
Planning and Optimization
D3. Delete Relaxation: Finding Relaxed Plans

Malte Helmert and Gabriele Röger

Universität Basel

October 23, 2024

Greedy Algorithm Optimal Relaxed Plans Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Relaxed Tasks

Relaxed Task
Graphs

Relaxation
Heuristics

Abstraction

Constraints

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm

Greedy Algorithm Optimal Relaxed Plans Summary

The Story So Far

A general way to come up with heuristics is to solve
a simplified version of the real problem.

delete relaxation: given a task in positive normal form,
discard all delete effects

relaxation lemma: solutions for a state s
also work for any dominating state s ′

monotonicity lemma: sJoK dominates s

Greedy Algorithm Optimal Relaxed Plans Summary

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for ⟨V , I ,O+, γ⟩
s := I
π+ := ⟨⟩
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with sJo+K ̸= s:

Append such an operator o+ to π+.
s := sJo+K

else:
return unsolvable

Greedy Algorithm Optimal Relaxed Plans Summary

Correctness of the Greedy Algorithm

The algorithm is sound:

If it returns a plan, this is indeed a correct solution.

If it returns “unsolvable”, the task is indeed unsolvable

Upon termination, there clearly is no relaxed plan from s.
By iterated application of the monotonicity lemma,
s dominates I .
By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

Each iteration of the loop adds at least one atom to on(s).

This guarantees termination after at most |V | iterations.
Thus, the algorithm can clearly be implemented
to run in polynomial time.

A good implementation runs in O(∥Π∥).

Greedy Algorithm Optimal Relaxed Plans Summary

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search
for a general (non-relaxed) planning task:

When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

When evaluating a subgoal φ in regression search,
solve relaxation of planning task with goal φ.

Set h(s) to the cost of the generated relaxed plan.

in general not well-defined:
different choices of o+ in the algorithm lead to different h(s)

Is this admissible/safe/goal-aware/consistent?

Greedy Algorithm Optimal Relaxed Plans Summary

Properties of the Greedy Algorithm as a Heuristic

Is this an admissible heuristic?

Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

However, usually they are not, because the greedy algorithm
can make poor choices of which operators to apply.

How hard is it to find optimal relaxed plans?

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxed Plans

Greedy Algorithm Optimal Relaxed Plans Summary

Optimal Relaxation Heuristic

Definition (h+ heuristic)

Let Π = ⟨V , I ,O, γ⟩ be a planning task in positive normal form
with states S .

The optimal delete relaxation heuristic h+ for Π
is the function h : S → R+

0 ∪ {∞}
where h(s) is the cost of an optimal relaxed plan for s,
i.e., of an optimal plan for Π+

s = ⟨V , s,O+, γ⟩.

(can analogously define a heuristic for regression)

admissible/safe/goal-aware/consistent?

Greedy Algorithm Optimal Relaxed Plans Summary

The Set Cover Problem

Can we compute h+ efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.

Greedy Algorithm Optimal Relaxed Plans Summary

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.

For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .

Greedy Algorithm Optimal Relaxed Plans Summary

Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance ⟨U,C ,K ⟩, we generate the following
relaxed planning task Π+ = ⟨V , I ,O+, γ⟩:

V = U

I = {v 7→ F | v ∈ V }
O+ = {⟨⊤,

∧
v∈Ci

v , 1⟩ | Ci ∈ C}
γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

Greedy Algorithm Optimal Relaxed Plans Summary

Summary

Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

However, the solution quality of this algorithm is poor.

For an informative heuristic, we would ideally want to find
optimal relaxed plans.

The solution cost of an optimal relaxed plan
is the estimate of the h+ heuristic.

However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

	Greedy Algorithm
	

	Optimal Relaxed Plans
	

	Summary
	

