Planning and Optimization D5. Delete Relaxation: Relaxed Task Graphs

Malte Helmert and Gabriele Röger

Universität Basel

October 28, 2024

Planning and Optimization

October 28, 2024 — D5. Delete Relaxation: Relaxed Task Graphs

D5.1 Relaxed Task Graphs

D5.2 Construction

D5.3 Reachability Analysis

D5.4 Remarks

D5.5 Summary

Content of the Course

D5.1 Relaxed Task Graphs

Relaxed Task Graphs

Let Π^+ be a relaxed planning task.

The relaxed task graph of Π^+ , in symbols $RTG(\Pi^+)$, is an AND/OR graph that encodes

- which state variables can become true in an applicable operator sequence for Π⁺,
- which operators of Π⁺ can be included in an applicable operator sequence for Π⁺,
- \triangleright if the goal of Π^+ can be reached,
- and how these things can be achieved.

We present its definition in stages.

Note: Throughout this chapter, we assume flat operators.

Running Example

As a running example, consider the relaxed planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with

$$V = \{a, b, c, d, e, f, g, h\}$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{T},$$

$$e \mapsto \mathbf{F}, f \mapsto \mathbf{F}, g \mapsto \mathbf{F}, h \mapsto \mathbf{F}\}$$

$$o_1 = \langle c \lor (a \land b), c \land ((c \land d) \rhd e), 1 \rangle$$

$$o_2 = \langle \top, f, 2 \rangle$$

$$o_3 = \langle f, g, 1 \rangle$$

$$o_4 = \langle f, h, 1 \rangle$$

$$\gamma = e \land (g \land h)$$

D5. Delete Relaxation: Relaxed Task Graphs Construction

D5.2 Construction

Components of Relaxed Task Graphs

A relaxed task graph has four kinds of components:

- ► Variable nodes represent the state variables.
- ► The initial node represent the initial state.
- Operator subgraphs represent the preconditions and effects of operators.
- ► The goal subgraph represents the goal.

The idea is to construct the graph in such a way that all nodes representing reachable aspects of the task are forced true.

Variable Nodes

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

For each $v \in V$, $RTG(\Pi^+)$ contains an OR node n_v . These nodes are called variable nodes.

Variable Nodes: Example

$$V = \{a, b, c, d, e, f, g, h\}$$

Initial Node

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

- ► $RTG(\Pi^+)$ contains an AND node n_I . This node is called the initial node.
- For all $v \in V$ with $I(v) = \mathbf{T}$, $RTG(\Pi^+)$ has an arc from n_V to n_I . These arcs are called initial state arcs.
- ▶ The initial node has no successor nodes.

Initial Node and Initial State Arcs: Example

$$I = \{a \mapsto \mathsf{T}, b \mapsto \mathsf{T}, c \mapsto \mathsf{F}, d \mapsto \mathsf{T}, e \mapsto \mathsf{F}, f \mapsto \mathsf{F}, g \mapsto \mathsf{F}, h \mapsto \mathsf{F}\}$$

Operator Subgraphs

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task. For each operator $o^+ \in O^+$, $RTG(\Pi^+)$ contains an operator subgraph with the following parts:

- for each formula φ that occurs as a subformula of the precondition or of some effect condition of o^+ , a formula node n_{φ} (details follow)
- for each conditional effect $(\chi \rhd \nu)$ that occurs in the effect of o^+ , an effect node $n_{o^+}^{\chi}$ (details follow); unconditional effects are treated as $(\top \rhd \nu)$

Formula Nodes

Formula nodes n_{φ} are defined as follows:

- If $\varphi = v$ for some state variable v, n_{φ} is the variable node n_v (so no new node is introduced).
- ▶ If $\varphi = \top$, n_{φ} is an AND node without outgoing arcs.
- ▶ If $\varphi = \bot$, n_{φ} is an OR node without outgoing arcs.
- ▶ If $\varphi = (\varphi_1 \land \varphi_2)$, n_{φ} is an AND node with outgoing arcs to n_{φ_1} and n_{φ_2} .
- ▶ If $\varphi = (\varphi_1 \vee \varphi_2)$, n_{φ} is an OR node with outgoing arcs to n_{φ_1} and n_{φ_2} .

Note: identically named nodes are identical, so if the same formula occurs multiple times in the task, the same node is reused.

Effect Nodes

Effect nodes $n_{o^+}^{\chi}$ are defined as follows:

- $ightharpoonup n_{o^+}^{\chi}$ is an AND node
- It has an outgoing arc to the formula nodes $n_{pre(o^+)}$ (precondition arcs) and n_{χ} (effect condition arcs).
- Exception: if $\chi = \top$, there is no effect condition arc. (This makes our pictures cleaner.)
- For every conditional effect $(\chi \rhd v)$ in the operator, there is an arc from variable node n_v to $n_{o^+}^{\chi}$ (effect arcs).

Note: identically named nodes are identical, so if the same effect condition occurs multiple times in the same operator, this only induces one node.

$$o_1 = \langle c \lor (a \land b), c \land ((c \land d) \rhd e), 1 \rangle$$

Goal Subgraph

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task.

 $RTG(\Pi^+)$ contains a goal subgraph, consisting of formula nodes for the goal γ and its subformulas, constructed in the same way as formula nodes for preconditions and effect conditions.

Goal Subgraph and Final Relaxed Task Graph: Example

D5.3 Reachability Analysis

How Can We Use Relaxed Task Graphs?

- We are now done with the definition of relaxed task graphs.
- Now we want to use them to derive information about planning tasks.
- In the following chapter, we will use them to compute heuristics for delete-relaxed planning tasks.
- ► Here, we start with something simpler: reachability analysis.

Forced True Nodes and Reachability

Theorem (Forced True Nodes vs. Reachability)

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task, and let N_T be the forced true nodes of $RTG(\Pi^+)$.

For all formulas over state variables φ that occur in the definition of Π^+ :

 φ is true in some reachable state of Π^+ iff $n_{\varphi} \in N_T$.

(We omit the proof.)

Forced True Nodes and Reachability: Consequences

Corollary

Let $\Pi^+ = \langle V, I, O^+, \gamma \rangle$ be a relaxed planning task, and let N_T be the forced true nodes of $RTG(\Pi^+)$. Then:

- ▶ A state variable $v \in V$ is true in at least one reachable state iff $n_v \in N_T$.
- ▶ An operator $o^+ \in O^+$ is part of at least one applicable operator sequence iff $n_{pre(o^+)} \in N_T$.
- ► The relaxed task is solvable iff $n_{\gamma} \in N_{\mathbf{T}}$.

Reachability Analysis: Example

Reachability Analysis: Example with Different Initial State

D5. Delete Relaxation: Relaxed Task Graphs

Remarks

D5.4 Remarks

Relaxed Task Graphs in the Literature

Some remarks on the planning literature:

- Usually, only the STRIPS case is studied.
- definitions simpler: only variable nodes and operator nodes, no formula nodes or effect nodes
- Usually, so-called relaxed planning graphs (RPGs) are studied instead of RTGs.
- These are temporally unrolled versions of RTGs, i.e., they have multiple layers ("time steps") and are acyclic.
- → Foundations of Artificial Intelligence course FS 2024, Ch. F3–F4

D5. Delete Relaxation: Relaxed Task Graphs

Summary

D5.5 Summary

Summary

- Relaxed task graphs (RTGs) represent (most of) the information of a relaxed planning task as an AND/OR graph.
- ► They consist of:
 - variable nodes
 - an initial node
 - operator subgraphs including formula nodes and effect nodes
 - a goal subgraph including formula nodes
- ► RTGs can be used to analyze reachability in relaxed tasks: forced true nodes mean "reachable", other nodes mean "unreachable".