

Planning and Optimization October 7, 2024 — C1. Overview of Classical Planning Algorithms

C1.1 The Big Three		
C1.2 Explicit Search		
C1.3 SAT Planning		
C1.4 Symbolic Search		
C1.5 Planning System Examples		
C1.6 Summary		
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	October 7, 2024	2 / 34

October 7, 2024

6 / 34

Explicit Search

The Big Three

C1. Overview of Classical Planning Algorithms Explicit Search Reminder: Interface for Heuristic Search Algorithms Abstract Interface Needed for Heuristic Search Algorithms \rightsquigarrow returns initial state init() ▶ is_goal(s) \rightarrow tests if s is a goal state \rightsquigarrow returns all pairs $\langle a, s' \rangle$ with $s \xrightarrow{a} s'$ \blacktriangleright succ(s) \blacktriangleright cost(a) \rightarrow returns cost of action a ► h(s) \rightsquigarrow returns heuristic value for state *s* \rightsquigarrow Foundations of Artificial Intelligence course, Chap. B2 and B9 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 7, 2024 11 / 34

C1. Overview of Classical Planning Algorithms Explicit Search Space Planning tasks induce transition systems (a.k.a. state spaces) with an initial state, labeled transitions and goal states. State-space search searches state spaces with an initial state, a successor function and goal states. Slooks like an obvious correspondence However, in planning as search, the state space being searched can be different from the state space of the planning task. When we need to make a distinction, we speak of the state space of the planning task whose states are called world states vs. the search space of the search algorithm whose states are called search states.

Planning and Optimization

October 7, 2024

12 / 34

M. Helmert, G. Röger (Universität Basel)

Н	ow to apply explicit search to planning? \rightsquigarrow many design cho	ices!
D	 esign Choice: Search Algorithm uninformed search: depth-first, breadth-first, iterative depth-first, heuristic search (systematic): greedy best-first, A*, weighted A*, IDA*, 	
	heuristic search (local): hill-climbing, simulated annealing, beam search,	

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

October 7, 2024

14 / 34

C1. Overview of Classical Planning Algorithms

0. Memore, S. Róger (Universita Tasael Panna gama and San and San

C1. Overview of Classical Planning Algorithms

Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search
def bfs-progression(V, I, O, γ):
$goal_states := models(\gamma)$
$reached_0 := \{I\}$
<i>i</i> := 0
loop:
if reached _i ∩ goal_states ≠ ∅:
return solution found
$\mathit{reached}_{i+1} := \mathit{reached}_i \cup \mathit{apply}(\mathit{reached}_i, O)$
if $reached_{i+1} = reached_i$:
return no solution exists
i := i + 1

 \rightarrow If we can implement operations *models*, {*I*}, ∩, ≠ Ø, ∪, *apply* and = efficiently, this is a reasonable algorithm.

Planning and Optimization

Symbolic Search

Symbolic Search

Symbolic Search

Summary

C1.6 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization O

October 7, 2024 33 / 34

C1. Overview of Classical Planning Algorithms
Summary
big three classes of algorithms for classical planning:

explicit search
design choices: search direction, search algorithm, search control (incl. heuristics)

SAT planning

design choices: SAT encoding, SAT solver, evaluation strategy
symbolic search
design choices: symbolic data structure
+ same ones as for explicit search

M. Helmert, G. Röger (Universität Basel) Plann

Planning and Optimization

October 7, 2024 34 / 34