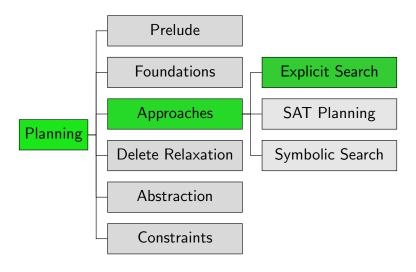
Planning and Optimization C2. Progression and Regression Search

Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2024

Content of the Course



Introduction

Search Direction

Search direction

- one dimension for classifying search algorithms
- forward search from initial state to goal based on progression
- backward search from goal to initial state based on regression
- bidirectional search

In this chapter we look into progression and regression planning.

Introduction

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

- init() → returns initial state
- is_goal(s) \rightarrow tests if s is a goal state
- \rightsquigarrow returns all pairs $\langle a, s' \rangle$ with $s \stackrel{a}{\rightarrow} s'$ \blacksquare succ(s)
- \blacksquare cost(a) \rightsquigarrow returns cost of action a
- $\blacksquare h(s)$ \rightarrow returns heuristic value for state s

Progression

Planning by Forward Search: Progression

Progression: Computing the successor state s[o] of a state s with respect to an operator o.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated

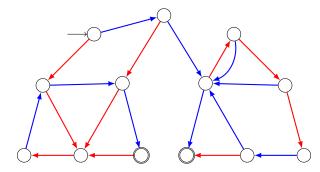
pro: very easy and efficient to implement

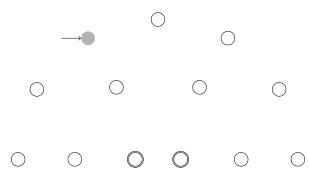
Search Space for Progression

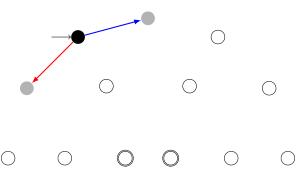
Search Space for Progression

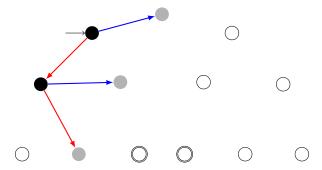
search space for progression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$ (search states are world states s of Π ; actions of search space are operators $o \in O$)

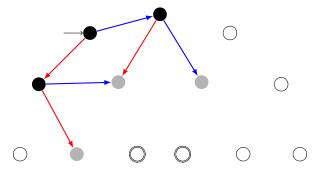
- init()
- is_goal(s) \rightsquigarrow tests if $s \models \gamma$
- \blacksquare succ(s) \rightarrow returns all pairs $\langle o, s \llbracket o \rrbracket \rangle$ where $o \in O$ and o is applicable in s
- = cost(o) \rightarrow returns cost(o) as defined in Π
- \rightsquigarrow estimates cost from s to γ (\rightsquigarrow Parts D-F) ■ h(s)

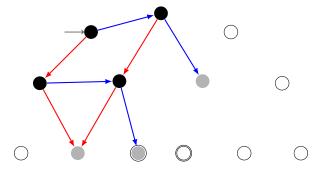


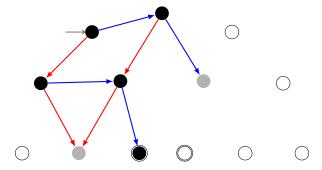












Regression

Searching planning tasks in forward vs. backward direction is not symmetric:

- forward search starts from a single initial state; backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s'; if we just applied operator o and ended up in state s', there can be several possible predecessor states s
- → in most natural representation for backward search in planning, each search state corresponds to a set of world states

Regression: Computing the possible predecessor states regr(S', o)of a set of states S' ("subgoal") given the last operator o that was applied.

→ formal definition in next chapter

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated subgoal (state set) and regress it through an operator, generating a new subgoal
- solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously

con: basic operations complicated and expensive

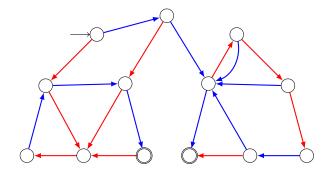
identify state sets with logical formulas (again):

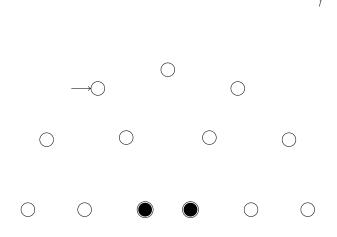
- each search state corresponds to a set of world states ("subgoal")
- each search state is represented by a logical formula: φ represents $\{s \in S \mid s \models \varphi\}$
- many basic search operations like detecting duplicates are NP-complete or coNP-complete

Search Space for Regression

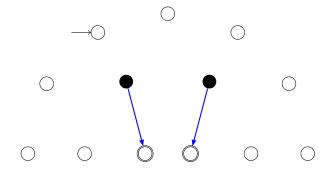
search space for regression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$ (search states are formulas φ describing sets of world states; actions of search space are operators $o \in O$

- init() \rightsquigarrow returns γ
- is_goal(φ) \longrightarrow tests if $I \models \varphi$
- \blacksquare succ (φ) \leadsto returns all pairs $\langle o, regr(\varphi, o) \rangle$ where $o \in O$ and $regr(\varphi, o)$ is defined
- = cost(o) \rightarrow returns cost(o) as defined in Π
- \rightsquigarrow estimates cost from I to φ (\rightsquigarrow Parts D-F) h(φ)





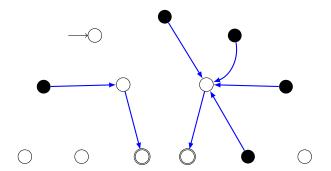
$$\varphi_1 = \mathit{regr}(\gamma, \longrightarrow) \qquad \qquad \varphi_1 - \Box$$



$$\varphi_1 = regr(\gamma, \longrightarrow)$$

 $\varphi_2 = regr(\varphi_1, \longrightarrow)$

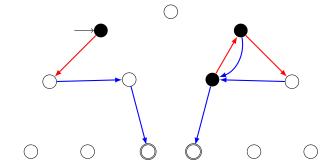
$$\varphi_2 \longrightarrow \varphi_1 \longrightarrow \gamma$$



$$\varphi_{1} = \operatorname{regr}(\gamma, \longrightarrow) \qquad \varphi_{3} \longrightarrow \varphi_{2} \longrightarrow \varphi_{1} \longrightarrow \gamma$$

$$\varphi_{2} = \operatorname{regr}(\varphi_{1}, \longrightarrow)$$

$$\varphi_{3} = \operatorname{regr}(\varphi_{2}, \longrightarrow), I \models \varphi_{3}$$



Regression for STRIPS Tasks

Regression for STRIPS planning tasks is much simpler than the general case:

- Consider subgoal φ that is conjunction of atoms $a_1 \wedge \cdots \wedge a_n$ (e.g., the original goal γ of the planning task).
- First step: Choose an operator o that deletes no a_i.
- **Second step**: Remove any atoms added by o from φ .
- Third step: Conjoin pre(o) to φ .
- \rightarrow Outcome of this is regression of φ w.r.t. o. It is again a conjunction of atoms.

optimization: only consider operators adding at least one ai

Definition (STRIPS Regression)

Let $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n$ be a conjunction of atoms, and let o be a STRIPS operator which adds the atoms a_1, \ldots, a_k and deletes the atoms d_1, \ldots, d_l .

The STRIPS regression of φ with respect to o is

$$\mathit{sregr}(arphi, o) := egin{cases} ot & ext{ if } arphi_i = d_j ext{ for some } i, j \ \mathit{pre}(o) \land igwedge(\{arphi_1, \dots, arphi_n\} \setminus \{a_1, \dots, a_k\}) \end{cases}$$
 else

Note: $sregr(\varphi, o)$ is again a conjunction of atoms, or \bot .

Does this Capture the Idea of Regression?

For our definition to capture the concept of regression, it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ , all states s and all STRIPS operators o,

$$s \models sregr(\varphi, o)$$
 iff $s[o] \models \varphi$.

This is indeed true. We do not prove it now because we prove this property for general regression (not just STRIPS) later.

Summary

Summary

- Progression search proceeds forward from the initial state.
- In progression search, the search space is identical to the state space of the planning task.
- Regression search proceeds backwards from the goal.
- Each search state corresponds to a set of world states, for example represented by a formula.
- Regression is simple for STRIPS operators.
- The theory for general regression is more complex. This is the topic of the following chapter.