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Search Direction

Search direction
m one dimension for classifying search algorithms
m forward search from initial state to goal based on progression
m backward search from goal to initial state based on regression

m bidirectional search

In this chapter we look into progression and regression planning.
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() ~~ returns initial state

m is_goal(s)  ~ tests if s is a goal state

m succ(s) ~~ returns all pairs (a,s’) with s 2 &’
m cost(a) ~> returns cost of action a
[ ] s

h(s)

returns heuristic value for state s
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Planning by Forward Search: Progression

Progression: Computing the successor state s[o] of a state s
with respect to an operator o.
Progression planners find solutions by forward search:

m start from initial state

m iteratively pick a previously generated state and progress it
through an operator, generating a new state

m solution found when a goal state generated

pro: very easy and efficient to implement
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Search Space for Progression

Search Space for Progression

search space for progression in a planning task M= (V. /I, O,~)
(search states are world states s of [1;
actions of search space are operators o € O)

m init() ~> returns /

m is.goal(s) ~>testsifsf=+

m succ(s) ~ returns all pairs (o, s[o])
where o € O and o is applicable in s
m cost(o) ~> returns cost(o) as defined in I
m h(s) ~~ estimates cost from s to y (~ Parts D-F)
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Progression Planning Example

Example of a progression search
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Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:
m forward search starts from a single initial state;
backward search starts from a set of goal states
m when applying an operator o in a state s in forward direction,
there is a unique successor state s';
if we just applied operator o and ended up in state s/,
there can be several possible predecessor states s
~> in most natural representation for backward search in planning,
each search state corresponds to a set of world states
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Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S’, 0)
of a set of states S’ (“subgoal”) given the last operator o
that was applied.

~> formal definition in next chapter

Regression planners find solutions by backward search:
m start from set of goal states

m iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

m solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive
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Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

m each search state corresponds to a set of world states
(“subgoal™)

m each search state is represented by a logical formula:
¢ represents {s € S | s |= ¢}

B many basic search operations like detecting duplicates
are NP-complete or coNP-complete
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Search Space for Regression

Search Space for Regression

search space for regression in a planning task M = (V,/, 0, ~)
(search states are formulas ¢ describing sets of world states;
actions of search space are operators o € O)

init()
is_goal(yp)
succ(p)

cost(o)
h(«)

i d

~

~

i rd

returns -~y
tests if | = ¢

returns all pairs (o, regr(, 0))
where o € O and regr(p, 0) is defined

returns cost(o) as defined in I

estimates cost from / to ¢ (~ Parts D-F)

v
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Regression Planning Example (Depth-first Search)
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Regression Planning Example (Depth-first Search)

1 = regr(y, —) P1 ——> 7
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Regression Planning Example (Depth-first Search)

1 = regr(vy, —) p2 —> 1 ——> 7
@2 = regr{¢1, —)

—0

.———>

O O O



Introduction Progression Regression Regression for STRIPS Tasks
00000® 0000

Regression Planning Example (Depth-first Search)

01 = regr(y, —) 3 —> P2 —> P1 —> 7

2 = regr(p1, —)
3 = regr{¢2, —), | = ¢3
O
/. J\
O— O

O O O O
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Regressmn for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

m Consider subgoal ¢ that is conjunction of atoms a; A --- A a,
(e.g., the original goal ~y of the planning task).
m First step: Choose an operator o that deletes no a;.
m Second step: Remove any atoms added by o from ¢.
m Third step: Conjoin pre(o) to .
~> Qutcome of this is regression of ¢ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one a;
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STRIPS Regression

Definition (STRIPS Regression)

Let o = @1 A--- A @, be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms ay, ..., ak
and deletes the atoms d, ..., d;.

The STRIPS regression of ¢ with respect to o is

s if ¢; = d; for some i,

sregr{(p, 0) = {pre(o)A/\({ma---v%}\{al""’ak})

else

Summary

Note: sregr(i, 0) is again a conjunction of atoms, or L.
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Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms ¢,
all states s and all STRIPS operators o,

s = sregr(p,0) iff s[o] | ¢.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.
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Summary

m Progression search proceeds forward from the initial state.

m In progression search, the search space is identical
to the state space of the planning task.

m Regression search proceeds backwards from the goal.

m Each search state corresponds to a set of world states,
for example represented by a formula.

m Regression is simple for STRIPS operators.

m The theory for general regression is more complex.
This is the topic of the following chapter.
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