Planning and Optimization

F1. Constraints: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 27, 2024

Content of the Course

— Prelude

— Foundations

- Approaches

- Delete Relaxation

- Abstraction

Constraint-based Heuristics

©0000000000

Constraint-based Heuristics

Constraint-based Heuristics
0@000000000

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

m delete relaxation
abstraction
critical paths
landmarks

network flows

potential heuristic

Landmarks, network flows and potential heuristics are based on
constraints that can be specified for a planning task.

Constraint-based Heuristics Multiple Heuristics Summary

00@00000000

Constraints: Example

.

B

FDR planning task (V, 1, 0,~) with < fﬁf
m V = {robot-at, dishes-at} with
m dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
m dom(dishes-at) = {Table, Robot, Dishwasher}
m | = {robot-at — C1, dishes-at — Table}
B operators

m move-x-y to move from cell x to adjacent cell y
m pickup dishes, and
m load dishes into the dishwasher.

m v = (robot-at = B6) A (dishes-at = Dishwasher)

Images from wikimedia

Constraint-based Heuristics / Heuristics

000@0000000

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes a certain value in at least one visited state.
(a fact landmark constraint)

Summar

Constraint-based Heuristics
0000®000000

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

[o

iy

gl ¢

Summar

Constraint-based Heuristics
0000®000000

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

[o
[ce o]

iy

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)

Constraint-based Heuristics
0000®000000

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

g

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)
m robot-at = B6, dishes-at = Dishwasher (goal state)

Constraint-based Heuristics : Heuristics

0O000@000000

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

1 2 3 4 5 6

X

gl ¢ ®

m robot-at = C1, dishes-at = Table (initial state)

m robot-at = B6, dishes-at = Dishwasher (goal state)

m robot-at = Al, robot-at = B3, robot-at = B4,
robot—-at = Bb, robot-at = A6, dishes-at = Robot

Constraint-based Heuristics

0O0000e00000

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

® an action must be applied.
(an action landmark constraint)

Constraint-based Heuristics t stics Summar

00000080000

Action Landmarks: Example

Which actions must be applied in every solution?

2 3 4 5 6

e
&

X)) B

Constraint-based Heuristics euristics Summar

00000080000

Action Landmarks: Example

Which actions must be applied in every solution?

2 3 4 5 6

e
&

m pickup

Gy &l

m load

Constraint-based Heuristics euristics Summar

00000080000

Action Landmarks: Example

Which actions must be applied in every solution?

1 2 3 4 5 6

e
&

pickup

i
;
Gy &l

load
move-B3-B4
move-B4-B5

Constraint-based Heuristics

00000008000

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

® an action must be applied.
(an action landmark constraint)

Constraint-based Heuristics

00000008000

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

m at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

Constraint-based Heuristics Multiple Heuristics Summar

00000000800

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
Sy
B —> —t>
|

m {pickup}

m {load}
m {move-B3-B4}
= {move-B4-B5}

Constraint-based Heuristics

00000000800

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
[,
e
B e —
gl ¢
= {pickup} m {move-A6-B6, move-B5-B6}

m {load}
m {move-B3-B4}
= {move-B4-B5}

Constraint-based Heuristics Summar

00000000800

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

1 2 3 4 5 6
A ”
\ EEE
| v
B st 1 —>
A
@
= {pickup} m {move-A6-B6, move-B5-B6}
m {load} = {move-A3-B3, move-B2-B3, move-C3-B3}
= {move-B3-B4} = {move-B1-Al, move-A2-Al}

= {move-B4-B5} ...

Constraint-based Heuristics Heuristics

0000000000

Constraints

Some heuristics exploit constraints that describe
something that holds in every solution of the task.

For instance, every solution is such that

m a variable takes some value in at least one visited state.
(a fact landmark constraint)

m at least one action from a set of actions must be applied.
(a disjunctive action landmark constraint)

m fact consumption and production is “balanced”.
(a network flow constraint)

Constraint-based Heuristics
00000000000

Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6
00 o

A m '

B /@‘

Constraint-based Heuristics le Heuristics

00000000008

Network Flow: Example

Consider the fact robot-at = B1.
How often are actions used that enter this cell?

1 2 3 4 5 6
00 o

Am ,

B@

Answer: as often as actions that leave this cell

If Count, denotes how often operator o is applied, we have:

Countmove-a1-81 + Countmove-2-B1 + Countmoye-c1-81 =

Countmove-B1-A1 + Countmove-B1-B2 + Countmoye-B1-C1

Multiple Heuristics

@0000000

Multiple Heuristics

Multiple Heuristics
0®000000

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:
E maximize
m canoncial heuristic (for abstractions)
m minimum hitting set (for landmarks)
m cost partitioning

m operator counting

Often computed as solution to a (integer) linear program.

ed Heuristic: Multiple Heuristics Summary

[e]e] lele]elele)

Comblnlng Heuristics Admissibly: Example

Consider an FDR planning task (VI {01, 02,03,04},7) with
V = {wv1, v, v3} with dom(v;) = {A, B} and
dom(vz) =dom(vz) = {A,B,C}, I ={vi = A vo = A vz — A},

=(v1 =A,v; :==B,1)
(w=AANw=Awn:=BAwv:=B1)
(o =B, v :=C,1)
04—< =B,v3:=C1)

02

and vy =(v1 =B)A(v» =C) A(vz =C).
Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function h¢?

ed Heuristic: Multiple Heuristics Summary

[e]e] lele]elele)

Comblnlng Heuristics Admissibly: Example

Consider an FDR planning task (VI {01, 02,03,04},7) with
V = {wv1, v, v3} with dom(v;) = {A, B} and
dom(vz) =dom(vz) = {A,B,C}, I ={vi = A vo = A vz — A},

=(v1 =A,v; :==B,1)
(w=AANw=Awn:=BAwv:=B1)
(o =B, v :=C,1)
04—< =B,v3:=C1)

02

and vy =(v1 =B)A(v» =C) A(vz =C).
Let C be the pattern collection that contains all atomic projections.
What is the canonical heuristic function h¢?

Answer: Let h; :== hYi. Then h® = max {hy + hp, hy + hs}.

d Heuristics Multiple Heuristics
C 000®0000

Reminder: Orthogonality and Additivity

Why can we add h; and hy (h; and h3) admissibly?

Theorem (Additivity for Orthogonal Abstractions)

Let h*t, ... h®" be abstraction heuristics of the same transition
system such that o; and o; are orthogonal for all i # j.

Then "7 | h% is a safe, goal-aware, admissible and consistent
heuristic for T1.

The proof exploits that every concrete transition
induces state-changing transition in at most one abstraction.

Multiple Heuristics

Combining Heuristics (In)admissibly: Example

Let h = hy + ho + h3.

02,03,04 02, 03, 04
1 01 0
m(A)
01, 04 01, 04 01, 04

2 02]f& 03
n @ &

2 o]KQ o,
hs @ : \B) :

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.

o
[y
8
o
[y
Q
w
(@] (o) (@}
=
@ vo@
w

sed Heuristics Multiple Heuristics Summar

[e]e]e]e] lelele)

Combining Heuristics (In)admissibly: Example

Let h= hy + hy + hs.
02,03, 04 02,03, 04

hy 1 o1
01,04

h 2@ i
01, 03

hy A %

6

o
R
L
S
RS
N

O
o

o
S
o
w
o
S
8

(o
o

(02,03, 04) is a plan for s = (B, A, A) but h(s) = 4.
Heuristics hy and hs both account for the single application of o0s.

d Heuristics Multiple Heuristics Summar

[e]e]e]e]e] lele)

Prevent Inadmissibility

The reason that hy and h3 are not additive is because
the cost of 0, is considered in both.

Is there anything we can do about this?

d Heuristics Multiple Heuristics

[e]e]e]e]e] lele)

Prevent Inadmissibility

The reason that hy and h3 are not additive is because
the cost of 0, is considered in both.

Is there anything we can do about this?

Solution: We can ignore the cost of oy in one heuristic by setting
its cost to 0 (e.g., cost3(02) = 0).

| Heuristics Multiple Heuristics Summar
) 00000080 00

Combining Heuristics Admissibly: Example

Let h" = hy + hy + hj, where h} = h*3 assuming cost3(02) = 0.

02,03, 04 02,03, 04
1 o O
m(A)
01, 04 01, 04 01, 04

03

2 o
1 o
@ 0-cost

(02,03, 04) is an optimal plan for s = (B, A, A) and
W (s) = 3 an admissible estimate.

O

@
h 4

[®)
v
8
- o
g
pr <
Q
w
(@] o (@]
=
@ < @
8

w~

Multiple Heuristics
0000000e

Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

Heuristics Multiple Heuristics

0000000

Cost partitioning

Using the cost of every operator only in one heuristic is called a
zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are
distributed in a way that the sum of the individual costs is no
larger than the cost of the operator.

This can also be expressed as a constraint,
the cost partitioning constraint:

Z costi(0) < cost(o) for all 0 € O
i=1

(more details later)

Summan
0

Summary

Summary
o

Summary

m Landmarks and network flows are constraints that describe
something that holds in every solution of the task.

m Heuristics can be combined admissibly if the cost partitioning
constraint is satisfied.

	Constraint-based Heuristics
	

	Multiple Heuristics
	

	Summary
	

