Planning and Optimization
E13. Merge-and-Shrink: Pruning and Usage in Practise

Malte Helmert and Gabriele Roger

Universitat Basel

November 25, 2024

Pruning
@0000

Pruning

Pruning
(o] Jelele]

Content of the Course

Synchronized
Product

Prelude

Factored Tansition
Foundations Systems

Approaches Algorithm

Abstraction in
General Representation

il
1

Delete Relaxation

Pattern Databases‘ { Properties

Strategies

Label Reduction

Pruning 1d-Shrink in Practise

[e]e] le]e}

Alive States

reachable

-OF—0O0—0O—@

backward-reachable

m state s is reachable if we can reach it from the initial state
m state s is backward-reachable if we can reach the goal from s

m state s is alive if it is reachable and backward-reachable
— only alive states can be traversed by a solution

m a state s is dead if it is not alive.

Pruning and-Shrink in Practise e Summary

[e]e]e] e}

Pruning States (1)

m If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

m Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

m This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.

— use heuristic estimate oo

Pruning -and-Shrink in Practise

[e]e]ee] }

Pruning States (2)

m Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

m Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

m However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A*(but
not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.

Merge-and-Shrink in Practise

Merge-and-Shrink in Practise _iterature Summar

[¢] lee]e}

Merge-and-Shrink

Merge-and-Shrink is a general framework.

The full framework also covers label reduction and pruning.

For all transformations, we need to select a strategy.
merge, shrink, label reduction, pruning strategy

The general strategy orchestrates the tranformations.
How can this look like in practise?

Merge-and-Shrink in Practise
00®00

Merge-and-Shrink in Fast Downward

Input: Factored transition system F, merge strategy MS, shrink strategy SS,
prune strategy PS, label reduction strategy LRS, size limit N € N.
Output: Trans. system T and mapping o from states of) F to states of 7.

> Copy input factored transition system, compute ¥ to represent the
identity state mapping on Q) F’, set \ to the identity label mapping.
(F',Z,) « (F,{mr | T € F'},id)

for 7 € F do

> Prune atomic factor T with PS.

(F', X, \) + CoMPOSETRANSFORMATION(PRUNE(F', T))
end for

Merge-and-Shrink in Practise e Summary
00000 000000 00

Merge-and-Shrink in Fast Downward (cont'd)

while |[F'| > 1 do
> With MS, select two factors from F to be merged in this iteration.
Ti, T2, + SELECT(F’)

> With LRS, apply a label reduction to F'.
(F', X, \) + CoMPOSETRANSFORMATION(LABELREDUCTION(F'))

> With SS, shrink T1 and T, so that the size of their product respects N.
(F', X, \) + COMPOSETRANSFORMATION(SHRINK(F', 71, T2, N))

> With LRS, apply a label reduction to F'.
(F',Z,\) + CoMPOSETRANSFORMATION(LABELREDUCTION(F'))

> Apply the merge transformation.
(F', ¥,)\) + CoMPOSETRANSFORMATION(MERGE(F’, 71, T3))

> With PS, prune the product factor T® of T1 and Tz.

(F', %,)\) < COMPOSETRANSFORMATION(PRUNE(F', T®))
end while
return single elements 7 € F and 0 € ©

Merge-and-Shrink in Practise it e Summary

[e]o]e]e] }

Stopping Early

m Merge-and-shrink has significant precomputation time before
we can start the search.

m We typically stop the algorithm after a preset time
(e.g. half of the time that is overall available).

m The factored transition system then still contains several
factors. Each of them induces an individual heuristic.

m We can combine them by taking the maximum or use a
generalization of operator cost partitioning (cf. Ch. F7/8) to
labels to obtain better estimates.

m Cost partitioning benefits from additional snapshots of factors
from several iterations of merge-and-shrink.

State of the art: snapshots and saturated cost partitioning (Ch.F8)

Literature
©00000

Literature

Literature
0®0000

Literature (1)

References on merge-and-shrink abstractions:

@ Klaus Drager, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

@ Malte Helmert, Patrik Haslum and Jorg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.

Literature
00®000

Literature (2)

ﬁ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.

Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014,
Detailed journal version of the previous two publications.

Literature
000800

Literature (3)

@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.

Introduces modern version of label reduction.
(There was a more complicated version before.)

[@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.

Proc. SoCS 2014, pp. 53-61, 2014.
Introduces UMC and MIASM merging strategies

Literature
000080

Literature (4)

@ Malte Helmert, Gabriele Roger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106-114, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.

[@ Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781-883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.

Literature (5)

@ Silvan Sievers, Florian Pommerening , Thomas Keller and
Malte Helmert.

Cost-Partitioned Merge-and-Shrink Heuristics for Optimal
Classical Planning.

Proc. IJCAI 2020, pp. 4152-4160, 2020.

Extends saturated cost partitioning to merge-and-shrink.

Summan
0

Summary

1d-Shrink in Practise re Summary

Summary

m Pruning is a transformation that is used to keep the size of
the factors small. It depends on the intended application how
aggressive the pruning can be.

m In practise, it is beneficial to set a time limit for
merge-and-shrink. The factors can be considered as individual
admissible heuristics.

	Pruning
	

	Merge-and-Shrink in Practise
	

	Literature
	

	Summary
	

