
Planning and Optimization
F3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 2, 2024

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 1 / 32

Planning and Optimization
December 2, 2024 — F3. Landmarks: Orderings & LM-Count Heuristic

F3.1 Landmark Orderings

F3.2 Landmark Propagation

F3.3 Landmark-count Heuristic

F3.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 2 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

F3.1 Landmark Orderings

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 3 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 4 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Why Landmark Orderings?

▶ To compute a landmark heuristic estimate for state s
we need landmarks for s.

▶ We could invest the time to compute them
for every state from scratch.

▶ Alternatively, we can compute landmarks once and
propagate them over operator applications.

▶ Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

▶ (We will later see yet another approach, where heuristic
computation and landmark computation are integrated ⇝ LM-Cut.)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 5 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
▶ I (v) = ⊥ for v ∈ {a, b, c , d},
▶ o1 = ⟨⊤, a ∧ b⟩, and
▶ o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more operators).

You know that a, b, c and d are all fact landmarks for I .

▶ What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?

▶ You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 6 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Terminology

Let π = ⟨o1, . . . , on⟩ be a sequence of operators applicable in
state I and let φ be a formula over the state variables.

▶ φ is true at time i if I J⟨o1, . . . , oi ⟩K |= φ.

▶ Also special case i = 0: φ is true at time 0 if I |= φ.

▶ No formula is true at time i < 0.

▶ φ is added at time i if it is true at time i but not at time i − 1.

▶ φ is first added at time i if it is true at time i
but not at any time j < i .
We denote this i by first(φ, π).

▶ last(φ, π) denotes the last time in which φ is added in π.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 7 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

▶ a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
“φ must be true some time strictly before ψ is first added.”

▶ a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
“φ must be true immediately before ψ is first added.”

▶ a weak ordering between φ and ψ (written φ→w ψ)
if in each plan π it holds that first(φ, π) < last(ψ, π).
“φ must be true some time before ψ is last added.”

Not covered: reasonable orderings, which generalize weak orderings

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 8 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written φ→ ψ) if in
each plan π it holds that first(φ, π) < first(ψ, π).

▶ We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

▶ For fact landmarks v , v ′ with v ̸= v ′,
if nv ′ ∈ LM(nv) then v ′ → v .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 9 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Greedy-necessary Orderings

Definition
There is a greedy-necessary ordering between φ and ψ
(written φ→gn ψ) if in each plan where ψ is first added at time i ,
φ is true at time i − 1.

▶ We can again determine such orderings from the sRTG.

▶ For an OR node nv , we define the set of first achievers as
FA(nv) = {no | no ∈ succ(nv) and nv ̸∈ LM(no)}.

▶ Then v ′ →gn v if nv ′ ∈ succ(no) for all no ∈ FA(nv).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 10 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

F3.2 Landmark Propagation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 11 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
▶ I (v) = ⊥ for v ∈ {a, b, c , d},
▶ o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩ (plus some more).

You know that a, b, c and d are all fact landmarks for I .

▶ What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

▶ You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

▶ There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 12 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Past and Future Landmarks

▶ In the following, LI is always a set of formula landmarks for
the initial state with set of orderings OI .

▶ The set L∗
past(s) of past landmarks of a state s

contains all landmarks from LI that are
at some point true in every path from the initial state to s.

▶ The set L∗
fut(s) of future landmarks of a state s

contains all landmarks from LI that are also
landmarks of s but not true in s.

▶ Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

▶ Since the exact sets are defined over all paths
between certain states, we use approximations.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 13 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Landmark State

Definition
Let LI be a set of formula landmarks for the initial state.

A landmark state L is ⊥ or a pair ⟨Lpast,Lfut⟩ such that
Lfut ∪ Lpast = LI .

L is valid in state s if

▶ L = ⊥ and Π has no s-plan, or

▶ L = ⟨Lpast,Lfut⟩ with Lpast ⊇ L∗
past and Lfut ⊆ L∗

fut.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 14 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context in Search: LM-BFS Algorithm

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.
M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 15 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context: Exploit Information from Multiple Paths

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.
M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 16 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Merging Landmark States

Merging combines the information from two landmark states.

merge landmark states(L,L′)

if L = ⊥ or L′ = ⊥ then return ⊥;
⟨Lpast,Lfut⟩ := L
⟨L′

past,L′
fut⟩ := L′

return ⟨Lpast ∩ L′
past,Lfut ∪ L′

fut⟩

Theorem

If L and L′ are valid in a state s then also
merge landmark states(L,L′) is valid in s.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 17 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context: Progression for a Transition

L(init),LI ,OI := compute landmark info(init())
if h(init(),L(init)) <∞ then

open.insert(⟨init(), 0, h(init(),L(init))⟩)
while open ̸= ∅ do

⟨s, g , v⟩ = open.pop()
if v < h(s,L(s)) then

open.insert(⟨s, g , h(s,L(s))⟩)
else if g < distances(s) then

distances(s) := g
if is goal(s) then return extract plan(s);
foreach ⟨a, s ′⟩ ∈ succ(s) do

L′ := progress landmark state(L(s), ⟨s, a, s ′⟩)
L(s ′) :=merge landmark states(L(s ′),L′)
if L(s ′) ̸= ⊥ and h(s ′,L(s ′)) <∞ then

open.insert(⟨s ′, g + cost(a), h(s ′,L(s ′)))

L(s) := ⟨LI , ∅⟩ and distances(s) := ∞ if read before set.
M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 18 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Progressing Landmark States

▶ If we expand a state s with transition ⟨s, o, s ′⟩,
we use progression to determine a landmark state for s ′

from the one we know for s.

▶ We will only introduce progression methods that preserve the
validity of landmark states.

▶ Since every progression method gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 19 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state ⟨Lpast,Lfut⟩ and transition
⟨s, o, s ′⟩ to landmark state ⟨Lpast ∪ Ladd,Lfut \ Ladd⟩, where
Ladd = {φ ∈ LI | s ̸|= φ and s ′ |= φ}.

“Extend the past with all landmarks added in s ′ and
remove them from the future.”

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 20 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Goal Progression

Definition (Goal Progression)

Let γ be the goal of the task.
Goal progression maps landmark state ⟨Lpast,Lfut⟩ and transition
⟨s, o, s ′⟩ to landmark state ⟨LI ,Lgoal⟩, where
Lgoal = {φ ∈ LI | γ |= φ and s ′ ̸|= φ}.

“All landmarks that must be true in the goal but are false in s ′

must be achieved in the future.”

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 21 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Weak Ordering Progression

φ→w ψ: “φ must be true some time before ψ is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state ⟨Lpast,Lfut⟩
and transition ⟨s, o, s ′⟩ to landmark state
⟨LI , {ψ | ∃φ→w ψ : φ ̸∈ Lpast}⟩.

“Landmark ψ must be added in the future because we haven’t
done something that must be done before ψ is last added.”

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 22 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Greedy-necessary Ordering Progression

φ→gn ψ: “φ must be true immediately before ψ is first added.”

Definition (Greedy-necessary Ordering Progression)

The greedy necessary ordering progression maps landmark state
⟨Lpast,Lfut⟩ and transition ⟨s, o, s ′⟩ to landmark state

▶ ⊥ if there is a φ→gn ψ ∈ OI with ψ ̸∈ Lpast, s ̸|= φ and
s ′ |= ψ, and

▶ ⟨LI , {φ | s ′ ̸|= φ and ∃φ→gn ψ ∈ OI : ψ ̸∈ Lpast, s
′ ̸|= ψ}⟩

otherwise.

“Landmark ψ has not been true, yet, and φ must be true
immediately before it becomes true. Since φ is currently false,
we must make it true in the future (before making ψ true).”

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 23 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Natural Ordering Progression

φ→ ψ: φ must be true some time strictly before ψ is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state ⟨Lpast,Lfut⟩
and transition ⟨s, o, s ′⟩ to landmark state

▶ ⊥ if there is a φ→ ψ ∈ OI with φ ̸∈ Lpast and s ′ |= ψ, and

▶ ⟨LI , ∅⟩ otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 24 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

F3.3 Landmark-count Heuristic

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 25 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 26 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and L = ⟨Lpast,Lfut⟩ be a
valid landmark state for s.

The LM-count heuristic for s and L is

hLM-count(s,L) =

{
∞ if L = ⊥,
|Lfut| otherwise

In the original work, Lfut was determined without considering
information from multiple paths and could not detect dead-ends.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 27 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Path-dependent

▶ LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

▶ Search algorithms need estimates for states.

▶ ⇝ we use estimate from the current landmark state.

▶ ⇝ heuristic estimate for a state is not well-defined.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 28 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task Π = ⟨{a, b}, I , {o}, {a, b}⟩ with
I = ∅, o = ⟨∅, {a, b}, ∅, 1⟩. Let L = {a, b} and O = ∅.

Landmark state ⟨∅,L⟩ for the initial state is valid and the estimate
is hLM-count(I , ⟨∅, {a, b}⟩) = 2
while h∗(I) = 1.

⇝ hLM-count is inadmissible.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 29 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic: Comments

▶ LM-Count alone is not a particularily informative heuristic.

▶ On the positive side, it complements hFF very well.

▶ For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal hLM-count

estimate.

▶ The LM-sum heuristic is a cost-aware variant of the heuristic
that sums up the costs of the cheapest achiever (= operator
that adds the fact landmark) of each landmark.

▶ There is an admissible variant of the heuristic based on
operator cost partitioning.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 30 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Summary

F3.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 31 / 32

F3. Landmarks: Orderings & LM-Count Heuristic Summary

Summary

▶ We can propagate landmark sets over action applications.

▶ Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

▶ We can combine the landmark information from several paths
to the same state.

▶ The LM-count heuristic counts how many landmarks still need
to be satisfied.

▶ The LM-count heuristic is inadmissible (but there is an
admissible variant).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 2, 2024 32 / 32

	Landmark Orderings
	

	Landmark Propagation
	

	Landmark-count Heuristic
	

	Summary
	

