Planning and Optimization F3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 2, 2024

Landmark Propagation

Landmark-count Heuristic

Summary 00

Landmark Orderings

Landmark Propagation

Landmark-count Heuristic

Content of the Course

Why Landmark Orderings?

- To compute a landmark heuristic estimate for state s we need landmarks for s.
- We could invest the time to compute them for every state from scratch.
- Alternatively, we can compute landmarks once and propagate them over operator applications.
- Landmark orderings are used to detect landmarks that should be further considered because they (again) need to be satisfied later.
- (We will later see yet another approach, where heuristic computation and landmark computation are integrated ~→ LM-Cut.)

Example

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with

$$I(v) = \bot \text{ for } v \in \{a, b, c, d\},$$

•
$$o_1 = \langle \top, a \wedge b \rangle$$
, and

•
$$o_2 = \langle a, c \land \neg a \land \neg b \rangle$$
 (plus some more operators).

You know that a, b, c and d are all fact landmarks for I.

• What landmarks are still required to be made true in state $I[[\langle o_1, o_2 \rangle]]$?

Example

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with

•
$$I(v) = \bot$$
 for $v \in \{a, b, c, d\}$,

•
$$o_1 = \langle \top, a \wedge b \rangle$$
, and

•
$$o_2 = \langle a, c \land \neg a \land \neg b \rangle$$
 (plus some more operators).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state *I*[[⟨*o*₁, *o*₂⟩]]?
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?

Terminology

Let $\pi = \langle o_1, \dots, o_n \rangle$ be a sequence of operators applicable in state *I* and let φ be a formula over the state variables.

- φ is true at time *i* if $I[[\langle o_1, \ldots, o_i \rangle]] \models \varphi$.
- Also special case i = 0: φ is true at time 0 if $I \models \varphi$.
- No formula is true at time i < 0.
- φ is added at time *i* if it is true at time *i* but not at time *i* 1.
- φ is first added at time i if it is true at time i but not at any time j < i.
 We denote this i by first(φ, π).
- $last(\varphi, \pi)$ denotes the last time in which φ is added in π .

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ → ψ)
 if in each plan π it holds that *first*(φ, π) < *first*(ψ, π).
 "φ must be true some time strictly before ψ is first added."

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

- a natural ordering between φ and ψ (written φ → ψ)
 if in each plan π it holds that first(φ, π) < first(ψ, π).
 "φ must be true some time strictly before ψ is first added."
- **a greedy-necessary ordering** between φ and ψ (written $\varphi \rightarrow_{gn} \psi$) if for every plan $\pi = \langle o_1, \ldots, o_n \rangle$ it holds that $s[\![\langle o_1, \ldots, o_{first}(\psi, \pi) 1 \rangle]\!] \models \varphi$.

" φ must be true immediately before ψ is first added."

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

- a natural ordering between φ and ψ (written φ → ψ)
 if in each plan π it holds that first(φ, π) < first(ψ, π).
 "φ must be true some time strictly before ψ is first added."
- **a greedy-necessary ordering** between φ and ψ (written $\varphi \rightarrow_{gn} \psi$) if for every plan $\pi = \langle o_1, \ldots, o_n \rangle$ it holds that $s[\![\langle o_1, \ldots, o_{first}(\psi, \pi) 1 \rangle]\!] \models \varphi$.

" φ must be true immediately before ψ is first added."

a weak ordering between φ and ψ (written φ →_w ψ)
 if in each plan π it holds that *first*(φ, π) < *last*(ψ, π).
 "φ must be true some time before ψ is last added."

Not covered: reasonable orderings, which generalize weak orderings

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written $\varphi \rightarrow \psi$) if in each plan π it holds that $first(\varphi, \pi) < first(\psi, \pi)$.

- We can directly determine natural orderings from the *LM* sets computed from the simplified relaxed task graph.
- For fact landmarks v, v' with $v \neq v'$, if $n_{v'} \in LM(n_v)$ then $v' \rightarrow v$.

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between φ and ψ (written $\varphi \rightarrow_{gn} \psi$) if in each plan where ψ is first added at time *i*, φ is true at time i - 1.

- We can again determine such orderings from the sRTG.
- For an OR node n_v , we define the set of first achievers as $FA(n_v) = \{n_o \mid n_o \in succ(n_v) \text{ and } n_v \notin LM(n_o)\}.$
- Then $v' \rightarrow_{gn} v$ if $n_{v'} \in succ(n_o)$ for all $n_o \in FA(n_v)$.

Landmark Propagation

Example Revisited

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with
 $I(v) = \bot$ for $v \in \{a, b, c, d\}$,

• $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state *I*[[⟨*o*₁, *o*₂⟩]]? All not achieved yet on the state path
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?
 Exploit orderings to determine landmarks that are still required.

Example Revisited

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with
 $I(v) = \bot$ for $v \in \{a, b, c, d\}$,

• $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state *I*[[⟨*o*₁, *o*₂⟩]]? All not achieved yet on the state path
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?
 Exploit orderings to determine landmarks that are still required.
- There is another path to the same state where b was never true. What now?

Example Revisited

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with
 $I(v) = \bot$ for $v \in \{a, b, c, d\}$,

• $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$ (plus some more).

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state *I*[[⟨*o*₁, *o*₂⟩]]? All not achieved yet on the state path
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?
 Exploit orderings to determine landmarks that are still required.

 There is another path to the same state where b was never true. What now?
 Exploit information from multiple paths.

Past and Future Landmarks

In the following, L₁ is always a set of formula landmarks for the initial state with set of orderings O₁.

- In the following, L₁ is always a set of formula landmarks for the initial state with set of orderings O₁.
- The set \$\mathcal{L}_{past}^*(s)\$ of past landmarks of a state s contains all landmarks from \$\mathcal{L}_1\$ that are at some point true in every path from the initial state to s.

- In the following, L₁ is always a set of formula landmarks for the initial state with set of orderings O₁.
- The set L^{*}_{past}(s) of past landmarks of a state s contains all landmarks from L₁ that are at some point true in every path from the initial state to s.
- The set L^{*}_{fut}(s) of future landmarks of a state s contains all landmarks from L₁ that are also landmarks of s but not true in s.

- In the following, L₁ is always a set of formula landmarks for the initial state with set of orderings O₁.
- The set \$\mathcal{L}_{past}^*(s)\$ of past landmarks of a state s contains all landmarks from \$\mathcal{L}_1\$ that are at some point true in every path from the initial state to s.
- The set L^{*}_{fut}(s) of future landmarks of a state s contains all landmarks from L₁ that are also landmarks of s but not true in s.
- Past landmarks are important for inferring which orderings are still relevant, future landmarks are relevant for the heuristic estimates.

- In the following, L₁ is always a set of formula landmarks for the initial state with set of orderings O₁.
- The set L^{*}_{past}(s) of past landmarks of a state s contains all landmarks from L₁ that are at some point true in every path from the initial state to s.
- The set L^{*}_{fut}(s) of future landmarks of a state s contains all landmarks from L₁ that are also landmarks of s but not true in s.
- Past landmarks are important for inferring which orderings are still relevant, future landmarks are relevant for the heuristic estimates.
- Since the exact sets are defined over all paths between certain states, we use approximations.

Landmark State

Definition

Let \mathcal{L}_{I} be a set of formula landmarks for the initial state. A landmark state \mathbb{L} is \perp or a pair $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ such that $\mathcal{L}_{fut} \cup \mathcal{L}_{past} = \mathcal{L}_{I}$.

Landmark State

Definition

Let \mathcal{L}_{I} be a set of formula landmarks for the initial state.

A landmark state
$$\mathbb{L}$$
 is \bot or a pair $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ such that $\mathcal{L}_{fut} \cup \mathcal{L}_{past} = \mathcal{L}_I$.

 \mathbb{L} is valid in state s if

•
$$\mathbb{L}=\perp$$
 and Π has no s -plan, or

•
$$\mathbb{L} = \langle \mathcal{L}_{\mathsf{past}}, \mathcal{L}_{\mathsf{fut}} \rangle$$
 with $\mathcal{L}_{\mathsf{past}} \supseteq \mathcal{L}^*_{\mathsf{past}}$ and $\mathcal{L}_{\mathsf{fut}} \subseteq \mathcal{L}^*_{\mathsf{fut}}$.

Summary 00

Context in Search: LM-BFS Algorithm

```
\mathbb{L}(init), \mathcal{L}_{I}, \mathcal{O}_{I} := compute\_landmark\_info(init())
if h(init(), \mathbb{L}(init)) < \infty then
     open.insert((init(), 0, h(init(), L(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()
     if v < h(s, \mathbb{L}(s)) then
           open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
     else if g < distances(s) then
           distances(s) := g
           if is_goal(s) then return extract_plan(s);
           foreach \langle a, s' \rangle \in succ(s) do
                \mathbb{L}' := \text{progress\_landmark\_state}(\mathbb{L}(s), \langle s, a, s' \rangle)
                \mathbb{L}(s') := \text{merge}_\text{landmark}_\text{states}(\mathbb{L}(s'), \mathbb{L}')
                if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                      open.insert(\langle s', g + cost(a), h(s', \mathbb{L}(s')))
```

 $\mathbb{L}(s) := \langle \mathcal{L}_I, \emptyset \rangle$ and $\textit{distances}(s) := \infty$ if read before set.

Context: Exploit Information from Multiple Paths

```
\mathbb{L}(init), \mathcal{L}_I, \mathcal{O}_I := compute\_landmark\_info(init())
if h(init(), \mathbb{L}(init)) < \infty then
     open.insert((init(), 0, h(init(), L(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()
     if v < h(s, \mathbb{L}(s)) then
           open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
     else if g < distances(s) then
           distances(s) := g
           if is_goal(s) then return extract_plan(s);
           foreach \langle a, s' \rangle \in succ(s) do
                \mathbb{L}' := \text{progress\_landmark\_state}(\mathbb{L}(s), \langle s, a, s' \rangle)
                \mathbb{L}(s') := \text{merge}_\text{landmark}_\text{states}(\mathbb{L}(s'), \mathbb{L}')
                if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                      open.insert(\langle s', g + cost(a), h(s', \mathbb{L}(s')))
```

 $\mathbb{L}(s) := \langle \mathcal{L}_I, \emptyset
angle$ and $\mathit{distances}(s) := \infty$ if read before set.

Merging Landmark States

Merging combines the information from two landmark states.

merge_landmark_states(\mathbb{L}, \mathbb{L}')

$$\begin{split} \text{if } \mathbb{L} &= \bot \text{ or } \mathbb{L}' = \bot \text{ then } \text{return } \bot; \\ \langle \mathcal{L}_{\text{past}}, \mathcal{L}_{\text{fut}} \rangle &:= \mathbb{L} \\ \langle \mathcal{L}'_{\text{past}}, \mathcal{L}'_{\text{fut}} \rangle &:= \mathbb{L}' \\ \text{return } \langle \mathcal{L}_{\text{past}} \cap \mathcal{L}'_{\text{past}}, \mathcal{L}_{\text{fut}} \cup \mathcal{L}'_{\text{fut}} \rangle \end{split}$$

Theorem

If \mathbb{L} and \mathbb{L}' are valid in a state s then also merge_landmark_states(\mathbb{L}, \mathbb{L}') is valid in s.

Context: Progression for a Transition

```
\mathbb{L}(init), \mathcal{L}_I, \mathcal{O}_I := compute\_landmark\_info(init())
if h(init(), \mathbb{L}(init)) < \infty then
     open.insert((init(), 0, h(init(), L(init))))
while open \neq \emptyset do
      \langle s, g, v \rangle = open.pop()
     if v < h(s, \mathbb{L}(s)) then
           open.insert(\langle s, g, h(s, \mathbb{L}(s)) \rangle)
     else if g < distances(s) then
           distances(s) := g
           if is_goal(s) then return extract_plan(s);
           foreach \langle a, s' \rangle \in succ(s) do
                \mathbb{L}' := \text{progress\_landmark\_state}(\mathbb{L}(s), \langle s, a, s' \rangle)
                \mathbb{L}(s') := \text{merge}_\text{landmark}_\text{states}(\mathbb{L}(s'), \mathbb{L}')
                if \mathbb{L}(s') \neq \bot and h(s', \mathbb{L}(s')) < \infty then
                      open.insert(\langle s', g + cost(a), h(s', \mathbb{L}(s')))
```

 $\mathbb{L}(s) := \langle \mathcal{L}_I, \emptyset
angle$ and $\mathit{distances}(s) := \infty$ if read before set.

Progressing Landmark States

 If we expand a state s with transition (s, o, s'), we use progression to determine a landmark state for s' from the one we know for s.

Progressing Landmark States

- If we expand a state s with transition (s, o, s'), we use progression to determine a landmark state for s' from the one we know for s.
- We will only introduce progression methods that preserve the validity of landmark states.

Progressing Landmark States

- If we expand a state s with transition (s, o, s'), we use progression to determine a landmark state for s' from the one we know for s.
- We will only introduce progression methods that preserve the validity of landmark states.
- Since every progression method gives a valid landmark state, we can merge results from different methods into a valid landmark state.

Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_{past} \cup \mathcal{L}_{add}, \mathcal{L}_{fut} \setminus \mathcal{L}_{add} \rangle$, where $\mathcal{L}_{add} = \{ \varphi \in \mathcal{L}_I \mid s \not\models \varphi \text{ and } s' \models \varphi \}.$

"Extend the past with all landmarks added in s' and remove them from the future."

Goal Progression

Definition (Goal Progression)

Let γ be the goal of the task. Goal progression maps landmark state $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_I, \mathcal{L}_{goal} \rangle$, where $\mathcal{L}_{goal} = \{ \varphi \in \mathcal{L}_I \mid \gamma \models \varphi \text{ and } s' \not\models \varphi \}.$

"All landmarks that must be true in the goal but are false in s' must be achieved in the future."

Weak Ordering Progression

 $\varphi \rightarrow_{\mathsf{w}} \psi$: " φ must be true some time before ψ is last added."

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ and transition $\langle s, o, s' \rangle$ to landmark state $\langle \mathcal{L}_{I}, \{ \psi \mid \exists \varphi \rightarrow_{w} \psi : \varphi \notin \mathcal{L}_{past} \} \rangle$.

"Landmark ψ must be added in the future because we haven't done something that must be done before ψ is last added."

Greedy-necessary Ordering Progression

 $\varphi \to_{\sf gn} \psi : \ ``\varphi \ {\rm must}$ be true immediately before ψ is first added."

Definition (Greedy-necessary Ordering Progression)

The greedy necessary ordering progression maps landmark state $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ and transition $\langle s, o, s' \rangle$ to landmark state

- \perp if there is a $\varphi \rightarrow_{gn} \psi \in \mathcal{O}_I$ with $\psi \notin \mathcal{L}_{past}, s \not\models \varphi$ and $s' \models \psi$, and
- $\langle \mathcal{L}_I, \{ \varphi \mid s' \not\models \varphi \text{ and } \exists \varphi \rightarrow_{gn} \psi \in \mathcal{O}_I : \psi \notin \mathcal{L}_{past}, s' \not\models \psi \} \rangle$ otherwise.

"Landmark ψ has not been true, yet, and φ must be true immediately before it becomes true. Since φ is currently false, we must make it true in the future (before making ψ true)."

Natural Ordering Progression

 $\varphi \rightarrow \psi : \; \varphi \; \mbox{must}$ be true some time strictly before ψ is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state $\langle \mathcal{L}_{past}, \mathcal{L}_{fut} \rangle$ and transition $\langle s, o, s' \rangle$ to landmark state

- \perp if there is a $\varphi \rightarrow \psi \in \mathcal{O}_I$ with $\varphi \notin \mathcal{L}_{\mathsf{past}}$ and $s' \models \psi$, and
- $\langle \mathcal{L}_I, \emptyset \rangle$ otherwise.

Not (yet) useful: All known methods only find natural orderings that are true for every applicable operator sequence, so the interesting first case never happens in LM-BFS.

Landmark-count Heuristic

Landmark Propagation

Landmark-count Heuristic

Content of the Course

The landmark-count heuristic counts the landmarks that still have to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and $\mathbb{L} = \langle \mathcal{L}_{\mathsf{past}}, \mathcal{L}_{\mathsf{fut}} \rangle$ be a valid landmark state for s.

The LM-count heuristic for s and \mathbb{L} is

$$h^{ ext{LM-count}}(s, \mathbb{L}) = egin{cases} \infty & ext{if } \mathbb{L} = ot, \ |\mathcal{L}_{ ext{fut}}| & ext{otherwise} \end{cases}$$

In the original work, \mathcal{L}_{fut} was determined without considering information from multiple paths and could not detect dead-ends.

LM-count Heuristic is Path-dependent

- LM-count heuristic gives estimates for landmark states, which depend on the considered paths.
- Search algorithms need estimates for states.
- ~→ we use estimate from the current landmark state.
- ~→ heuristic estimate for a state is not well-defined.

Landmark Propagation

Landmark-count Heuristic

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task $\Pi = \langle \{a, b\}, I, \{o\}, \{a, b\} \rangle$ with $I = \emptyset$, $o = \langle \emptyset, \{a, b\}, \emptyset, 1 \rangle$. Let $\mathcal{L} = \{a, b\}$ and $\mathcal{O} = \emptyset$.

Landmark state $\langle \emptyset, \mathcal{L} \rangle$ for the initial state is valid and the estimate is $h^{\text{LM-count}}(I, \langle \emptyset, \{a, b\} \rangle) = 2$ while $h^*(I) = 1$.

 $\rightsquigarrow h^{\text{LM-count}}$ is inadmissible.

LM-count Heuristic: Comments

- LM-Count alone is not a particularily informative heuristic.
- On the positive side, it complements h^{FF} very well.
- For example, the LAMA planning system alternates between expanding a state with minimal h^{FF} and minimal h^{LM-count} estimate.
- The LM-sum heuristic is a cost-aware variant of the heuristic that sums up the costs of the cheapest achiever (= operator that adds the fact landmark) of each landmark.
- There is an admissible variant of the heuristic based on operator cost partitioning.

Landmark Propagation

Landmark-count Heuristic

Summary •0

Summary

Summary

- We can propagate landmark sets over action applications.
- Landmark orderings can be useful for detecting when a landmark that has already been achieved should be further considered.
- We can combine the landmark information from several paths to the same state.
- The LM-count heuristic counts how many landmarks still need to be satisfied.
- The LM-count heuristic is inadmissible (but there is an admissible variant).