
Planning and Optimization
B4. Equivalent Operators and Normal Forms

Malte Helmert and Gabriele Röger

Universität Basel

September 30, 2024

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder & Motivation

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
e.g. c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷ ¬a)

⇝ Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Semantics of Effects

effcond(ℓ, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ℓ

add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v , e) and s |= effcond(¬v , e),
then s ′(v) = T in the resulting state s ′.

This is a very subtle detail.
⇝ Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Semantics

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Notation: Applying Operator Sequences

Existing notation:

We already write sJoK for the resulting state
after applying operator o in state s.

New extended notation:

For a sequence π = ⟨o1, . . . , on⟩ of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.
This includes the case of an empty operator sequence:
sJ⟨⟩K = s

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Semantics

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and e ′ over state variables V are equivalent,
written e ≡ e ′, if sJeK = sJe ′K for all states s.

Definition (Equivalent Operators)

Two operators o and o ′ over state variables V are equivalent,
written o ≡ o ′, if cost(o) = cost(o ′) and for all states s, s ′ over V ,

o induces the transition s
o−→ s ′ iff o ′ induces the transition s

o′
−→ s ′.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Theorem

Theorem

Let o and o ′ be operators with pre(o) ≡ pre(o ′), eff(o) ≡ eff(o ′)
and cost(o) = cost(o ′). Then o ≡ o ′.

Note: The converse is not true. (Why not?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations for Effects

e ∧ e′ ≡ e′ ∧ e (1)

(e ∧ e′) ∧ e′′ ≡ e ∧ (e′ ∧ e′′) (2)

⊤ ∧ e ≡ e (3)

χ ▷ e ≡ χ′ ▷ e if χ ≡ χ′ (4)

⊤ ▷ e ≡ e (5)

⊥ ▷ e ≡ ⊤ (6)

χ ▷ (χ′ ▷ e) ≡ (χ ∧ χ′) ▷ e (7)

χ ▷ (e ∧ e′) ≡ (χ ▷ e) ∧ (χ ▷ e′) (8)

(χ ▷ e) ∧ (χ′ ▷ e) ≡ (χ ∨ χ′) ▷ e (9)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Operators

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Semantics

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Freeness: Motivation

The add-after-delete semantics makes effects like
(a ▷ c) ∧ (b ▷ ¬c) somewhat unintuitive to interpret.

⇝ What happens in states where a ∧ b is true?

It would be nicer if effcond(ℓ, e) always were the condition
under which the atomic effect ℓ actually materializes
(because of add-after-delete, it is not)

⇝ introduce normal form where “complicated case” never arises

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v , e) ∧ effcond(¬v , e)
is unsatisfiable for all v ∈ V .

An operator o is called conflict-free if eff(o) is conflict-free.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Making Operators Conflict-Free

In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)

However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.

Algorithm: given operator o, replace all atomic effects
of the form ¬v by (¬effcond(v , eff(o)) ▷ ¬v).
The resulting operator o ′ is conflict-free and o ≡ o ′. (Why?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of the Course

Planning

Prelude

Foundations

Transition
Systems

Planning Tasks

Semantics

Equivalence

Conflict-free
Operators

Flat Operators

Positive Normal
Form

STRIPS

Computational
Complexity

Approaches

Delete Relaxation

Abstraction

Constraints

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects: Motivation

CNF and DNF limit the nesting of connectives
in propositional logic.

For example, a CNF formula is

a conjunction of 0 or more subformulas,
each of which is a disjunction of 0 or more subformulas,
each of which is a literal.

Similarly, we can define a normal form that limits
the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect
or of the form (χ ▷ e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff(o) is flat.

Notes: analogously to CNF, we consider

a single simple effect as a conjunction of 1 simple effect

the empty effect as a conjunction of 0 simple effects

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect: Example

Example

Consider the effect

c ∧ (a ▷ (¬b ∧ (c ▷ (b ∧ ¬d ∧ ¬a)))) ∧ (¬b ▷¬a)

An equivalent flat (and conflict-free) effect is

c ∧
((a ∧ ¬c) ▷ ¬b) ∧
((a ∧ c) ▷ b) ∧
((a ∧ c) ▷ ¬d) ∧

((¬b ∨ (a ∧ c)) ▷ ¬a)

Note: if we want, we can write c as (⊤ ▷ c) to make the structure
even more uniform, with each simple effect having a condition.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators

Theorem

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators: Proof

Proof Sketch.

Replace the effect e over variables V by∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V (effcond(¬v , e) ▷ ¬v),

which is an equivalent flat effect.

To additionally obtain conflict-freeness, use∧
v∈V (effcond(v , e) ▷ v)

∧
∧

v∈V ((effcond(¬v , e) ∧ ¬effcond(v , e)) ▷ ¬v)

instead.

(Conjuncts of the form (χ ▷ e) where χ ≡ ⊥
can be omitted to simplify the effect.)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Equivalences can be used to simplify operators and effects.

In conflict-free operators, the “complicated case”
of operator semantics does not arise.

For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.

	Reminder & Motivation
	

	Equivalence Transformations
	

	Conflict-Free Operators
	

	Flat Effects
	

	Summary
	

