
Planning and Optimization
B6. Computational Complexity of Planning

Malte Helmert and Gabriele Röger
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M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 2, 2024 1 / 31



Planning and Optimization
October 2, 2024 — B6. Computational Complexity of Planning

B6.1 Motivation

B6.2 Background: Complexity Theory

B6.3 (Bounded-Cost) Plan Existence

B6.4 PSPACE-Completeness of Planning

B6.5 More Complexity Results

B6.6 Summary
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B6. Computational Complexity of Planning Motivation

How Difficult is Planning?

▶ Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

▶ However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

⇝ Do non-exponential planning algorithms exist?

⇝ What is the precise computational complexity of planning?
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B6. Computational Complexity of Planning Motivation

Why Computational Complexity?

▶ understand the problem

▶ know what is not possible

▶ find interesting subproblems that are easier to solve
▶ distinguish essential features from syntactic sugar

▶ Is STRIPS planning easier than general planning?
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B6. Computational Complexity of Planning Background: Complexity Theory

Reminder: Complexity Theory

Need to Catch Up?
▶ We assume knowledge of complexity theory:

▶ languages and decision problems
▶ Turing machines: NTMs and DTMs;

polynomial equivalence with other models of computation
▶ complexity classes: P, NP, PSPACE
▶ polynomial reductions

▶ If you are not familiar with these topics, we recommend
Chapters B11, D1–D3, D6 of the Theory of Computer Science
course at https://dmi.unibas.ch/de/studium/
computer-science-informatik/lehrangebot-fs24/

10948-main-lecture-theory-of-computer-science/
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B6. Computational Complexity of Planning Background: Complexity Theory

Turing Machines: Conceptually

. . . □ □ □ b a c a c a c a □ □ . . .

infinite tape

read-write head
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B6. Computational Complexity of Planning Background: Complexity Theory

Turing Machines

Definition (Nondeterministic Turing Machine)

A nondeterministic Turing machine (NTM) is a 6-tuple
⟨Σ,□,Q, q0, qY, δ⟩ with the following components:
▶ input alphabet Σ and blank symbol □ /∈ Σ

▶ alphabets always nonempty and finite
▶ tape alphabet Σ□ = Σ ∪ {□}

▶ finite set Q of internal states with initial state q0 ∈ Q
and accepting state qY ∈ Q
▶ nonterminal states Q ′ := Q \ {qY}

▶ transition relation δ : (Q ′ × Σ□) → 2Q×Σ□×{−1,+1}

Deterministic Turing machine (DTM):
|δ(q, s)| = 1 for all ⟨q, s⟩ ∈ Q ′ × Σ□
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B6. Computational Complexity of Planning Background: Complexity Theory

Turing Machines: Accepted Words

▶ Initial configuration
▶ state q0
▶ input word on tape, all other tape cells contain □
▶ head on first symbol of input word

▶ Step
▶ If in state q, reading symbol s, and ⟨q′, s ′, d⟩ ∈ δ(q, s) then
▶ the NTM can transition to state q′, replacing s with s ′ and

moving the head one cell to the left/right (d = −1/+1).

▶ Input word (∈ Σ∗) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state sY.
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B6. Computational Complexity of Planning Background: Complexity Theory

Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)

Let f : N0 → N0.

A NTM accepts language L ⊆ Σ∗ in time f if it accepts each w ∈ L
within f (|w |) steps and does not accept any w /∈ L (in any time).

It accepts language L ⊆ Σ∗ in space f if it accepts each w ∈ L
using at most f (|w |) tape cells and does not accept any w /∈ L.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 2, 2024 12 / 31



B6. Computational Complexity of Planning Background: Complexity Theory

Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)

Let f : N0 → N0.

Complexity class DTIME(f ) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f ) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f ) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f ) contains all languages
accepted in space f by some NTM.
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B6. Computational Complexity of Planning Background: Complexity Theory

Polynomial Time and Space Classes

Let P be the set of polynomials p : N0 → N0

whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)

P =
⋃

p∈P DTIME(p)

NP =
⋃

p∈P NTIME(p)

PSPACE =
⋃

p∈P DSPACE(p)

NPSPACE =
⋃

p∈P NSPACE(p)
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B6. Computational Complexity of Planning Background: Complexity Theory

Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)

P ⊆ NP ⊆ PSPACE = NPSPACE

Proof.
P ⊆ NP and PSPACE ⊆ NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP ⊆ NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch’s theorem (Savitch 1970).
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B6.3 (Bounded-Cost) Plan Existence

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 2, 2024 16 / 31



B6. Computational Complexity of Planning (Bounded-Cost) Plan Existence

Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PlanEx) is the following decision problem:

Given: planning task Π
Question: Is there a plan for Π?

⇝ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPlanEx)
is the following decision problem:

Given: planning task Π, cost bound K ∈ N0

Question: Is there a plan for Π with cost at most K?

⇝ decision problem analogue of optimal planning
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B6. Computational Complexity of Planning (Bounded-Cost) Plan Existence

Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PlanEx to BCPlanEx)

PlanEx ≤p BCPlanEx

Proof.
Consider a planning task Π with state variables V .

Let cmax be the maximal cost of all operators of Π.

Compute the number of states of Π as N = 2|V |.

Π is solvable iff there is solution with cost at most cmax · (N − 1)
because a solution need not visit any state twice.

⇝ map instance Π of PlanEx to instance ⟨Π, cmax · (N − 1)⟩

⇝

of BCPlanEx

⇝ polynomial reduction
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

B6.4 PSPACE-Completeness of
Planning
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

Membership in PSPACE

Theorem
BCPlanEx ∈ PSPACE

Proof.
Show BCPlanEx ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(⟨V , I ,O, γ⟩, K ):
s := I
k := K
loop forever:

if s |= γ: accept
guess o ∈ O
if o is not applicable in s: fail
if cost(o) > k : fail
s := sJoK
k := k − cost(o)
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

PSPACE-Hardness

Idea: generic reduction

▶ For an arbitrary fixed DTM M with space bound polynomial p
and input w , generate propositional planning task
which is solvable iff M accepts w in space p(|w |).

▶ Without loss of generality, we assume p(n) ≥ n for all n.
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

Reduction: State Variables

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

State Variables
▶ stateq for all q ∈ Q

▶ headi for all i ∈ X ∪ {−p(n)− 1, p(n) + 1}
▶ contenti ,a for all i ∈ X , a ∈ Σ□

⇝ allows encoding a Turing machine configuration
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

Reduction: Initial State

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Initial State
Initially true:

▶ stateq0
▶ head1
▶ contenti ,wi

for all i ∈ {1, . . . , n}
▶ contenti ,□ for all i ∈ X \ {1, . . . , n}

Initially false:

▶ all others
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

Reduction: Operators

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Operators

One operator for each transition rule δ(q, a) = ⟨q′, a′, d⟩
and each cell position i ∈ X :

▶ precondition: stateq ∧ headi ∧ contenti ,a
▶ effect: ¬stateq ∧ ¬headi ∧ ¬contenti ,a

∧ stateq′ ∧ headi+d ∧ contenti ,a′

Note that add-after-delete semantics are important here!
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B6. Computational Complexity of Planning PSPACE-Completeness of Planning

Reduction: Goal

Let M = ⟨Σ,□,Q, q0, qY, δ⟩ be the fixed DTM,
and let p be its space-bound polynomial.

Given input w1 . . .wn, define relevant tape positions
X := {−p(n), . . . , p(n)}

Goal
stateqY

M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 2, 2024 25 / 31



B6. Computational Complexity of Planning PSPACE-Completeness of Planning

PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)

PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPlanEx was already shown.

Hardness for PlanEx follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PlanEx. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PlanEx and hardness for BCPlanEx follow
from the polynomial reduction from PlanEx to BCPlanEx.
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B6.5 More Complexity Results
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B6. Computational Complexity of Planning More Complexity Results

More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:
▶ different planning formalisms

▶ e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

▶ syntactic restrictions of planning tasks
▶ e.g., without preconditions, without conjunctive effects,

STRIPS without delete effects

▶ semantic restrictions of planning task
▶ e.g., restricting variable dependencies (“causal graphs”)

▶ particular planning domains
▶ e.g., Blocksworld, Logistics, FreeCell
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B6. Computational Complexity of Planning More Complexity Results

Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
▶ nondeterministic effects:

▶ fully observable: EXP-complete (Littman, 1997)
▶ unobservable: EXPSPACE-complete (Haslum & Jonsson,

1999)
▶ partially observable: 2-EXP-complete (Rintanen, 2004)

▶ schematic operators:
▶ usually adds one exponential level to PlanEx complexity
▶ e.g., classical case EXPSPACE-complete (Erol et al., 1995)

▶ numerical state variables:
▶ undecidable in most variations (Helmert, 2002)
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B6.6 Summary
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B6. Computational Complexity of Planning Summary

Summary

▶ PSPACE: decision problems solvable in polynomial space

▶ P ⊆ NP ⊆ PSPACE = NPSPACE.

▶ Classical planning is PSPACE-complete.

▶ This is true both for satisficing and optimal planning
(rather, the corresponding decision problems).

▶ The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:
▶ DTM configurations are encoded by state variables.
▶ Operators simulate transitions between DTM configurations.
▶ The DTM accepts an input iff there is a plan

for the corresponding STRIPS task.

▶ This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

▶ It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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