Planning and Optimization B3. Formal Definition of Planning

Malte Helmert and Gabriele Röger

Universität Basel

September 25, 2024

Content of the Course

[Semantics of Effects and Operators](#page-2-0)

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)

Let ℓ be an atomic effect, and let e be an effect.

The effect condition effcond(ℓ , e) under which ℓ triggers given the effect e is a propositional formula defined as follows:

- **e** effcond(ℓ , \top) = \bot
- **Example 1** effcond $(\ell, e) = \top$ for the atomic effect $e = \ell$
- effcond $(\ell, e) = \bot$ for all atomic effects $e = \ell' \neq \ell$
- $effcond(\ell, (e \wedge e')) = (effcond(\ell, e) \vee effcond(\ell, e'))$
- effcond($\ell, (\chi \triangleright e)$) = $(\chi \wedge$ effcond($\ell, e)$)

Intuition: effcond(ℓ , e) represents the condition that must be true in the current state for the effect e to lead to the atomic effect ℓ

Effect Condition: Example (1)

Example

Consider the move operator m_1 from the running example: $\mathit{eff}(m_1) = ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1)).$

Under which conditions does it set t_1 to false?

$$
\begin{aligned} \mathit{effcond}(\neg t_1, \mathit{eff}(m_1)) & = \mathit{effcond}(\neg t_1, ((t_1 \vartriangleright \neg t_1) \wedge (\neg t_1 \vartriangleright t_1))) \\ & = \mathit{effcond}(\neg t_1, (t_1 \vartriangleright \neg t_1)) \vee \\ & \mathit{effcond}(\neg t_1, (\neg t_1 \vartriangleright t_1)) \\ & = (t_1 \wedge \mathit{effcond}(\neg t_1, \neg t_1)) \vee \\ & (\neg t_1 \wedge \mathit{effcond}(\neg t_1, t_1)) \\ & = (t_1 \wedge \top) \vee (\neg t_1 \wedge \bot) \\ & = t_1 \vee \bot \\ & \equiv t_1 \end{aligned}
$$

Effect Condition: Example (2)

Example

Consider the move operator m_1 from the running example: $\mathit{eff}(m_1) = ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1)).$

Under which conditions does it set *i* to true?

$$
\begin{aligned} \mathit{effcond}(i, \mathit{eff}(m_1)) & = \mathit{effcond}(i, ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1))) \\ & = \mathit{effcond}(i, (t_1 \triangleright \neg t_1)) \vee \\ & \mathit{effcond}(i, (\neg t_1 \triangleright t_1)) \\ & = (t_1 \wedge \mathit{effcond}(i, \neg t_1)) \vee \\ & (\neg t_1 \wedge \mathit{effcond}(i, t_1)) \\ & = (t_1 \wedge \bot) \vee (\neg t_1 \wedge \bot) \\ & = \bot \vee \bot \\ & = \bot \end{aligned}
$$

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)

Let V be a set of propositional state variables.

Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written $s[\![e]\!]$, is the state s' defined as follows for all $v \in V$:

> $s'(v) =$ $\sqrt{ }$ \int \mathcal{L} **T** if $s \models \text{effcond}(v, e)$ **F** if $s \models \text{effcond}(\neg v, e)$ $s(\nu)$ otherwise

What is the problem with this definition?

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.

Let s be a state over V , and let e be an effect over V .

The resulting state of applying e in s, written $s||e|$, is the state s' defined as follows for all $v \in V$:

$$
s'(v) = \begin{cases} \mathsf{T} & \text{if } s \models \text{effcond}(v, e) \\ \mathsf{F} & \text{if } s \models \text{effcond}(\neg v, e) \land \neg \text{effcond}(v, e) \\ s(v) & \text{otherwise} \end{cases}
$$

Add-after-Delete Semantics

Note:

- The definition implies that if a variable is simultaneously "added" (set to T) and "deleted" (set to F), the value T takes precedence.
- This is called add-after-delete semantics.
- \blacksquare This detail of effect semantics is somewhat arbitrary, but has proven useful in applications.

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables. Let s be a state over V , and let o be an operator over V .

Operator o is applicable in s if $s \models pre(o)$.

If σ is applicable in s, the resulting state of applying σ in s, written $s\llbracket o \rrbracket$, is the state $s\llbracket e\mathit{f}\mathit{f}(o)\rrbracket$.

[Planning Tasks](#page-10-0)

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- \blacksquare V is a finite set of propositional state variables,
- I is an interpretation of V called the initial state,
- \blacksquare O is a finite set of operators over V, and
- \blacksquare γ is a formula over V called the goal.

Running Example: Planning Task

Example

From the previous chapter, we see that the running example can be represented by the task $\Pi = \langle V, I, O, \gamma \rangle$ with $V = \{i, w, t_1, t_2\}$ $I = \{i \mapsto F, w \mapsto T, t_1 \mapsto F, t_2 \mapsto F\}$ $O = \{m_1, m_2, l_1, l_2, u\}$ where **m**₁ = $\langle \top, ((t_1 \rhd \neg t_1) \wedge (\neg t_1 \rhd t_1)), 5 \rangle$ **n** $m_2 = \langle T, ((t_2 \triangleright \neg t_2) \wedge (\neg t_2 \triangleright t_2)), 5 \rangle$ \blacksquare $l_1 = \langle \neg i \land (w \leftrightarrow t_1), (i \land w), 1 \rangle$ \blacksquare $b = \langle \neg i \wedge (w \leftrightarrow t_2), (i \wedge \neg w), 1 \rangle$ **u** $u = \langle i, \neg i \land (w \triangleright ((t_1 \triangleright w) \land (\neg t_1 \triangleright \neg w)))$ $\wedge (\neg w \triangleright ((t_2 \triangleright w) \wedge (\neg t_2 \triangleright \neg w))), 1$ \blacksquare $\gamma = \neg i \wedge \neg w$

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where

- \blacksquare S is the set of all states over V,
- \blacksquare L is the set of operators O,

$$
c(o) = cost(o) \text{ for all operators } o \in O,
$$

$$
T = \{ \langle s, o, s' \rangle \mid s \in S, \text{ o applicable in } s, s' = s[\![o]\!]\},
$$

$$
s_0 = I, \text{ and}
$$

$$
\blacksquare S_{\star} = \{s \in S \mid s \models \gamma\}.
$$

Planning Tasks: Terminology

- **Terminology for transitions systems is also applied** to the planning tasks Π that induce them.
- For example, when we speak of the states of Π , we mean the states of $\mathcal{T}(\Pi)$.
- A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ is called a $plan$ of Π .

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Given: a planning task Π

Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π

Output: a plan for Π with minimal cost among all plans for Π, or unsolvable if no plan for Π exists

[Summary](#page-16-0)

Summary

- **Planning tasks compactly represent transition systems** and are suitable as inputs for planning algorithms.
- A planning task consists of a set of state variables and an initial state, operators and goal over these state variables.
- We gave formal definitions for these concepts.
- \blacksquare In satisficing planning, we must find a solution for a planning task (or show that no solution exists).
- \blacksquare In optimal planning, we must additionally guarantee that generated solutions are of minimal cost.