Planning and Optimization C3. General Regression

Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2024

Content of the Course

Regression for General Planning Tasks

- With disjunctions and conditional effects, things become more tricky. How to regress $a \vee (b \wedge c)$ with respect to $\langle q, d \rangle b$?
- In this chapter, we show how to regress general sets of states through general operators.
- We extensively use the idea of representing sets of states as formulas.

[Regressing State Variables](#page-3-0)

Regressing State Variables: Motivation

Key question for general regression:

- Assume we are applying an operator with effect e .
- What must be true in the predecessor state for propositional state variable v to be true in the successor state?

If we can answer this question, a general definition of regression is only a small additional step.

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e to obtain successor state s'.

Propositional state variable v is true in s' iff

- effect e makes it true, or
- \blacksquare it remains true, i.e., it is true in s and not made false by e.

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task, and let v be a propositional state variable.

The regression of v through e, written regr(v, e), is defined as the following logical formula:

$$
\mathit{regr}(v,e) = \mathit{effcond}(v,e) \vee (v \wedge \neg \mathit{effcond}(\neg v,e)).
$$

Does this capture add-after-delete semantics correctly?

[Regressing State Variables](#page-3-0) [Regressing Formulas Through Effects](#page-19-0) [Regressing Formulas Through Operators](#page-32-0) [Summary](#page-40-0)

Regressing State Variables: Example

Example

Let
$$
e = (b \rhd a) \wedge (c \rhd \neg a) \wedge b \wedge \neg d
$$
.

$$
\begin{array}{c|c}\n\overrightarrow{v} & \text{regr}(v, e) \\
\hline\na & b \lor (a \land \neg c) \\
b & \top \lor (b \land \neg \bot) \equiv \top \\
c & \bot \lor (c \land \neg \bot) \equiv c \\
d & \bot \lor (d \land \neg \top) \equiv \bot\n\end{array}
$$

Reminder: $regr(v, e) = effcond(v, e) \vee (v \wedge \neg effcond(\neg v, e))$

[Regressing State Variables](#page-3-0) [Regressing Formulas Through Effects](#page-19-0) [Regressing Formulas Through Operators](#page-32-0) [Summary](#page-40-0)

Regressing State Variables: Correctness (1)

Lemma (Correctness of $regr(v, e)$)

Let s be a state, e be an effect and v be a state variable of a propositional planning task.

Then $s \models \text{regr}(v, e)$ iff $s[[e]] \models v$.

Then sympathy then sympathy the third case in the definition of sympathy α

Proof.

 (\Rightarrow) : We know $s \models \text{regr}(v, e)$, and hence $s \models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$

Do a case analysis on the two disjuncts.

Proof.

 (\Rightarrow) : We know $s \models \text{regr}(v, e)$, and hence $s \models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$

Do a case analysis on the two disjuncts.

Case 1: $s \models \text{effcond}(v, e)$.

Then $s[[e]] \models v$ by the first case in the definition of $s[[e]]$ (Ch. B3).

Then sympathy then sympathy the third case in the definition of sympathy α

Proof.

(⇒): We know
$$
s \models \text{regr}(v, e)
$$
, and hence $s \models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e))$.

Do a case analysis on the two disjuncts.

Case 1: $s \models \text{effcond}(v, e)$.

Then $s[[e]] \models v$ by the first case in the definition of $s[[e]]$ (Ch. B3).

Case 2:
$$
s \models (v \land \neg{\textit{effcond}}(\neg v, e))
$$
.
Then $s \models v$ and $s \not\models{\textit{effcond}}(\neg v, e)$.
We may additionally assume $s \not\models{\textit{effcond}}(v, e)$
because otherwise we can apply Case 1 of this proof.
Then $s[[e]] \models v$ by the third case in the definition of $s[[e]]$

Proof (continued).

 (\Leftarrow) : Proof by contraposition.

We show that if $regr(v, e)$ is false in s, then v is false in s[e].

Proof (continued).

- (\Leftarrow) : Proof by contraposition.
- We show that if regr(v, e) is false in s, then v is false in $s||e||$.
	- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$

Proof (continued).

- (\Leftarrow) : Proof by contraposition.
- We show that if regr(v, e) is false in s, then v is false in $s||e||$.
	- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$
	- **■** Hence $s \models \neg \text{effcond}(v, e) \land (\neg v \lor \text{effcond}(\neg v, e)).$

Proof (continued).

 (\Leftarrow) : Proof by contraposition.

We show that if regr(v, e) is false in s, then v is false in $s||e||$.

- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$
- **■** Hence $s \models \neg \text{effcond}(v, e) \land (\neg v \lor \text{effcond}(\neg v, e)).$
- **Fig.** From the first conjunct, we get $s \models \neg \text{effcond}(v, e)$ and hence $s \not\models \text{effcond}(v, e)$.

Proof (continued).

- (\Leftarrow) : Proof by contraposition.
- We show that if regr(v, e) is false in s, then v is false in $s||e||$.
	- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$
	- **■** Hence $s \models \neg \text{effcond}(v, e) \land (\neg v \lor \text{effcond}(\neg v, e)).$
	- **Figure From the first conjunct, we get** $s \models \neg \text{effcond}(v, e)$ and hence $s \not\models \text{effcond}(v, e)$.
	- **■** From the second conjunct, we get $s \models \neg v \lor \text{effcond}(\neg v, e)$.

Proof (continued).

 (\Leftarrow) : Proof by contraposition.

We show that if regr(v, e) is false in s, then v is false in $s||e||$.

- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$
- **■** Hence $s \models \neg \text{effcond}(v, e) \land (\neg v \lor \text{effcond}(\neg v, e)).$
- **Figure From the first conjunct, we get** $s \models \neg \text{effcond}(v, e)$ and hence $s \not\models \text{effcond}(v, e)$.
- **■** From the second conjunct, we get $s \models \neg v \lor \text{effcond}(\neg v, e)$.
- Gase 1: $s \models \neg v$. Then v is false before applying e and remains false, so $s||e|| \not\models v$.

Proof (continued).

 (\Leftarrow) : Proof by contraposition.

We show that if regr(v, e) is false in s, then v is false in $s||e||$.

- **■** By prerequisite, $s \not\models \text{effcond}(v, e) \lor (v \land \neg \text{effcond}(\neg v, e)).$
- **■** Hence $s \models \neg \text{effcond}(v, e) \land (\neg v \lor \text{effcond}(\neg v, e)).$
- **From the first conjunct, we get** $s \models \neg \text{effcond}(v, e)$ and hence $s \not\models \text{effcond}(v, e)$.
- **■** From the second conjunct, we get $s \models \neg v \lor \text{effcond}(\neg v, e)$.
- Gase 1: $s \models \neg v$. Then v is false before applying e and remains false, so $s||e|| \not\models v$.
- Gase 2: $s \models \text{effcond}(\neg v, e)$. Then v is deleted by e and not simultaneously added, so $s||e|| \not\models v$.

[Regressing State Variables](#page-3-0) [Regressing Formulas Through Effects](#page-19-0) [Regressing Formulas Through Operators](#page-32-0) [Summary](#page-40-0)

[Regressing Formulas Through Effects](#page-19-0)

Regressing Formulas Through Effects: Idea

- We can now generalize regression from state variables to general formulas over state variables.
- The basic idea is to replace every occurrence of every state variable v by regr(v , e) as defined in the previous section.
- **The following definition makes this more formal.**

Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect, and let φ be a formula over propositional state variables. The regression of φ through e, written regr(φ , e), is defined as the following logical formula:

$$
regr(\top, e) = \top
$$

\n
$$
regr(\bot, e) = \bot
$$

\n
$$
regr(v, e) = effcond(v, e) \lor (v \land \neg effcond(\neg v, e))
$$

\n
$$
regr(\neg \psi, e) = \neg regr(\psi, e)
$$

\n
$$
regr(\psi \lor \chi, e) = regr(\psi, e) \lor regr(\chi, e)
$$

\n
$$
regr(\psi \land \chi, e) = regr(\psi, e) \land regr(\chi, e).
$$

Regressing Formulas Through Effects: Example

Example

Let
$$
e = (b \rhd a) \wedge (c \rhd \neg a) \wedge b \wedge \neg d
$$
.

Recall:

- regr(a, e) \equiv b \vee (a $\wedge \neg c$)
- regr(b, e) $\equiv \top$
- regr(c, e) $\equiv c$
- regr(d, e) $\equiv \perp$

We get:

$$
regr((a \lor d) \land (c \lor d), e) \equiv ((b \lor (a \land \neg c)) \lor \bot) \land (c \lor \bot)
$$

$$
\equiv (b \lor (a \land \neg c)) \land c
$$

$$
\equiv b \land c
$$

Lemma (Correctness of regr(φ , e))

Let φ be a logical formula, e an effect and s a state of a propositional planning task.

Then $s \models \text{regr}(\varphi, e)$ iff $s[\![e]\!] \models \varphi$.

We have ^s [|]⁼ regr(v, ^e) iff ^sJe^K [|]⁼ ^v from the previous lemma. . . .

Proof.

The proof is by structural induction on φ .

We have ^s [|]⁼ regr(v, ^e) iff ^sJe^K [|]⁼ ^v from the previous lemma. . . .

Proof.

The proof is by structural induction on φ .

Induction hypothesis: $s \models \text{regr}(\psi, e)$ iff $s[\![e]\!] \models \psi$ for all proper subformulas ψ of φ .

Proof.

The proof is by structural induction on φ .

Induction hypothesis: $s \models \text{regr}(\psi, e)$ iff $s[\![e]\!] \models \psi$ for all proper subformulas ψ of φ .

Base case $\varphi = \top$:

We have regr(\top , e) = \top , and $s \models \top$ iff $s[[e]] \models \top$ is correct.

We have ^s [|]⁼ regr(v, ^e) iff ^sJe^K [|]⁼ ^v from the previous lemma. . . .

Proof.

The proof is by structural induction on φ .

Induction hypothesis: $s \models \text{regr}(\psi, e)$ iff $s[\![e]\!] \models \psi$ for all proper subformulas ψ of φ .

Base case $\varphi = \top$:

We have regr(\top , e) = \top , and $s \models \top$ iff $s[[e]] \models \top$ is correct.

Base case $\varphi = \bot$:

We have regr(\perp , e) = \perp , and $s \models \perp$ iff $s[[e]] \models \perp$ is correct.

We have ^s [|]⁼ regr(v, ^e) iff ^sJe^K [|]⁼ ^v from the previous lemma. . . .

Proof.

The proof is by structural induction on φ .

Induction hypothesis: $s \models \text{regr}(\psi, e)$ iff $s[\![e]\!] \models \psi$ for all proper subformulas ψ of φ .

Base case $\varphi = \top$:

We have regr(\top , e) = \top , and $s \models \top$ iff $s[[e]] \models \top$ is correct.

Base case $\varphi = \bot$:

We have regr(\perp , e) = \perp , and $s \models \perp$ iff $s[[e]] \models \perp$ is correct.

Base case $\varphi = \nu$:

We have $s \models \text{regr}(v, e)$ iff $s||e|| \models v$ from the previous lemma. ...

Proof (continued).

Inductive case $\varphi = \neg \psi$:

$$
s \models \text{regr}(\neg \psi, e) \text{ iff } s \models \neg \text{regr}(\psi, e)
$$

iff $s \not\models \text{regr}(\psi, e)$
iff $s[\![e]\!] \not\models \psi$
iff $s[\![e]\!] \models \neg \psi$

Proof (continued).

Inductive case $\varphi = \neg \psi$:

$$
s \models \text{regr}(\neg \psi, e) \text{ iff } s \models \neg \text{regr}(\psi, e)
$$

iff $s \not\models \text{regr}(\psi, e)$
iff $s[\![e]\!] \not\models \psi$
iff $s[\![e]\!] \models \neg \psi$

Inductive case $\varphi = \psi \vee \chi$:

$$
s \models \text{regr}(\psi \lor \chi, e) \text{ iff } s \models \text{regr}(\psi, e) \lor \text{regr}(\chi, e)
$$

iff $s \models \text{regr}(\psi, e) \text{ or } s \models \text{regr}(\chi, e)$
iff $s[e] \models \psi \text{ or } s[e] \models \chi$
iff $s[e] \models \psi \lor \chi$

Proof (continued).

Inductive case $\varphi = \neg \psi$:

$$
s \models \text{regr}(\neg \psi, e) \text{ iff } s \models \neg \text{regr}(\psi, e)
$$

iff $s \not\models \text{regr}(\psi, e)$
iff $s[\![e]\!] \not\models \psi$
iff $s[\![e]\!] \models \neg \psi$

Inductive case $\varphi = \psi \vee \chi$:

$$
s \models \text{regr}(\psi \lor \chi, e) \text{ iff } s \models \text{regr}(\psi, e) \lor \text{regr}(\chi, e)
$$

iff $s \models \text{regr}(\psi, e) \text{ or } s \models \text{regr}(\chi, e)$
iff $s[e] \models \psi \text{ or } s[e] \models \chi$
iff $s[e] \models \psi \lor \chi$

Inductive case $\varphi = \psi \wedge \chi$:

Like previous case, replacing "∨" by "∧" and replacing "or" by "and".

[Regressing State Variables](#page-3-0) [Regressing Formulas Through Effects](#page-19-0) [Regressing Formulas Through Operators](#page-32-0) [Summary](#page-40-0)

[Regressing Formulas Through](#page-32-0) **[Operators](#page-32-0)**

Regressing Formulas Through Operators: Idea

- We can now regress arbitrary formulas through arbitrary effects.
- **The last missing piece is a definition of regression through** operators, describing exactly in which states s applying a given operator o leads to a state satisfying a given formula φ .
- \blacksquare There are two requirements:
	- \blacksquare The operator o must be applicable in the state s.
	- The resulting state s||o|| must satisfy φ .

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator, and let φ be a formula over state variables.

The regression of φ through *o*, written regr(φ , *o*), is defined as the following logical formula:

 $regr(\varphi, o) = pre(o) \wedge regr(\varphi, eff(o)).$

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of $regr(\varphi, o)$)

Let φ be a logical formula, o an operator and s a state of a propositional planning task.

Then $s \models \text{regr}(\varphi, o)$ iff o is applicable in s and $s \llbracket o \rrbracket \models \varphi$.

Reminder: $regr(\varphi, o) = pre(o) \wedge regr(\varphi, eff(o))$

Proof.

Case 1: $s = pre(o)$.

Then o is applicable in s and the statement we must prove simplifies to: $s \models \text{regr}(\varphi, e)$ iff $s[\![e]\!] \models \varphi$, where $e = \text{eff}(o)$. This was proved in the previous lemma.

Reminder: $regr(\varphi, o) = pre(o) \wedge regr(\varphi, eff(o))$

Proof.

Case 1: $s = pre(o)$.

Then o is applicable in s and the statement we must prove simplifies to: $s \models \text{regr}(\varphi, e)$ iff $s[\![e]\!] \models \varphi$, where $e = \text{eff}(o)$. This was proved in the previous lemma.

Case 2: $s \not\models pre(o)$.

Then $s \not\models \text{regr}(\varphi, o)$ and o is not applicable in s. Hence both statements are false and therefore equivalent.

Regression Examples (1)

Examples: compute regression and simplify to DNF

■
$$
regr(b, \langle a, b \rangle)
$$

\n $\equiv a \land (\top \lor (b \land \neg \bot))$
\n $\equiv a$

■ regr(b ∧ c ∧ d,
$$
\langle a, b \rangle
$$
)
\n≡ a ∧ (T ∨ (b ∧ ¬⊥)) ∧ (⊥ ∨ (c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥))
\n≡ a ∧ c ∧ d

■
$$
regr(b \land \neg c, \langle a, b \land c \rangle)
$$

\n $\equiv a \land (\top \lor (b \land \neg \bot)) \land \neg (\top \lor (c \land \neg \bot))$
\n $\equiv a \land \top \land \bot$
\n $\equiv \bot$

Regression Examples (2)

Examples: compute regression and simplify to DNF

■ regr(b,
$$
\langle a, c \rangle b
$$
)
\n $\equiv a \land (c \lor (b \land \neg \bot))$
\n $\equiv a \land (c \lor b)$
\n $\equiv (a \land c) \lor (a \land b)$
\n■ regr(b, $\langle a, (c \rangle b) \land ((d \land \neg c) \triangleright \neg b)$)
\n $\equiv a \land (c \lor (b \land \neg (d \land \neg c)))$
\n $\equiv a \land (c \lor (b \land (\neg d \lor c)))$
\n $\equiv a \land (c \lor (b \land \neg d) \lor (b \land c))$
\n $\equiv a \land (c \lor (b \land \neg d))$
\n $\equiv (a \land c) \lor (a \land b \land \neg d)$

[Summary](#page-40-0)

Summary

- Regressing a propositional state variable through an (arbitrary) operator must consider two cases:
	- \blacksquare state variables made true (by add effects)
	- state variables remaining true (by absence of delete effects)
- Regression of propositional state variables can be generalized to arbitrary formulas φ by replacing each occurrence of a state variable in φ by its regression.
- Regressing a formula φ through an operator involves regressing φ through the effect and enforcing the precondition.