Planning and Optimization D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Röger

Universit¨at Basel

October 21, 2024

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-23-0) Detober 21, 2024 1/24

Planning and Optimization October 21, 2024 — D2. Delete Relaxation: Properties of Relaxed Planning Tasks

D2.1 [The Domination Lemma](#page-3-0)

D_{2.2} [The Relaxation Lemma](#page-7-0)

D2.3 [Consequences](#page-15-0)

D_{2.4} [Monotonicity](#page-19-0)

D2.5 [Summary](#page-22-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Detonies Corober 21, 2024 2/24

Content of the Course

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Detober 21, 2024 3 / 24

D2.1 [The Domination Lemma](#page-3-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cotober 21, 2024 4 / 24

On-Set and Dominating States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional variables that are true in s , i.e., $\textit{on}(s) = s^{-1}(\{\mathbf{T}\}).$

 \rightarrow for states of propositional planning tasks: states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s' dominates an interpretation s if $\mathit{on}(s) \subseteq \mathit{on}(s')$.

 \rightsquigarrow all state variables true in s are also true in s'

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Controller 21, 2024 5 / 24

Domination Lemma (1)

Lemma (Domination)

Let s and s' be interpretations of a set of propositional variables V, and let χ be a propositional formula over V which does not contain negation symbols. If $s \models \chi$ and s' dominates s, then $s' \models \chi$.

Proof. Proof by induction over the structure of χ . **▶** Base case $\chi = \top$: then $s' \models \top$. ▶ Base case $\chi = \perp$: then $s \not\models \perp$

Domination Lemma (2)

Proof (continued).

- **►** Base case $\chi = v \in V$: if $s \models v$, then $v \in on(s)$. With $\mathit{on}(s) \subseteq \mathit{on}(s')$, we get $v \in \mathit{on}(s')$ and hence $s' \models v$.
- ▶ Inductive case $\chi = \chi_1 \wedge \chi_2$: by induction hypothesis, our claim holds for the proper subformulas χ_1 and χ_2 of χ .

$$
s \models \chi \implies s \models \chi_1 \land \chi_2
$$

\n
$$
\implies s \models \chi_1 \text{ and } s \models \chi_2
$$

\nL.H. (twice)
\n
$$
s' \models \chi_1 \text{ and } s' \models \chi_2
$$

\n
$$
\implies s' \models \chi_1 \land \chi_2
$$

\n
$$
\implies s' \models \chi.
$$

 $▶$ Inductive case $\chi = \chi_1 \vee \chi_2$: analogous

D2.2 [The Relaxation Lemma](#page-7-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Detober 21, 2024 8 / 24

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V. Let e be an effect over V , and let s be a state over V . The add set of e in s, written addset (e, s) , and the delete set of e in s, written $\text{delete}(e, s)$, are defined as the following sets of state variables:

$$
addset(e, s) = \{v \in V \mid s \models \text{effcond}(v, e)\}
$$

$$
delset(e, s) = \{v \in V \mid s \models \text{effcond}(\neg v, e)\}
$$

Note: For all states s and operators o applicable in s , we have $on(s[[o]]) = (on(s) \setminus \text{delete}(ef([o), s)) \cup \text{address}(ef([o), s)).$

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Controller 21, 2024 9/24

Relaxation Lemma

For this and the following chapters on delete relaxation, we assume implicitly that we are working with propositional planning tasks in positive normal form.

```
Lemma (Relaxation)
```
Let s be a state, and let s' be a state that dominates s.

- **1** If o is an operator applicable in s, then o^+ is applicable in s' and s' $[0^+]$ dominates s $[0]$.
- **2** If π is an operator sequence applicable in s, then π^+ is applicable in s' and s' $[\![\pi^+]\!]$ dominates s $[\![\pi]\!]$.
- **3** If additionally π leads to a goal state from state s, then π^+ leads to a goal state from state s'.

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cotober 21, 2024 10 / 24

Proof of Relaxation Lemma (1)

Proof. Let V be the set of state variables. Part 1: Because o is applicable in s, we have $s \models pre(o)$. Because $pre(o)$ is negation-free and s' dominates s , we get $s' \models \mathit{pre}(o)$ from the domination lemma. Because $pre(o^+) = pre(o)$, this shows that o^+ is applicable in s'. . . .

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that $s'[\![o^+]\!]$ dominates $s[\![o]\!]$,
we first compare the relevant add sets we first compare the relevant add sets:

$$
addset(eff(o), s) = \{v \in V \mid s \models effcond(v, eff(o))\}
$$

= \{v \in V \mid s \models effcond(v, eff(o^+))\} (1)

$$
\subseteq \{v \in V \mid s' \models effcond(v, eff(o^+))\} (2)= addset(eff(o^+), s'),
$$

where (1) uses ϵ ffcond $(v,\epsilon f f(o))\equiv \epsilon f f (o o d(v,\epsilon f f(o^+))$ and (2) uses the dominance lemma (note that effect conditions are negation-free for operators in positive normal form).

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cortober 21, 2024 12 / 24

Proof of Relaxation Lemma (3)

```
Proof (continued).
We then get:
      on(s[[o]]) = (on(s) \setminus \text{delset}(eff(o), s)) \cup \text{addset}(eff(o), s)\subseteq on(s) \cup addset(eff(o), s)
                  \subseteq on(s') \cup addset(eff(o<sup>+</sup>),s')
                  = on(s'[o<sup>+</sup>]),
and thus s'[o^+] dominates s[[o]].This concludes the proof of Part 1.
```
M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Detober 21, 2024 13 / 24

Proof of Relaxation Lemma (4)

```
Proof (continued).
Part 2: by induction over n = |\pi|Base case: \pi = \langle \rangleThe empty plan is trivially applicable in s', and
\textcolor{black}{\mathcal S}'[\![\langle\rangle^+]\!] = \textcolor{black}{\mathcal S}' dominates \textcolor{black}{\mathcal S}[\![\langle\rangle]\!] = \textcolor{black}{\mathcal S} by prerequisite.
Inductive case: \pi = \langle o_1, \ldots, o_{n+1} \rangleBy the induction hypothesis, \langle o_1^+, \ldots, o_n^+ \rangle is applicable in s',
and t' = s'[\![\langle o_1^+, \ldots, o_n^+ \rangle]\!] dominates t = s[\![\langle o_1, \ldots, o_n \rangle]\!].
Also, o_{n+1} is applicable in t.
Using Part 1, o_{n+1}^+ is applicable in t' and s'[\![\pi^+]\!] = t'[\![o_{n+1}^+]\!]dominates s\llbracket \pi \rrbracket = t\llbracket o_{n+1} \rrbracket.
This concludes the proof of Part 2.
```
M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cortober 21, 2024 14 / 24

Proof of Relaxation Lemma (5)

Proof (continued). Part 3: Let γ be the goal formula. From Part 2, we obtain that $t' = s'[\![\pi^+]\!]$ dominates $t = s[\![\pi]\!]$. By prerequisite, t is a goal state and hence $t \models \gamma$. Because the task is in positive normal form, γ is negation-free, and hence $t' \models \gamma$ because of the domination lemma. Therefore, t' is a goal state.

D2.3 [Consequences](#page-15-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cotober 21, 2024 16 / 24

Consequences of the Relaxation Lemma

- \triangleright The relaxation lemma is the main technical result that we will use to study delete relaxation.
- ▶ Next, we show two further properties of delete relaxation that will be useful for us.
- ▶ They are direct consequences of the relaxation lemma.

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let π be an operator sequence that is applicable in state s. Then π^+ is applicable in s and s $[\![\pi^+]\!]$ dominates s $[\![\pi]\!]$.
If π is a plan for Π , then π^+ is a plan for Π^+ . If π is a plan for Π , then π^+ is a plan for Π^+ .

Proof.

Apply relaxation lemma with $s' = s$.

- \rightsquigarrow Relaxations of plans are relaxed plans.
- \rightarrow Delete relaxation is no harder to solve than original task.
- \rightarrow Optimal relaxed plans are never more expensive than optimal plans for original tasks.

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

```
Let s be a state, let s' be a state that dominates s,
and let \pi^+ be a relaxed operator sequence applicable in s.
Then \pi^+ is applicable in s' and s'[\![\pi^+]\!] dominates s[\![\pi^+]\!].
```
Proof.

```
Apply relaxation lemma with \pi^+ for \pi,noting that (\pi^+)^+ = \pi^+.
```
 \rightarrow If there is a relaxed plan starting from state s, the same plan can be used starting from a dominating state s' .

 \rightarrow Dominating states are always "better" in relaxed tasks.

D2.4 [Monotonicity](#page-19-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Cotober 21, 2024 20 / 24

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o^+ is applicable. Then $s[\![o^+]\!]$ dominates s.

Proof.

Since relaxed operators only have positive effects, we have $\mathit{on}(s) \subseteq \mathit{on}(s) \cup \mathit{addset}(\mathit{eff}(\mathit{o}^{+}), s) = \mathit{on}(\mathit{s}[\mathit{o}^{+}])$.

 \rightarrow Together with our previous results, this means that making a transition in a relaxed planning task never hurts.

Finding Relaxed Plans

Using the theory we developed, we are now ready to study the problem of finding plans for relaxed planning tasks.

 \rightsquigarrow next chapter

D2.5 [Summary](#page-22-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) Detober 21, 2024 23 / 24

Summary

- ▶ With positive normal form, having more true variables is good.
- \triangleright We can formalize this as dominance between states.
- \blacktriangleright It follows that delete relaxation is a simplification: it is never harder to solve a relaxed task than the original one.
- ▶ In delete-relaxed tasks, applying an operator always takes us to a dominating state and therefore never hurts.