Planning and Optimization C5. SAT Planning: Parallel Encoding

Malte Helmert and Gabriele Röger

Universität Basel

October 14, 2024

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 14, 2024 1 / 19

Planning and Optimization October 14, 2024 — C5. SAT Planning: Parallel Encoding

C5.1 Introduction

C5.2 Adapting the SAT Encoding

C5.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Content of the Course

C5.1 Introduction

Efficiency of SAT Planning

- All other things being equal, the most important aspect for efficient SAT solving is the number of propositional variables in the input formula.
- For sufficiently difficult inputs, runtime scales exponentially in the number of variables.
- ~ Can we make SAT planning more efficient by using fewer variables?

Number of Variables

Reminder:

- given propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$
- ▶ given horizon $T \in \mathbb{N}_0$

Variables of the SAT Formula

- ▶ propositional variables vⁱ for all v ∈ V, 0 ≤ i ≤ T encode state after i steps of the plan
- ▶ propositional variables oⁱ for all o ∈ O, 1 ≤ i ≤ T encode operator(s) applied in *i*-th step of the plan

$\rightsquigarrow |V| \cdot (T+1) + |O| \cdot T$ variables

 \rightsquigarrow SAT solving runtime usually exponential in T

Parallel Plans and Interference

Can we get away with shorter horizons?

Idea:

 allow parallel plans in the SAT encoding: multiple operators can be applied in the same step if they do not interfere

Definition (Interference)

Let $\mathcal{O}' = \{o_1, \ldots, o_n\}$ be a set of operators applicable in state s.

We say that O' is interference-free in s if

- ▶ for all permutations π of O', $s[[\pi]]$ is defined, and
- for all permutations π , π' of O', $s[\![\pi]\!] = s[\![\pi']\!]$.

We say that O' interfere in s if they are not interference-free in s.

Parallel Plan Extraction

- If we can rule out interference, we can allow multiple operators at the same time in the SAT encoding.
- A parallel plan (with multiple oⁱ used for the same i) extracted from the SAT formula can then be converted into a "regular" plan by ordering the operators within each time step arbitrarily.

Challenges for Parallel SAT Encodings

Two challenges remain:

- our current SAT encoding does not allow concurrent operators
- how do we ensure that our plans are interference-free?

C5.2 Adapting the SAT Encoding

Reminder: Sequential SAT Encoding (1)

\rightsquigarrow operator exclusion clauses must be adapted

Sequential SAT Encoding (2)

Sequential SAT Formula (2) precondition clauses: \triangleright $o^i \rightarrow pre(o)^{i-1}$ for all $1 \le i \le T$, $o \in O$ positive and negative effect clauses: • $(o^i \wedge \alpha^{i-1}) \rightarrow v^i$ for all $1 \le i \le T$, $o \in O$, $v \in V$ • $(o^i \wedge \delta^{i-1} \wedge \neg \alpha^{i-1}) \rightarrow \neg v^i$ for all 1 < i < T, $o \in O$, $v \in V$ positive and negative frame clauses: • $(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1}$ for all 1 < i < T, $o \in O$, $v \in V$ • $(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1}$ for all $1 < i < T, o \in O, v \in V$ where $\alpha = effcond(v, eff(o)), \delta = effcond(\neg v, eff(o)).$

\rightsquigarrow frame clauses must be adapted

Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses $\neg o_j^i \lor \neg o_k^i$ for all $1 \le i \le T$, $1 \le j < k \le n$

- Ideally: replace with clauses that express "for all states s, the operators selected at time i are interference-free in s"
- but: testing if a given set of operators interferes in any state is itself an NP-complete problem
- use something less heavy: a sufficient condition for interference-freeness that can be expressed at the level of pairs of operators

Conflicting Operators

- Intuitively, two operators conflict if
 - one can disable the precondition of the other,
 - one can override an effect of the other, or
 - one can enable or disable an effect condition of the other.
- If no two operators in a set O' conflict, then O' is interference-free in all states.
- This is still difficult to test, so we restrict attention to the STRIPS case in the following.

Definition (Conflicting STRIPS Operator)

Operators o and o' of a STRIPS task Π conflict if

- o deletes a precondition of o' or vice versa, or
- o deletes an add effect of o' or vice versa.

Adapting the Operator Exclusion Clauses: Solution

Reminder: operator exclusion clauses $\neg o_j^i \lor \neg o_k^i$ for all $1 \le i \le T$, $1 \le j < k \le n$

Solution:

Parallel SAT Formula: Operator Exclusion Clauses operator exclusion clauses:

►
$$\neg o_j^i \lor \neg o_k^i$$
 for all $1 \le i \le T$, $1 \le j < k \le n$
such that o_j and o_k conflict

Adapting the Frame Clauses: Idea

$\begin{array}{ll} \text{Reminder: frame clauses} \\ (o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1} & \text{for all } 1 \leq i \leq T, \ o \in O, \ v \in V \\ (o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1} & \text{for all } 1 \leq i \leq T, \ o \in O, \ v \in V \end{array}$

What is the problem?

- These clauses express that if o is applied at time i and the value of v changes, then o caused the change.
- This is no longer true if we want to be able to apply two operators concurrently.
- → Instead, say "If the value of v changes, then some operator must have caused the change."

Adapting the Frame Clauses: Solution

Reminder: frame clauses $(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1}$ for all $1 \le i \le T$, $o \in O$, $v \in V$ $(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1}$ for all $1 \le i \le T$, $o \in O$, $v \in V$

Solution:

Parallel SAT Formula: Frame Clauses positive and negative frame clauses: $(v^{i-1} \land \neg v^{i}) \rightarrow ((o_{1}^{i} \land \delta_{o_{1}}^{i-1}) \lor \cdots \lor (o_{n}^{i} \land \delta_{o_{n}}^{i-1}))$ for all $1 \le i \le T$, $v \in V$ $(\neg v^{i-1} \land v^{i}) \rightarrow ((o_{1}^{i} \land \alpha_{o_{1}}^{i-1}) \lor \cdots \lor (o_{n}^{i} \land \alpha_{o_{n}}^{i-1}))$ for all $1 \le i \le T$, $v \in V$ where $\alpha_{o} = effcond(v, eff(o)), \delta_{o} = effcond(\neg v, eff(o)),$ $O = \{o_{1}, \dots, o_{n}\}.$

For STRIPS, these are in clause form.

C5.3 Summary

Summary

- As a rule of thumb, SAT solvers generally perform better on formulas with fewer variables.
- Parallel encodings reduce the number of variables by shortening the horizon needed to solve a planning task.
- Parallel encodings replace the constraint that operators are not applied concurrently by the constraint that conflicting operators are not applied concurrently.
- To make parallelism possible, the frame clauses also need to be adapted.