Planning and Optimization E11. Merge-and-Shrink: Properties and Shrink Strategies

Malte Helmert and Gabriele Röger

Universität Basel

November 20, 2024

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization November 20, 2024 — E11. Merge-and-Shrink: Properties and Shrink Strategies

E11.1 Heuristic Properties

E11.2 Shrink Strategies

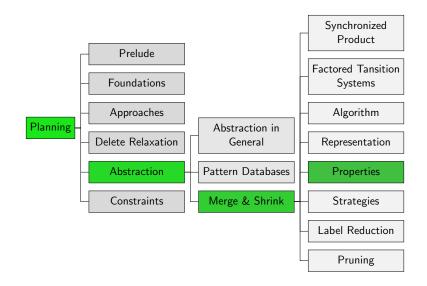
E11.3 Summary

Reminder: Generic Algorithm Template

```
Generic Merge & Shrink Algorithm for planning task \Pi
  F := F(\Pi)
 while |F| > 1:
           select type \in \{merge, shrink\}
           if type = merge:
                     select \mathcal{T}_1, \mathcal{T}_2 \in F
                     F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
           if type = shrink:
                     select \mathcal{T} \in F
                     choose an abstraction mapping \beta on \mathcal{T}
                     F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
 return the remaining factor \mathcal{T}^{\alpha} in F
```

E11.1 Heuristic Properties

Content of the Course



Properties of Merge-and-Shrink Heuristics

To understand merge-and-shrink abstractions better, we are interested in the properties of the resulting heuristic:

- ▶ Is it admissible $(h^{\alpha}(s) \leq h^*(s)$ for all states s)?
- ▶ Is it consistent $(h^{\alpha}(s) \leq c(o) + h^{\alpha}(t) \text{ for all trans. } s \xrightarrow{o} t)$?
- ▶ Is it perfect $(h^{\alpha}(s) = h^*(s)$ for all states s)?

Because merge-and-shrink is a generic procedure, the answers may depend on how exactly we instantiate it:

- size limits
- merge strategy
- shrink strategy

Merge-and-Shrink as Sequence of Transformations

- Consider a run of the merge-and-shrink construction algorithm with n iterations of the main loop.
- Let F_i $(0 \le i \le n)$ be the FTS F after i loop iterations.
- ▶ Let \mathcal{T}_i ($0 \le i \le n$) be the transition system represented by F_i , i.e., $\mathcal{T}_i = \bigotimes F_i$.
- In particular, $F_0 = F(\Pi)$ and $F_n = \{T_n\}$.
- For SAS⁺ tasks Π , we also know $\mathcal{T}_0 = \mathcal{T}(\Pi)$.

For a formal study, it is useful to view merge-and-shrink construction as a sequence of transformations from T_i to T_{i+1} .

(We do it in a bit more general fashion than necessary for merge and shrink steps only, to also cover some improvements we will see later.)

Transformations

Definition (Transformation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_\star \rangle$ be transition systems.

Let $\sigma: S \to S'$ map the states of \mathcal{T} to the states of \mathcal{T}' and $\lambda: L \to L'$ map the labels of \mathcal{T} to the labels of \mathcal{T}' .

The tuple $\tau = \langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is called a transformation from \mathcal{T} to \mathcal{T}' . We also write it as $\mathcal{T} \xrightarrow{\sigma, \lambda} \mathcal{T}'$.

The transformation τ induces the heuristic h^{τ} for \mathcal{T} defined as $h^{\tau}(s) = h^*_{\mathcal{T}'}(\sigma(s))$.

Example: If α is an abstraction mapping for transition system \mathcal{T} , then $\mathcal{T} \xrightarrow{\alpha, \text{id}} \mathcal{T}^{\alpha}$ is a transformation.

Conservative Transformations

Definition (Conservative Transformation)

Let \mathcal{T} and \mathcal{T}' be transition systems with label sets L and L' and cost functions c and c', respectively.

A transformation $\langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is conservative if

•
$$c'(\lambda(\ell)) \leq c(\ell)$$
 for all $\ell \in L$

• for all transitions $\langle s, \ell, t \rangle$ of \mathcal{T} there is a transition $\langle \sigma(s), \lambda(\ell), \sigma(t) \rangle$ of \mathcal{T}' , and

• for all goal states s of \mathcal{T} , state $\sigma(s)$ is a goal state of \mathcal{T}' .

Example: If α is an abstraction mapping for transition system \mathcal{T} , then $\mathcal{T} \xrightarrow{\alpha, \text{id}} \mathcal{T}^{\alpha}$ is a conservative transformation.

Conservative Transformations: Heuristic Properties (1)

Theorem

If τ is a conservative transformation from transition system \mathcal{T} to transition system \mathcal{T}' then h^{τ} is a safe, consistent, goal-aware and admissible heuristic for \mathcal{T} .

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: For all goal states s_{\star} of \mathcal{T} , state $\sigma(s_{\star})$ is a goal state of \mathcal{T}' and therefore $h^{\tau}(s_{\star}) = h^{*}_{\mathcal{T}'}(\sigma(s_{\star})) = 0$.

Conservative Transformations: Heuristic Properties (2)

Proof (continued). Consistency: Let c and c' be the label cost functions of \mathcal{T} and \mathcal{T}' , respectively. Consider state s of \mathcal{T} and transition $\langle s, \ell, t \rangle$. As \mathcal{T}' has a transition $\langle \sigma(s), \lambda(\ell), \sigma(t) \rangle$, it holds that $h^{\tau}(s) = h^*_{\mathcal{T}'}(\sigma(s))$ $< c'(\lambda(\ell)) + h^*_{\mathcal{T}'}(\sigma(t))$ $= c'(\lambda(\ell)) + h^{\tau}(t)$ $\langle c(\ell) + h^{\tau}(t) \rangle$ The second inequality holds due to the requirement on the label costs.

Exact Transformations

Definition (Exact Transformation)

Let \mathcal{T} and \mathcal{T}' be transition systems with label sets L and L' and cost functions c and c', respectively.

A transformation $\langle \mathcal{T}, \sigma, \lambda, \mathcal{T}' \rangle$ is exact if it is conservative and

- if $\langle s', \ell', t' \rangle$ is a transition of \mathcal{T}' then for all $s \in \sigma^{-1}(s')$ there is a transition $\langle s, \ell, t \rangle$ of \mathcal{T} with $t \in \sigma^{-1}(t')$ and $\ell \in \lambda^{-1}(\ell')$,
- if s' is a goal state of T' then all states s ∈ $\sigma^{-1}(s')$ are goal states of T, and

3)
$$c(\ell) = c'(\lambda(\ell))$$
 for all $\ell \in L$.

\rightsquigarrow no "new" transitions and goal states, no cheaper labels

Heuristic Properties with Exact Transformations (1)

Theorem

If τ is an exact transformation from transition system \mathcal{T} to transition system \mathcal{T}' then h^{τ} is the perfect heuristic h^* for \mathcal{T} .

Proof.

As the transformation is conservative, h^{τ} is admissible for \mathcal{T} and therefore $h_{\mathcal{T}}^*(s) \geq h^{\tau}(s)$. For the other direction, we show that for every state s' of \mathcal{T}' and goal path π' for s', there is for each $s \in \sigma^{-1}(s')$ a goal path in \mathcal{T} that has the same cost.

Heuristic Properties with Exact Transformations (2)

Proof (continued).

Proof via induction over the length of π' .

 $|\pi'| = 0$: If s' is a goal state of \mathcal{T}' then each $s \in \sigma^{-1}(s')$ is a goal state of \mathcal{T} and the empty path is a goal path for s in \mathcal{T} .

 $|\pi'| = i + 1$: Let $\pi' = \langle s', \ell', t' \rangle \pi'_{t'}$, where $\pi'_{t'}$ is a goal path of length *i* from *t'*. Then there is for each $t \in \sigma^{-1}(t')$ a goal path π_t of the same cost in \mathcal{T} (by ind. hypothesis). Furthermore, for all $s \in \sigma^{-1}(s')$ there is a state $t \in \sigma^{-1}(t')$ and a label $\ell \in \lambda^{-1}(\ell')$ such that \mathcal{T} has a transition $\langle s, \ell, t \rangle$. The path $\pi = \langle s, \ell, t \rangle \pi_t$ is a solution for *s* in \mathcal{T} . As ℓ and ℓ' must have the same cost and π_t and $\pi'_{t'}$ have the same cost, π has the same cost as π' .

Composing Transformations

Merge-and-shrink performs many transformations in sequence. We can formalize this with a notion of composition:

• Given
$$\tau = \mathcal{T} \xrightarrow{\sigma, \lambda} \mathcal{T}'$$
 and $\tau' = \mathcal{T}' \xrightarrow{\sigma', \lambda'} \mathcal{T}''$,
their composition $\tau'' = \tau' \circ \tau$ is defined as
 $\tau'' = \mathcal{T} \xrightarrow{\sigma' \circ \sigma, \lambda' \circ \lambda} \mathcal{T}''.$

• If au and au' are conservative, then $au' \circ au$ is conservative.

• If τ and τ' are exact, then $\tau' \circ \tau$ is exact.

Merge-and-Shrink Transformations

F: factored transition system

Replacement with Synchronized Product is Conservative and Exact Let $\mathcal{T}_1, \mathcal{T}_2 \in F$ with $\mathcal{T}_1 \neq \mathcal{T}_2$. Let $F' := (X \setminus {\mathcal{T}_1, \mathcal{T}_2}) \cup {\mathcal{T}_1 \otimes \mathcal{T}_2}$. Then there is an exact transformation $\langle \otimes F, \sigma, id, \otimes F' \rangle$.

Up to the isomorphism we know from the synchronized product, we can use $\sigma=\mathrm{id}.$

Abstraction is Conservative

Let α be an abstraction of $\mathcal{T}_i \in F$ and let $F' := (F \setminus {\mathcal{T}_i}) \cup {\mathcal{T}_i^{\alpha}}$. The transformation $\langle \otimes F, \sigma, id, \otimes F' \rangle$ with $\sigma(\langle s_1, \ldots, s_n \rangle) = \langle s_1, \ldots, s_{i-1}, \alpha(s_i), s_{i+1}, \ldots, s_n \rangle$ is conservative.

(Proofs omitted.)

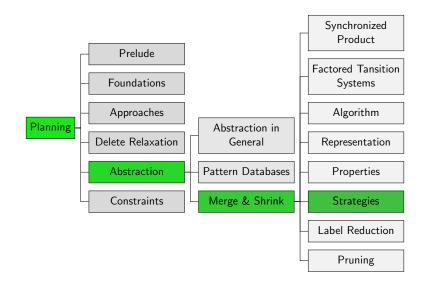
Properties of Merge-and-Shrink Heuristics

We can conclude the following properties of merge-and-shrink heuristics for SAS^+ tasks:

- The heuristic is always admissible and consistent (because it is induced by a a composition of conservative transformations).
- If all shrink transformation used are exact, the heuristic is perfect (because it is induced by a composition of exact transformations).

E11.2 Shrink Strategies

Content of the Course



Reminder: Generic Algorithm Template

```
F := F(\Pi)
while |F| > 1:
          select type \in \{merge, shrink\}
          if type = merge:
                     select \mathcal{T}_1, \mathcal{T}_2 \in F
                     F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
          if type = shrink:
                     select \mathcal{T} \in F
                     choose an abstraction mapping \beta on \mathcal{T}
                     F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^{\beta}\}
return the remaining factor \mathcal{T}^{\alpha} in F
```

Remaining Questions:

- \blacktriangleright Which abstractions to select for merging? \rightsquigarrow merge strategy
- ► How to shrink an abstraction? ~→ shrink strategy

Shrink Strategies

How to shrink an abstraction?

We cover two common approaches:

- f-preserving shrinking
- bisimulation-based shrinking

f-preserving Shrink Strategy

f-preserving Shrink Strategy

Repeatedly combine abstract states with identical abstract goal distances (h values) and identical abstract initial state distances (g values).

Rationale: preserves heuristic value and overall graph shape

Tie-breaking Criterion

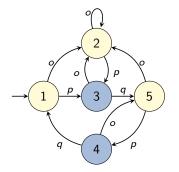
Prefer combining states where g + h is high. In case of ties, combine states where h is high.

Rationale: states with high g + h values are less likely to be explored by A^{*}, so inaccuracies there matter less

Bisimulation

Definition (Bisimulation) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system. An equivalence relation \sim on S is a bisimulation for \mathcal{T} if for every $\langle s, \ell, s' \rangle \in T$ and every $t \sim s$ there is a transition $\langle t, \ell, t' \rangle \in T$ with $t' \sim s'$. A bisimulation \sim is goal-respecting if $s \sim t$ implies that either $s, t \in S_*$ or $s, t \notin S_*$.

Bisimulation: Example



 \sim with equivalence classes $\{\{1,2,5\},\{3,4\}\}$ is a goal-respecting bisimulation.

Bisimulation Abstractions

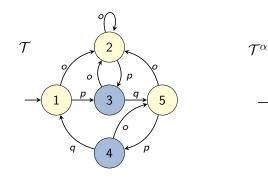
Definition (Abstractions as Bisimulation)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be a transition system and $\alpha : S \to S'$ be an abstraction of \mathcal{T} . The abstraction induces the equivalence relation \sim_{α} as $s \sim_{\alpha} t$ iff $\alpha(s) = \alpha(t)$.

We say that α is a (goal-respecting) bisimulation for \mathcal{T} if \sim_{α} is a (goal-respecting) bisimulation for \mathcal{T} .

Abstraction as Bisimulations: Example

Abstraction α with $\alpha(1) = \alpha(2) = \alpha(5) = A$ and $\alpha(3) = \alpha(4) = B$ is a goal-respecting bisimulation for \mathcal{T} .



B

o, q

Α

Goal-respecting Bisimulations are Exact

Theorem Let *F* be a factored transition system and α be an abstraction of $\mathcal{T}_i \in F$. If α is a goal-respecting bisimulation then the transformation $\langle \otimes F, \sigma, id, \otimes F' \rangle$ with $\blacktriangleright \sigma(\langle s_1, \dots, s_n \rangle) = \langle s_1, \dots, s_{i-1}, \alpha(s_i), s_{i+1}, \dots, s_n \rangle$ and $\blacktriangleright F' := (F \setminus \{\mathcal{T}_i\}) \cup \{\mathcal{T}_i^{\alpha}\}$ is exact.

(Proofs omitted.)

Shrinking with bisimulation preserves the heuristic estimates.

Bisimulations: Discussion

- As all bisimulations preserve all relevant information, we are interested in the coarsest such abstraction (to shrink as much as possible).
- There is always a unique coarsest bisimulation for T and it can be computed efficiently (from the explicit representation).
- In some cases, computing the bisimulation is still too expensive or it cannot sufficiently shrink a transition system.

E11.3 Summary

Summary

- Merge-and-shrink abstractions can be analyzed by viewing them as a sequence of transformations.
- We only use conservative transformations, and hence merge-and-shrink heuristics for SAS⁺ tasks are admissible and consistent.
- Merge-and-shrink heuristics for SAS⁺ tasks that only use exact transformations are perfect.
- **Bisimulation** is an exact shrinking method.