

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies and Shrink: Merge Strategies and Label Reduction

E12.1 Merge Strategies

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 4 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies Merge Strategies

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π $F := F(\Pi)$ while $|F| > 1$: select $type \in \{merge, shrink\}$ if $type = merge$: select $\mathcal{T}_1, \mathcal{T}_2 \in F$ $F := (F \setminus \{ \mathcal{T}_1, \mathcal{T}_2 \}) \cup \{ \mathcal{T}_1 \otimes \mathcal{T}_2 \}$ if $type = shrink$: select $\mathcal{T} \in F$ choose an abstraction mapping β on $\mathcal T$ $F := (F \setminus \{ \mathcal{T} \}) \cup \{ \mathcal{T}^{\beta} \}$ \bm{r} eturn the remaining factor \mathcal{T}^{α} in \bm{F}

Remaining Question:

- \triangleright Which abstractions to select for merging? \rightsquigarrow merge strategy
- M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 5 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies Merge Strategies

We can distinguish two major types of merge strategies:

▶ precomputed merge strategies fix a unique merge order up-front.

One-time effort but cannot react to other transformations applied to the factors.

▶ stateless merge strategies only consider the current FTS and decide what factors to merge.

Typically computing a score for each pair of factors and naturally non-linear; easy to implement but cannot capture dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless strategies.

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies and Label Reduction Merge Strategies

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{T}_1 .

Rationale: only maintains one "complex" abstraction at a time

- ▶ Fully defined by an ordering of atomic projections/variables.
- \blacktriangleright Each merge-and-shrink heuristic computed with a non-linear merge strategy can also be computed with a linear merge strategy.
- ▶ However, linear merging can require a super-polynomial blow-up of the final representation size.
- ▶ Recent research turned from linear to non-linear strategies, also because better label reduction techniques (later in this chapter) enabled a more efficient computation.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies Merge Strategies Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of h _{HHH}

h _{HHH}: Ordering of atomic projections

- \triangleright Start with a goal variable.
- \blacktriangleright Add variables that appear in preconditions of operators affecting previous variables.
- \blacktriangleright If that is not possible, add a goal variable.

Rationale: increases h quickly

Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first merge variables within each cluster.

Example: MIASM ("maximum intermediate abstraction size minimizing merging strategy")

MIASM strategy

- ▶ Measure interaction by ratio of unnecessary states in the merged system $($ = states not traversed by any abstract plan).
- \triangleright Best-first search to identify interesting variable sets.
- \triangleright Disjoint variable sets chosen by a greedy algorithm for maximum weighted set packing.

Rationale: increase power of pruning (cf. next chapter)

```
M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 9 / 26
```
E12. Merge-and-Shrink: Merge Strategies and Label Reduction Merge Strategies and Label Reduction Merge Strategies

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected component of the causal graph.

Example: SCC framework

SCC [strategy](#page-2-0)

- ▶ Compute strongly connected components of causal graph
- ▶ Secondary strategies for order in which
	- \blacktriangleright the SCCs are considered (e.g. topologic order),
	- ▶ the factors within an SCC are merged, and
	- \blacktriangleright the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: $SCC+DFP$ or a stateless MIASM variant

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

DFP strategy

- ▶ labelrank $(\ell, \mathcal{T}) = \min\{h^*(t) | \langle s, \ell, t \rangle \}$ transition in $\mathcal{T}\}$
- Score $(\mathcal{T}, \mathcal{T}') = \min\{\max\{\text{labelrank}(\ell, \mathcal{T}), \text{labelrank}(\ell, \mathcal{T}')\} \mid$ ℓ label in $\mathcal T$ and $\mathcal T'\}$
- ▶ Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region, which is likely to be searched by A^* .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 10 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction

E12.2 Label Reduction

Idea: Replace p and p' with label p'' with same cost.

Label Reduction: Definition

Definition (Label Reduction)

Let F be a factored transition system with label set L and label cost function c. A label reduction $\langle \lambda, c' \rangle$ for F is given by a function $\lambda:L\to L'$, where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell).$

For $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle \in F$ the label-reduced transition system is $\mathcal{T}^{\langle\lambda,c'\rangle}=\langle\mathcal{S},\mathcal{L}',c',\{\langle\mathfrak{s},\lambda(\ell),t\rangle\mid\langle\mathfrak{s},\ell,t\rangle\in\mathcal{T}\},\mathsf{s}_0,\mathsf{S}_\star\rangle.$ The label-reduced FTS is $F^{\langle\lambda,c'\rangle}=\{\mathcal{T}^{\langle\lambda,c'\rangle}\mid\mathcal{T}\in\mathcal{F}\}.$

 $L' \cap L \neq \emptyset$ and $L' = L$ are allowed.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 17 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction

More Terminology

Let F be a factored transition systems with labels L. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in \mathcal{F}$.

- ▶ Label ℓ is alive in F if all $\mathcal{T}' \in F$ have some transition labelled with ℓ . Otherwise, ℓ is dead.
- ▶ Label ℓ locally subsumes label ℓ' in $\mathcal T$ if for all transitions $\langle s, \ell', t \rangle$ of $\mathcal T$ there is also a transition $\langle s, \ell, t \rangle$ in $\mathcal T$.
- $\blacktriangleright \ell$ globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in \mathcal{F}$.
- \blacktriangleright ℓ and ℓ' are locally equivalent in $\mathcal T$ if they label the same transitions in $\mathcal T$, i.e. ℓ locally subsumes ℓ' in $\mathcal T$ and vice versa.
- \blacktriangleright ℓ and ℓ' are $\mathcal T$ -combinable if they are locally equivalent in all transition systems $\mathcal{T}' \in \mathcal{F} \setminus \{ \mathcal{T} \}.$

Label Reduction is Conservative

Theorem (Label Reduction is Safe) Let F be a factored transition systems and $\langle \lambda, c' \rangle$ be a label-reduction for F. The transformation $\langle F, id, \lambda, F^{\langle \lambda, c' \rangle} \rangle$ is conservative. (Proof omitted.) We can use label reduction as an additional possible step in merge-and-shrink. M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024 18 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ be a label-reduction for F such that λ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The transformation from F to ${\mathsf F}^{\langle\lambda,{\mathsf c}'\rangle}$ is exact iff ${\mathsf c}(\ell_1)={\mathsf c}(\ell_2)$, ${\mathsf c}'(\lambda(\ell))={\mathsf c}(\ell)$ for all $l \in L$, and

- \blacktriangleright ℓ_1 globally subsumes ℓ_2 , or
- \blacktriangleright ℓ_2 globally subsumes ℓ_1 , or
- ▶ ℓ_1 and ℓ_2 are T-combinable for some $T \in F$.

(Proof omitted.)

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction

```
Computation of Exact Label Reduction (1)
   ▶ For given labels \ell_1, \ell_2, the criteria can be tested in low-order
       polynomial time.
   ▶ Finding globally subsumed labels involves finding subset
      relationsships in a set family.
       \rightsquigarrow no linear-time algorithms known
   \blacktriangleright The following algorithm exploits only T-combinability.
```


E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction

Computation of Exact Label Reduction (2)

 $\emph{eq}_{i}:=$ set of label equivalence classes of $\mathcal{T}_{i}\in\mathit{F}$

```
Label-reduction based on \mathcal{T}_i-combinability
eq := \{[\ell]_{\sim_c} \mid \ell \in L, \ell' \sim_c \ell'' \text{ iff } c(\ell') = c(\ell'')\}for j \in \{1, ..., |F|\} \setminus \{i\}Refine eq with eq_i\frac{1}{1} two labels are in the same set of eq iff they have
1/ the same cost and are locally equivalent in all \mathcal{T}_j \neq \mathcal{T}_i.\lambda = idfor B \in ea\ell_{\text{new}} := \text{new label}c'(\ell_{\sf new}) := \mathsf{cost} of labels in Bfor \ell \in B\lambda(\ell) = \ell_{\text{new}}
```
