distances}(s) := \infty$ if read before set.

Progressing Landmark States

If we expand a state s with transition $\langle s, o, s' \rangle$, we use progression to determine a landmark state for s' from the one we know for s.

Progressing Landmark States

- If we expand a state s with transition $\langle s, o, s' \rangle$, we use progression to determine a landmark state for s' from the one we know for s.
- We will only introduce progression methods that preserve the validity of landmark states.

Progressing Landmark States

- If we expand a state s with transition $\langle s, o, s' \rangle$, we use progression to determine a landmark state for s' from the one we know for s.
- We will only introduce progression methods that preserve the validity of landmark states.
- Since every progression method gives a valid landmark state, we can merge results from different methods into a valid landmark state.

Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state $\langle\mathcal{L}_{\text{past}},\mathcal{L}_{\text{fut}}\rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_{\mathsf{past}} \cup \mathcal{L}_{\mathsf{add}}, \mathcal{L}_{\mathsf{fut}} \setminus \mathcal{L}_{\mathsf{add}} \rangle$, where $\mathcal{L}_{\mathsf{add}} = \{ \varphi \in \mathcal{L}_{I} \mid s \not\models \varphi \text{ and } s' \models \varphi \}.$

> "Extend the past with all landmarks added in s' and remove them from the future."

Goal Progression

Definition (Goal Progression)

Let γ be the goal of the task. Goal progression maps landmark state $\langle\mathcal{L}_{\text{past}},\mathcal{L}_{\text{fut}}\rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_I, \mathcal{L}_{\text{goal}} \rangle$, where $\mathcal{L}_{\mathsf{goal}} = \{\varphi \in \mathcal{L}_I \mid \gamma \models \varphi \text{ and } \mathsf{s'} \not\models \varphi\}.$

"All landmarks that must be true in the goal but are false in s' must be achieved in the future."

Weak Ordering Progression

 $\varphi \rightarrow_w \psi$: " φ must be true some time before ψ is last added."

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state $\langle\mathcal{L}_\text{past},\mathcal{L}_\text{fut}\rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_I, \{\psi \mid \exists \varphi \rightarrow_{\mathsf{w}} \psi : \varphi \notin \mathcal{L}_{\mathsf{past}} \} \rangle.$

"Landmark ψ must be added in the future because we haven't done something that must be done before ψ is last added."

Greedy-necessary Ordering Progression

 $\varphi \rightarrow_{\sigma} \psi$: " φ must be true immediately before ψ is first added."

Definition (Greedy-necessary Ordering Progression)

The greedy necessary ordering progression maps landmark state $\langle\mathcal{L}_\mathsf{past},\mathcal{L}_\mathsf{fut}\rangle$ and transition $\langle s,o,s'\rangle$ to landmark state

- **■** \bot if there is a $\varphi \rightarrow_{gn} \psi \in \mathcal{O}_I$ with $\psi \notin \mathcal{L}_{past}$, $s \not\models \varphi$ and $\mathsf{s}'\models\psi$, and
- $\langle \mathcal{L}_I, \{\varphi \mid s' \not\models \varphi \text{ and } \exists \varphi \rightarrow_{\text{gn}} \psi \in \mathcal{O}_I : \psi \notin \mathcal{L}_{\text{past}}, s' \not\models \psi \} \rangle$ otherwise.

"Landmark ψ has not been true, yet, and φ must be true immediately before it becomes true. Since φ is currently false, we must make it true in the future (before making ψ true)."

Natural Ordering Progression

 $\varphi \to \psi: \varphi$ must be true some time strictly before ψ is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state $\langle\mathcal{L}_\mathsf{past},\mathcal{L}_\mathsf{fut}\rangle$ and transition $\langle s, o, s' \rangle$ to landmark state

- \bot if there is a $\varphi \to \psi \in \mathcal{O}_{I}$ with $\varphi \not\in \mathcal{L}_{\mathsf{past}}$ and $\mathsf{s}' \models \psi$, and
- $\langle \mathcal{L}_I, \emptyset \rangle$ otherwise.

Not (yet) useful: All known methods only find natural orderings that are true for every applicable operator sequence, so the interesting first case never happens in LM-BFS.

[Landmark-count Heuristic](#page-35-0)

Content of the Course

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and $\mathbb{L} = \langle \mathcal{L}_{\text{past}}, \mathcal{L}_{\text{fut}} \rangle$ be a valid landmark state for s.

The I M-count heuristic for s and \mathbb{L} is

$$
\textit{h}^{\text{LM-count}}(s,\mathbb{L}) = \begin{cases} \infty & \text{if } \mathbb{L} = \bot, \\ |\mathcal{L}_{\text{fut}}| & \text{otherwise} \end{cases}
$$

In the original work, \mathcal{L}_{fut} was determined without considering information from multiple paths and could not detect dead-ends.

LM-count Heuristic is Path-dependent

- **LM-count heuristic gives estimates for landmark states,** which depend on the considered paths.
- Search algorithms need estimates for states.
- \blacksquare \rightsquigarrow we use estimate from the current landmark state.
- $\blacksquare \leadsto$ heuristic estimate for a state is not well-defined.

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task $\Pi = \{\{a, b\}, I, \{o\}, \{a, b\}\}\$ with $I = \emptyset$, $o = \langle \emptyset, \{a, b\}, \emptyset, 1 \rangle$. Let $\mathcal{L} = \{a, b\}$ and $\mathcal{O} = \emptyset$.

Landmark state $\langle \emptyset, \mathcal{L} \rangle$ for the initial state is valid and the estimate is $h^{\mathsf{LM}\text{-}\mathsf{count}}(I,\langle\emptyset,\{ \mathsf{a},\mathsf{b}\}\rangle)=2$ while $h^*(I)=1$.

 \rightarrow h^{LM-count} is inadmissible.

LM-count Heuristic: Comments

- **LM-Count alone is not a particularily informative heuristic.**
- On the positive side, it complements h^{FF} very well.
- **For example, the LAMA planning system alternates between** expanding a state with minimal h^{FF} and minimal $h^{\mathsf{LM}\text{-}\mathsf{count}}$ estimate.
- The LM-sum heuristic is a cost-aware variant of the heuristic that sums up the costs of the cheapest achiever $(=$ operator that adds the fact landmark) of each landmark.
- **There is an admissible variant of the heuristic based on** operator cost partitioning.

[Summary](#page-41-0)

Summary

- We can propagate landmark sets over action applications.
- **Landmark orderings can be useful for detecting when a** landmark that has already been achieved should be further considered.
- We can combine the landmark information from several paths to the same state.
- The LM-count heuristic counts how many landmarks still need to be satisfied.
- The LM-count heuristic is inadmissible (but there is an admissible variant).