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Landmarks

Basic Idea: Something that must happen in every solution

For example

▶ some operator must be applied (action landmark)

▶ some atomic proposition must hold (fact landmark)

▶ some formula must be true (formula landmark)

→ Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.
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Reminder: Terminology

Consider sequence of transitions s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn

such that s0 = s and sn = s ′.

▶ s0, . . . , sn is called (state) path from s to s ′

▶ ℓ1, . . . , ℓn is called (label) path from s to s ′
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Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task
Π = ⟨V , I ,O, γ⟩.

A disjunctive action landmark for s is a set of operators L ⊆ O
such that every label path from s to a goal state contains an
operator from L.
The cost of landmark L is cost(L) = mino∈L cost(o).

If we talk about landmarks for the initial state, we omit “for I”.
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Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task
Π = ⟨V , I ,O, γ⟩.

A formula landmark for s is a formula λ over V such that
every state path from s to a goal state contains a state s ′

with s ′ |= λ.

If λ is an atomic proposition then λ is a fact landmark.

If we talk about landmarks for the initial state, we omit “for I”.
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Landmarks: Example

Example

Consider a FDR planning task ⟨V , I ,O, γ⟩ with
▶ V = {robot-at, dishes-at} with

▶ dom(robot-at) = {A1, . . . ,C3,B4,A5, . . . ,B6}
▶ dom(dishes-at) = {Table,Robot,Dishwasher}

▶ I = {robot-at 7→ C1, dishes-at 7→ Table}
▶ operators

▶ move-x-y to move from cell x to adjacent cell y
▶ pickup dishes, and
▶ load dishes into the dishwasher.

▶ γ = (robot-at = B6) ∧ (dishes-at = Dishwasher)
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Fact and Formula Landmarks: Example

1 2 3 4 5 6

C

B

A

Images from wikimedia

Each fact in gray is a fact landmark:

▶ robot-at = x for x ∈ {A1,A6,B3,B4,B5,B6,C1}
▶ dishes-at = x for x ∈ {Dishwasher,Robot,Table}

Formula landmarks:

▶ dishes-at = Robot ∧ robot-at = B4

▶ robot-at = B1 ∨ robot-at = A2
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Disjunctive Action Landmarks: Example

1 2 3 4 5 6

C

B

A

Actions of same color form disjunctive action landmark:

▶ {pickup}
▶ {load}
▶ {move-B3-B4}
▶ {move-B4-B5}

▶ {move-A6-B6,move-B5-B6}
▶ {move-A3-B3,move-B2-B3,move-C3-B3}
▶ {move-B1-A1,move-A2-A1}
▶ . . .
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Remarks

▶ Not every landmark is informative. Some examples:
▶ The set of all operators is a disjunctive action landmark

unless the initial state is already a goal state.
▶ Every variable that is initially true is a fact landmark.
▶ The goal formula is a formula landmark.

▶ Every fact landmark v that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make v true.
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Complexity: Disjunctive Action Landmarks

Theorem
Deciding whether a given operator set is a disjunctive action
landmark is as hard as the plan existence problem.

Proof.

Given a propositional planning task Π = ⟨V , I ,O, γ⟩,
create a new planning task Π′ with goal g /∈ V as
Π′ = ⟨V ∪ {g}, I ∪ {g 7→ F},O ∪ {oγ , o⊤}, g⟩, where

oγ = ⟨γ, g , 0⟩, and
o⊤ = ⟨⊤, g , 0⟩.

If γ = ⊤ then Π is trivially solvable. Otherwise Π is solvable
iff {o⊤} is not a disjunctive action landmark of Π′.
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Complexity: Fact Landmarks

Theorem
Deciding whether a given atomic proposition is a fact landmark
is as hard as the plan existence problem.

Proof.

Given a propositional planning task Π = ⟨V , I ,O, γ⟩,
let p, g /∈ V be new atomic propositions and create a new planning
task Π′ = ⟨V ∪ {p, g}, I ∪ {p 7→ F, g 7→ F},O ∪ {o, o ′}, g⟩, where

o = ⟨γ, g , 0⟩, and
o ′ = ⟨⊤, g ∧ p, 0⟩.

Then p is a fact landmark of Π′ iff Π is not solvable.
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Complexity: Discussion

▶ Does this mean that the idea of exploiting landmarks is
fruitless?– No!

▶ We do not need to know all landmarks, so we can use
incomplete methods to identify landmarks.
▶ The way we generate the landmarks guarantees that they are

indeed landmarks.
▶ Efficient landmark generation methods do not guarantee to

generate all possible landmarks.
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Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:

▶ RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)

▶ LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What’s the Difference Anyway? (ICAPS 2009)

▶ hm landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

Today we will discuss the special case of hm landmarks for m = 1,
restricted to STRIPS planning tasks.
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F2.2 Set Representation
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Set Representation of STRIPS Planning Tasks

In this (and the following) sections, we only consider STRIPS. For
a more convenient notation, we will use a set representation of
STRIPS planning task. . .

Three differences:

▶ Represent conjunctions of variables as sets of variables.

▶ Use two sets to represent add and delete effects of operators
separately.

▶ Represent states as sets of the true variables.
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STRIPS Operators in Set Representation

▶ Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vp, a1 ∧ · · · ∧ aq ∧ ¬d1 ∧ · · · ∧ ¬dr , c⟩

where vi , aj , dk are state variables and c is the cost.
▶ The same operator o in set representation is

⟨pre(o), add(o), del(o), cost(o)⟩, where
▶ pre(o) = {v1, . . . , vp} are the preconditions,
▶ add(o) = {a1, . . . , aq} are the add effects,
▶ del(o) = {d1, . . . , dr} are the delete effects, and
▶ cost(o) = c is the operator cost.

▶ Since STRIPS operators must be conflict-free,
add(o) ∩ del(o) = ∅
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STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
⟨V , I ,O,G ⟩, where
▶ V is a finite set of state variables,

▶ I ⊆ V is the initial state,

▶ O is a finite set of STRIPS operators in set representation,

▶ G ⊆ V is the goal.

The corresponding planning task in the previous notation is
⟨V , I ′,O ′, γ⟩, where
▶ I ′(v) = T iff v ∈ I ,

▶ O ′ = {⟨
∧

v∈pre(o)
v ,

∧
v∈add(o)

v ∧
∧

v∈del(o)
¬v , cost(o)⟩ | o ∈ O},

▶ γ =
∧
v∈G

v .
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F2.3 Landmarks from RTGs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 27, 2024 21 / 40

F2. Landmarks: RTG Landmarks Landmarks from RTGs

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut Heuristic

Cost Partitioning

Post-Hoc
Optimization

Network Flows

Operator
Counting

Potential
Heuristics
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Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

Single solution: ⟨o1, o2⟩
▶ All variables are fact landmarks.

▶ Variable b is initially true but irrelevant for the plan.

▶ Variable c gets true as “side effect” of o1 but it is not
necessary for the goal or to make an operator applicable.
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Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let Π = ⟨V , I ,O, γ⟩ be a propositional or FDR planning task.

A formula λ over V is a causal formula landmark for I if γ |= λ or
if for all plans π = ⟨o1, . . . , on⟩ there is an oi with pre(oi ) |= λ.
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Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task
(in set representation).

A variable v ∈ V is a causal fact landmark for I

▶ if v ∈ G or

▶ if for all plans π = ⟨o1, . . . , on⟩ there is an oi with v ∈ pre(oi ).
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Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

Single solution: ⟨o1, o2⟩
▶ All variables are fact landmarks for the initial state.

▶ Only a, d , e and f are causal landmarks.
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What We Are Doing Next

▶ Causal landmarks are the desirable landmarks.

▶ We can use a simplified version of RTGs for STRIPS to
compute causal landmarks for STRIPS planning tasks.

▶ We will define landmarks of AND/OR graphs, . . .

▶ and show how they can be computed.

▶ Afterwards we establish that these are landmarks
of the planning task.
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Simplified Relaxed Task Graph

Definition

For a STRIPS planning task Π = ⟨V , I ,O,G ⟩ (in set
representation), the simplified relaxed task graph sRTG(Π+) is the
AND/OR graph ⟨Nand ∪ Nor,A, type⟩ with
▶ Nand = {no | o ∈ O} ∪ {vI , vG}

with type(n) = ∧ for all n ∈ Nand,

▶ Nor = {nv | v ∈ V }
with type(n) = ∨ for all n ∈ Nor, and

▶ A = {⟨na, no⟩ | o ∈ O, a ∈ add(o)} ∪
E = {⟨no , np⟩ | o ∈ O, p ∈ pre(o)} ∪
E = {⟨nv , nI ⟩ | v ∈ I} ∪
E = {⟨nG , nv ⟩ | v ∈ G}

Like RTG but without extra nodes to support arbitrary conditions.
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Simplified RTG: Example

The simplified RTG for our example task is:

a b

c

d

e f

I

o1 o2

G
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Justification

Definition (Justification)

Let G = ⟨N,A, type⟩ be an AND/OR graph.

A subgraph J = ⟨NJ ,AJ , typeJ⟩ with NJ ⊆ N and AJ ⊆ A and
typeJ = type|NJ justifies n⋆ ∈ N iff

▶ n⋆ ∈ NJ ,

▶ ∀n ∈ NJ with type(n) = ∧:
∀⟨n, n′⟩ ∈ A : n′ ∈ NJ and ⟨n, n′⟩ ∈ AJ

▶ ∀n ∈ NJ with type(n) = ∨:
∃⟨n, n′⟩ ∈ A : n′ ∈ NJ and ⟨n, n′⟩ ∈ AJ , and

▶ J is acyclic.

“Proves” that n⋆ is forced true.
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Landmarks in AND/OR Graphs

Definition (Landmarks in AND/OR Graphs)

Let G = ⟨N,A, type⟩ be an AND/OR graph.

A node n ∈ N is a landmark for reaching n⋆ ∈ N
if n ∈ V J for all justifications J for n⋆.

But: exponential number of possible justifications
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Characterizing Equation System

Theorem

Let G = ⟨N,A, type⟩ be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

⟨n,n′⟩∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

⟨n,n′⟩∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n′ ∈ LM(n) iff n′ is a landmark for reaching n in G .
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Computation of Maximal Solution

Theorem

Let G = ⟨N,A, type⟩ be an AND/OR graph. Consider the
following system of equations:

LM(n) = {n} ∪
⋂

⟨n,n′⟩∈A

LM(n′) type(n) = ∨

LM(n) = {n} ∪
⋃

⟨n,n′⟩∈A

LM(n′) type(n) = ∧

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

Computation: Initialize landmark sets as LM(n) = N and
Computation: apply equations as update rules until fixpoint.
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Computation: Example

a b

c

d

e f

I

o1 o2

G

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

a-f,I,G,o1,o2 a-f,I,G,o1,o2

I

a,I b,I e,I

a,I,o1

a,c,I,o1

a,d,I,o1

a,d,e,I,o1,o2

a,d,e,f,I,o1,o2

a,d,e,f,I,G,o1,o2

(cf. screen version of slides for step-wise computation)
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Relation to Planning Task Landmarks

Theorem

Let Π = ⟨V , I ,O, γ⟩ be a STRIPS planning task and
let L be the set of landmarks for reaching nG in sRTG(Π+).

The set {v ∈ V | nv ∈ L} is exactly the set of
causal fact landmarks in Π+.

For operators o ∈ O, if no ∈ L then {o} is a
disjunctive action landmark in Π+.
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)
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Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task ⟨V , I , {o1, o2},G ⟩ with

V = {a, b, c , d , e, f },
I = {a, b, e},

o1 = ⟨{a}, {c , d , e}, {b}⟩,
o2 = ⟨{d , e}, {f }, {a}⟩, and

G = {e, f }.

▶ LM(nG ) = {a, d , e, f , I ,G , o1, o2}
▶ a, d , e, and f are causal fact landmarks of Π+.

▶ {o1} and {o2} are disjunctive action landmarks of Π+.
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(Some) Landmarks of Π+ Are Landmarks of Π

Theorem
Let Π be a STRIPS planning task.

All fact landmarks of Π+ are fact landmarks of Π and all disjunctive
action landmarks of Π+ are disjunctive action landmarks of Π.

Proof.

Let L be a disjunctive action landmark of Π+ and π be a plan for
Π. Then π is also a plan for Π+ and, thus, π contains an operator
from L.

Let f be a fact landmark of Π+. If f is already true in the initial
state, then it is also a landmark of Π. Otherwise, every plan for Π+

contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of Π+. Therefore, also each plan of
Π contains such an operator, making f a fact landmark of Π.
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Not All Landmarks of Π+ are Landmarks of Π

Example

Consider STRIPS task ⟨{a, b, c}, ∅, {o1, o2}, {c}⟩ with
o1 = ⟨{}, {a}, {}, 1⟩ and o2 = ⟨{a}, {c}, {a}, 1⟩.

a ∧ c is a formula landmark of Π+ but not of Π.
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F2.4 Summary
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Summary

▶ Fact landmark: atomic proposition that is true in each state
path to a goal

▶ Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

▶ We can efficiently compute all causal fact landmarks of a
delete-free STRIPS task from the (simplified) RTG.

▶ Fact landmarks of the delete relaxed task are also
landmarks of the original task.
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