

Planning and Optimization November 20, 2024 — E12. Merge-and-Shrink: Merge Strategies and Label Reduction			tion
E12.1 Merge St	rategies		
E12.2 Label Reduction			
E12.3 Summary	/		
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	November 20, 2024	2 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π $F := F(\Pi)$ while |F| > 1: select $type \in \{merge, shrink\}$ **if** *type* = merge: select $\mathcal{T}_1, \mathcal{T}_2 \in F$ $F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}$ **if** *type* = shrink: select $\mathcal{T} \in F$ choose an abstraction mapping β on \mathcal{T} $F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}$ **return** the remaining factor \mathcal{T}^{α} in *F*

Remaining Question:

- \blacktriangleright Which abstractions to select for merging? \rightsquigarrow merge strategy Planning and Optimization
- M. Helmert, G. Röger (Universität Basel)

Merge Strategies

5 / 26

November 20, 2024

Merge Strategies

Classes of Merge Strategies

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

We can distinguish two major types of merge strategies:

precomputed merge strategies fix a unique merge order up-front.

One-time effort but cannot react to other transformations applied to the factors.

stateless merge strategies only consider the current FTS and decide what factors to merge.

Typically computing a score for each pair of factors and naturally non-linear; easy to implement but cannot capture dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless strategies.

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

Merge Strategies

Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{T}_1 .

Rationale: only maintains one "complex" abstraction at a time

- Fully defined by an ordering of atomic projections/variables.
- Each merge-and-shrink heuristic computed with a non-linear merge strategy can also be computed with a linear merge strategy.
- ► However, linear merging can require a super-polynomial blow-up of the final representation size.
- Recent research turned from linear to non-linear strategies, also because better label reduction techniques (later in this chapter) enabled a more efficient computation.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 20, 2024 6 / 26

Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first merge variables within each cluster.

Example: MIASM ("maximum intermediate abstraction size minimizing merging strategy")

MIASM strategy

Measure interaction by ratio of unnecessary states in the merged system (= states not traversed by any abstract plan).

Planning and Optimization

- Best-first search to identify interesting variable sets.
- Disjoint variable sets chosen by a greedy algorithm for maximum weighted set packing.

Rationale: increase power of pruning (cf. next chapter)

```
M. Helmert, G. Röger (Universität Basel)
```

November 20, 2024 9 / 26

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

Merge Strategies

11 / 26

Merge Strategies

Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected component of the causal graph.

Example: SCC framework

SCC strategy

- Compute strongly connected components of causal graph
- Secondary strategies for order in which
 - the SCCs are considered (e.g. topologic order),
 - the factors within an SCC are merged, and
 - the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art: SCC+DFP or a stateless MIASM variant

Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize on labels that occur close to a goal state.

Example: DFP (named after Dräger, Finkbeiner and Podelski)

DFP strategy

- ▶ *labelrank*(ℓ , \mathcal{T}) = min{ $h^*(t) \mid \langle s, \ell, t \rangle$ transition in \mathcal{T} }
- ▶ $score(\mathcal{T}, \mathcal{T}') = min\{max\{labelrank(\ell, \mathcal{T}), labelrank(\ell, \mathcal{T}')\}$ ℓ label in \mathcal{T} and \mathcal{T}'

Planning and Optimization

Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region, which is likely to be searched by A^* .

M. Helmert, G. Röger (Universität Basel)

November 20, 2024

E12. Merge-and-Shrink: Merge Strategies and Label Reduction Label Reduction E12.2 Label Reduction M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 20, 2024

10 / 26

12 / 26

Planning and Optimization

Idea: Replace p and p' with label p'' with same cost.

Label Reduction: Definition

Definition (Label Reduction)

Let *F* be a factored transition system with label set *L* and label cost function *c*. A label reduction $\langle \lambda, c' \rangle$ for *F* is given by a function $\lambda : L \to L'$, where *L'* is an arbitrary set of labels, and a label cost function *c'* on *L'* such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle \in F$ the label-reduced transition system is $\mathcal{T}^{\langle \lambda, c' \rangle} = \langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t \rangle \in T \}, s_0, S_\star \rangle$. The label-reduced FTS is $F^{\langle \lambda, c' \rangle} = \{ \mathcal{T}^{\langle \lambda, c' \rangle} \mid \mathcal{T} \in F \}$.

Planning and Optimization

 $L' \cap L \neq \emptyset$ and L' = L are allowed.

M. Helmert, G. Röger (Universität Basel)

November 20, 2024

17 / 26

19 / 26

Label Reduction

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

Label Reduction

More Terminology

Let F be a factored transition systems with labels L. Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in F$.

- ▶ Label ℓ is alive in *F* if all $\mathcal{T}' \in F$ have some transition labelled with ℓ . Otherwise, ℓ is dead.
- Label l locally subsumes label l' in T if for all transitions (s, l', t) of T there is also a transition (s, l, t) in T.
- ▶ ℓ globally subsumes ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in F$.
- \$\ell\$ and \$\ell\$' are locally equivalent in \$\mathcal{T}\$ if they label the same transitions in \$\mathcal{T}\$, i.e. \$\ell\$ locally subsumes \$\ell\$' in \$\mathcal{T}\$ and vice versa.
- ℓ and ℓ' are *T*-combinable if they are locally equivalent in all transition systems *T*' ∈ *F* \ {*T*}.

Label Reduction is Conservative

Theorem (Label Reduction is Safe)Let F be a factored transition systems and $\langle \lambda, c' \rangle$ be a
label-reduction for F.
The transformation $\langle F, id, \lambda, F^{\langle \lambda, c' \rangle} \rangle$ is conservative.(Proof omitted.)We can use label reduction as an additional possible step in
merge-and-shrink.M. Helmert, G. Röger (Universitä Base)

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ be a label-reduction for F such that λ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The transformation from F to $F^{\langle \lambda, c' \rangle}$ is exact iff $c(\ell_1) = c(\ell_2)$, $c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, and

- \blacktriangleright ℓ_1 globally subsumes ℓ_2 , or
- \blacktriangleright ℓ_2 globally subsumes ℓ_1 , or
- ▶ l_1 and l_2 are T-combinable for some $T \in F$.

(Proof omitted.)

Label Reduction

Label Reduction

E12. Merge-and-Shrink: Merge Strategies and Label Reduction

E12. Merge-and-Shrink: Merge Strategies and Label Reduction **Computation of Exact Label Reduction** (2) $eq_i :=$ set of label equivalence classes of $T_i \in F$

Label-reduction based on \mathcal{T}_i -combinability $eq := \{[\ell]_{\sim_c} \mid \ell \in L, \ell' \sim_c \ell'' \text{ iff } c(\ell') = c(\ell'')\}$ for $j \in \{1, \dots, |F|\} \setminus \{i\}$ Refine eq with eq_j // two labels are in the same set of eq iff they have // the same cost and are locally equivalent in all $\mathcal{T}_j \neq \mathcal{T}_i$. $\lambda = \text{id}$ for $B \in eq$ $\ell_{\text{new}} := \text{new label}$ $c'(\ell_{\text{new}}) := \text{cost of labels in } B$ for $\ell \in B$ $\lambda(\ell) = \ell_{\text{new}}$

Label Reduction

Label Reduction

