
Planning and Optimization
E1. Planning Tasks in Finite-Domain Representation

Malte Helmert and Gabriele Röger

Universität Basel

November 4, 2024

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 1 / 28

Planning and Optimization
November 4, 2024 — E1. Planning Tasks in Finite-Domain Representation

E1.1 Finite-Domain Representation

E1.2 Equivalence and Normal Forms

E1.3 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 2 / 28

How We Continue

▶ The next class of heuristics we will consider
are abstraction heuristics.

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

▶ However, this requires some preparations.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 3 / 28

Back to Foundations: Finite-Domain Representation

▶ Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

▶ To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

⇝ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

⇝ not specific to abstraction heuristics, but general foundations

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 4 / 28

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 5 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

E1.1 Finite-Domain Representation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 6 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Finite-Domain State Variables

▶ So far, we used propositional (Boolean) state variables.
⇝ possible values T and F

▶ We now consider finite-domain variables.
⇝ every variable has a finite set of possible values

▶ A state is still an assignment to the state variables.

Example: O(n2) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 7 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

⇝ 29 = 512 states

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 8 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

▶ below-a: {b, c, table}
▶ below-b: {a, c, table}
▶ below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

⇝ 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 9 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?
▶ There are 13 physically possible states with three blocks:

▶ all blocks on table: 1 state
▶ all blocks in one stack: 3! = 6 states
▶ two block stacked, the other separate:

(
3
2

)
2! = 6

▶ With propositional variables, 29 − 13 = 499 states are useless.

▶ With finite-domain variables, only 27− 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 10 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s |= v = d iff s(v) = d .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 11 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Example: Finite-Domain State Variables

Example

Consider finite-domain variables V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {location 7→ at-home, bike 7→ locked}.

Does s |= (location = at-home ∧ ¬bike = stolen) hold?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 12 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

▶ a precondition pre(o), a formula over V

▶ an effect eff(o) over V

▶ a cost cost(o) ∈ R+
0

Only necessary adaptation: What is an effect?

Example

⟨location = in-front-of-uni,
location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 13 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

▶ ⊤ is an effect (empty effect).

▶ If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

▶ If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

▶ If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 14 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d , e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

▶ effcond(v := d ,⊤) = ⊥
▶ effcond(v := d , v := d) = ⊤
▶ effcond(v := d , v ′ := d ′) = ⊥

for atomic effects with v ′ ̸= v or d ′ ̸= d

▶ effcond(v := d , (e ∧ e ′)) =
(effcond(v := d , e) ∨ effcond(v := d , e ′))

▶ effcond(v := d , (χ ▷ e)) = (χ ∧ effcond(v := d , e))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 15 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Conflicting Effects and Consistency Condition

▶ What should an effect of the form v := a ∧ v := b mean?

▶ For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d ̸=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

How did we handle conflicting effects
in propositional planning tasks?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 16 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables
and e be an effect over V .
If s |= consist(e), the resulting state of applying e in s,
written sJeK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =

{
d if s |= effcond(v := d , e) for some d ∈ dom(v)

s(v) otherwise

Let o be an operator over V .
Operator o is applicable in s if s |= pre(o) ∧ consist(eff(o)).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state sJeff(o)K.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 17 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Applying Operators: Example

Example

V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {location 7→ in-front-of-uni, bike 7→ unlocked}

o = ⟨location = in-front-of-uni, location := at-home, 1⟩
o ′ = ⟨location = in-front-of-uni,

location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

What is sJoK? What is sJo ′K?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 18 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple Π = ⟨V , I ,O, γ⟩ where
▶ V is a finite set of finite-domain state variables,

▶ I is an assignment for V called the initial state,

▶ O is a finite set of operators over V , and

▶ γ is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 19 / 28

E1. Planning Tasks in Finite-Domain Representation Finite-Domain Representation

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where
▶ S is the set of all states over V ,

▶ L is the set of operators O,

▶ c(o) = cost(o) for all operators o ∈ O,

▶ T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
▶ s0 = I , and

▶ S⋆ = {s ∈ S | s |= γ}.

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 20 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

E1.2 Equivalence and Normal Forms

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 21 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

Equivalence and Flat Operators

▶ The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

▶ The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 22 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d , e) ∧ effcond(v := d ′, e)
is unsatisfiable for all v ∈ V and d , d ′ ∈ dom(v) with d ̸= d ′.

An operator o is called conflict-free if eff(o) is conflict-free.

Note: consist(e) ≡ ⊤ for conflict-free e.

Algorithm to make given operator o conflict-free:

▶ replace pre(o) with pre(o) ∧ consist(eff(o))

▶ replace all atomic effects v := d by (consist(eff(o)) ▷ v := d)

The resulting operator o ′ is conflict-free and o ≡ o ′.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 23 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

SAS+ Operators and Planning Tasks

Definition (SAS+ Operator)

An operator o of an FDR planning task is a SAS+ operator if

▶ pre(o) is a satisfiable conjunction of atoms, and

▶ eff(o) is a conflict-free conjunction of atomic effects.

Definition (SAS+ Planning Task)

An FDR planning task ⟨V ,O, I , γ⟩ is a SAS+ planning task
if all operators o ∈ O are SAS+ operators
and γ is a satisfiable conjunction of atoms.

Note: SAS+ operators are conflict-free and flat.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 24 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

SAS+ Operators: Remarks

▶ Every SAS+ operator is of the form

⟨v1 = d1 ∧ · · · ∧ vn = dn, v ′1 := d ′
1 ∧ · · · ∧ v ′m := d ′

m⟩

where all vi are distinct and all v ′j are distinct.

▶ Often, SAS+ operators o are described
via two sets of partial assignments:
▶ the preconditions {v1 7→ d1, . . . , vn 7→ dn}
▶ the effects {v ′

1 7→ d ′
1, . . . , v

′
m 7→ d ′

m}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 25 / 28

E1. Planning Tasks in Finite-Domain Representation Equivalence and Normal Forms

SAS+ vs. STRIPS

▶ SAS+ is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

▶ Apart from this difference, all comments for STRIPS
apply analogously.

▶ If all variable domains are binary, SAS+ is essentially
STRIPS with negation.

SAS+

Derives from SAS = Simplified Action Structures
(Bäckström & Klein, 1991)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 26 / 28

E1. Planning Tasks in Finite-Domain Representation Summary

E1.3 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 27 / 28

E1. Planning Tasks in Finite-Domain Representation Summary

Summary

▶ Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

▶ FDR tasks are often more compact (have fewer states).

▶ This makes many planning algorithms more efficient
when working with a finite-domain representation.

▶ SAS+ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.
No conditional effects are allowed.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 4, 2024 28 / 28

	Finite-Domain Representation
	

	Equivalence and Normal Forms
	

	Summary
	

