Planning and Optimization

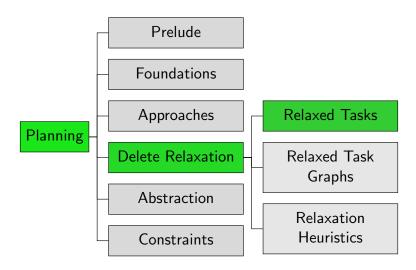
D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

October 21, 2024

Content of the Course



The Domination Lemma

On-Set and Dominating States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional variables that are true in s, i.e., $on(s) = s^{-1}(\{T\})$.

→ for states of propositional planning tasks: states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s' dominates an interpretation s if $on(s) \subseteq on(s')$.

 \rightsquigarrow all state variables true in s are also true in s'

Domination Lemma (1)

Lemma (Domination)

Let s and s' be interpretations of a set of propositional variables V, and let χ be a propositional formula over V which does not contain negation symbols.

If $s \models \chi$ and s' dominates s, then $s' \models \chi$.

Proof.

Proof by induction over the structure of χ .

- Base case $\chi = \top$: then $s' \models \top$.
- Base case $\chi = \bot$: then $s \not\models \bot$.

. . .

Domination Lemma (2)

Proof (continued).

- Base case $\chi = v \in V$: if $s \models v$, then $v \in on(s)$. With $on(s) \subseteq on(s')$, we get $v \in on(s')$ and hence $s' \models v$.
- Inductive case $\chi = \chi_1 \wedge \chi_2$: by induction hypothesis, our claim holds for the proper subformulas χ_1 and χ_2 of χ .

■ Inductive case $\chi = \chi_1 \vee \chi_2$: analogous

The Relaxation Lemma

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V. Let e be an effect over V, and let s be a state over V. The add set of e in s, written addset(e, s), and the delete set of e in s, written delset(e, s), are defined as the following sets of state variables:

$$addset(e, s) = \{v \in V \mid s \models effcond(v, e)\}$$
$$delset(e, s) = \{v \in V \mid s \models effcond(\neg v, e)\}$$

Note: For all states s and operators o applicable in s, we have $on(s[o]) = (on(s) \setminus delset(eff(o), s)) \cup addset(eff(o), s).$

Relaxation Lemma

For this and the following chapters on delete relaxation, we assume implicitly that we are working with propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s' be a state that dominates s.

- If o is an operator applicable in s, then o^+ is applicable in s' and $s'[o^+]$ dominates s[o].
- 2 If π is an operator sequence applicable in s, then π^+ is applicable in s' and s' $[\pi^+]$ dominates $s[\pi]$.
- **3** If additionally π leads to a goal state from state s, then π^+ leads to a goal state from state s'.

Proof of Relaxation Lemma (1)

Proof.

Let V be the set of state variables.

Part 1: Because o is applicable in s, we have $s \models pre(o)$.

Because pre(o) is negation-free and s' dominates s, we get $s' \models pre(o)$ from the domination lemma.

Because $pre(o^+) = pre(o)$, this shows that o^+ is applicable in s'.

. .

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that $s'[o^+]$ dominates s[o], we first compare the relevant add sets:

$$addset(eff(o), s) = \{v \in V \mid s \models effcond(v, eff(o))\}$$

$$= \{v \in V \mid s \models effcond(v, eff(o^{+}))\} \qquad (1)$$

$$\subseteq \{v \in V \mid s' \models effcond(v, eff(o^{+}))\} \qquad (2)$$

$$= addset(eff(o^{+}), s'),$$

where (1) uses $effcond(v, eff(o)) \equiv effcond(v, eff(o^+))$ and (2) uses the dominance lemma (note that effect conditions are negation-free for operators in positive normal form).

Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

$$on(s[o]) = (on(s) \setminus delset(eff(o), s)) \cup addset(eff(o), s)$$

 $\subseteq on(s) \cup addset(eff(o), s)$
 $\subseteq on(s') \cup addset(eff(o^+), s')$
 $= on(s'[o^+]),$

and thus $s'[o^+]$ dominates s[o].

This concludes the proof of Part 1.

Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over $n = |\pi|$

Base case: $\pi = \langle \rangle$

The empty plan is trivially applicable in s', and $s' \llbracket \langle \rangle^+ \rrbracket = s'$ dominates $s \llbracket \langle \rangle \rrbracket = s$ by prerequisite.

Inductive case: $\pi = \langle o_1, \dots, o_{n+1} \rangle$

By the induction hypothesis, $\langle o_1^+, \ldots, o_n^+ \rangle$ is applicable in s', and $t' = s' [\langle o_1^+, \dots, o_n^+ \rangle]$ dominates $t = s [\langle o_1, \dots, o_n \rangle]$.

Also, o_{n+1} is applicable in t.

Using Part 1, o_{n+1}^+ is applicable in t' and $s'[\pi^+] = t'[o_{n+1}^+]$ dominates $s[\pi] = t[o_{n+1}]$.

This concludes the proof of Part 2.

Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let γ be the goal formula.

From Part 2, we obtain that $t' = s' \llbracket \pi^+ \rrbracket$ dominates $t = s \llbracket \pi \rrbracket$. By prerequisite, t is a goal state and hence $t \models \gamma$.

Because the task is in positive normal form, γ is negation-free, and hence $t' \models \gamma$ because of the domination lemma.

Therefore, t' is a goal state.

Consequences

Consequences of the Relaxation Lemma

- The relaxation lemma is the main technical result that we will use to study delete relaxation.
- Next, we show two further properties of delete relaxation that will be useful for us.
- They are direct consequences of the relaxation lemma.

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let π be an operator sequence that is applicable in state s. Then π^+ is applicable in s and $s[\pi^+]$ dominates $s[\pi]$. If π is a plan for Π , then π^+ is a plan for Π^+ .

Proof.

Apply relaxation lemma with s' = s.

- Nelaxations of plans are relaxed plans.
- → Delete relaxation is no harder to solve than original task.
- Optimal relaxed plans are never more expensive than optimal plans for original tasks.

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s, and let π^+ be a relaxed operator sequence applicable in s.

Then π^+ is applicable in s' and s' $[\pi^+]$ dominates $s[\pi^+]$.

Proof.

Apply relaxation lemma with π^+ for π , noting that $(\pi^+)^+ = \pi^+$.

- \rightarrow If there is a relaxed plan starting from state s, the same plan can be used starting from a dominating state s'.
- → Dominating states are always "better" in relaxed tasks.

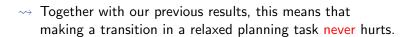
Monotonicity

Lemma (Monotonicity)

Let s be a state in which relaxed operator o^+ is applicable. Then $s[o^+]$ dominates s.

Proof.

Since relaxed operators only have positive effects, we have $on(s) \subseteq on(s) \cup addset(eff(o^+), s) = on(s[o^+])$.



Finding Relaxed Plans

Using the theory we developed, we are now ready to study the problem of finding plans for relaxed planning tasks.

→ next chapter

Summary

Summary

- With positive normal form, having more true variables is good.
- We can formalize this as dominance between states.
- It follows that delete relaxation is a simplification: it is never harder to solve a relaxed task than the original one.
- In delete-relaxed tasks, applying an operator always takes us to a dominating state and therefore never hurts.