Planning and Optimization B3. Formal Definition of Planning

Malte Helmert and Gabriele Röger

Universität Basel

September 25, 2024

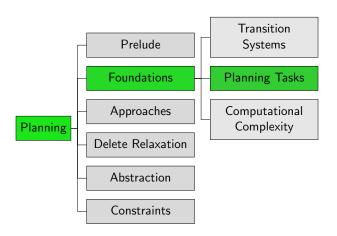
Planning and Optimization September 25, 2024 — B3. Formal Definition of Planning

B3.1 Semantics of Effects and Operators

B3.2 Planning Tasks

B3.3 Summary

Content of the Course



B3.1 Semantics of Effects and Operators

Semantics of Effects: Effect Conditions

Definition (Effect Condition for an Effect)

Let ℓ be an atomic effect, and let e be an effect.

The effect condition $effcond(\ell, e)$ under which ℓ triggers given the effect e is a propositional formula defined as follows:

- effcond $(\ell, \top) = \bot$
- $effcond(\ell, e) = \top$ for the atomic effect $e = \ell$
- effcond $(\ell, e) = \bot$ for all atomic effects $e = \ell' \neq \ell$
- $effcond(\ell, (e \land e')) = (effcond(\ell, e) \lor effcond(\ell, e'))$
- $effcond(\ell, (\chi \rhd e)) = (\chi \land effcond(\ell, e))$

Intuition: $effcond(\ell, e)$ represents the condition that must be true in the current state for the effect e to lead to the atomic effect ℓ

Effect Condition: Example (1)

Example

Consider the move operator m_1 from the running example:

$$\mathit{eff}(m_1) = ((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1)).$$

Under which conditions does it set t_1 to false?

$$\begin{split} \textit{effcond}(\neg t_1,\textit{eff}(m_1)) &= \textit{effcond}(\neg t_1,((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1))) \\ &= \textit{effcond}(\neg t_1,(t_1 \rhd \neg t_1)) \lor \\ &\quad \textit{effcond}(\neg t_1,(\neg t_1 \rhd t_1)) \\ &= (t_1 \land \textit{effcond}(\neg t_1,\neg t_1)) \lor \\ &\quad (\neg t_1 \land \textit{effcond}(\neg t_1,t_1)) \\ &= (t_1 \land \top) \lor (\neg t_1 \land \bot) \\ &\equiv t_1 \lor \bot \\ &\equiv t_1 \end{split}$$

Effect Condition: Example (2)

Example

Consider the move operator m_1 from the running example:

$$\mathit{eff}(m_1) = ((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1)).$$

Under which conditions does it set *i* to true?

$$\begin{array}{l} \textit{effcond}(i,\textit{eff}(m_1)) = \textit{effcond}(i,((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1))) \\ = \textit{effcond}(i,(t_1 \rhd \neg t_1)) \lor \\ & \textit{effcond}(i,(\neg t_1 \rhd t_1)) \\ = (t_1 \land \textit{effcond}(i,\neg t_1)) \lor \\ & (\neg t_1 \land \textit{effcond}(i,t_1)) \\ = (t_1 \land \bot) \lor (\neg t_1 \land \bot) \\ \equiv \bot \lor \bot \\ \equiv \bot \end{array}$$

Semantics of Effects: Applying an Effect

first attempt:

Definition (Applying Effects)

Let V be a set of propositional state variables. Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e], is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} \mathbf{T} & \text{if } s \models \textit{effcond}(v, e) \\ \mathbf{F} & \text{if } s \models \textit{effcond}(\neg v, e) \land \neg \textit{effcond}(v, e) \\ s(v) & \text{otherwise} \end{cases}$$

What is the problem with this definition?

Semantics of Effects: Applying an Effect

correct definition:

Definition (Applying Effects)

Let V be a set of propositional state variables.

Let s be a state over V, and let e be an effect over V.

The resulting state of applying e in s, written s[e], is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} \mathbf{T} & \text{if } s \models \textit{effcond}(v, e) \\ \mathbf{F} & \text{if } s \models \textit{effcond}(\neg v, e) \land \neg \textit{effcond}(v, e) \\ s(v) & \text{otherwise} \end{cases}$$

Add-after-Delete Semantics

Note:

- The definition implies that if a variable is simultaneously "added" (set to T) and "deleted" (set to F), the value T takes precedence.
- ► This is called add-after-delete semantics.
- ► This detail of effect semantics is somewhat arbitrary, but has proven useful in applications.

Semantics of Operators

Definition (Applicable, Applying Operators, Resulting State)

Let V be a set of propositional state variables.

Let s be a state over V, and let o be an operator over V.

Operator o is applicable in s if $s \models pre(o)$.

If o is applicable in s, the resulting state of applying o in s, written s[o], is the state s[eff(o)].

B3.2 Planning Tasks

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- V is a finite set of propositional state variables,
- I is an interpretation of V called the initial state,
- \triangleright O is a finite set of operators over V, and
- $ightharpoonup \gamma$ is a formula over V called the goal.

Running Example: Planning Task

Example

From the previous chapter, we see that the running example can be represented by the task $\Pi = \langle V, I, O, \gamma \rangle$ with

- $V = \{i, w, t_1, t_2\}$
- $ightharpoonup O = \{m_1, m_2, l_1, l_2, u\}$ where

 - $I_1 = \langle \neg i \land (w \leftrightarrow t_1), (i \land w), 1 \rangle$
 - $b = \langle \neg i \land (w \leftrightarrow t_1), (i \land \neg w), 1 \rangle$
 - - $\wedge \left(\neg w \rhd \left(\left(t_2 \rhd w \right) \wedge \left(\neg t_2 \rhd \neg w \right) \right) \right), 1 \rangle$
- $ightharpoonup \gamma = \neg i \wedge \neg w$

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where

- \triangleright S is the set of all states over V,
- L is the set of operators O,
- ightharpoonup c(o) = cost(o) for all operators $o \in O$,
- $T = \{ \langle s, o, s' \rangle \mid s \in S, \text{ o applicable in } s, \text{ } s' = s \llbracket o \rrbracket \},$
- $ightharpoonup s_0 = I$, and

Planning Tasks: Terminology

- ▶ Terminology for transitions systems is also applied to the planning tasks Π that induce them.
- For example, when we speak of the states of Π , we mean the states of $\mathcal{T}(\Pi)$.
- A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ is called a plan of Π.

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π

Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π

Output: a plan for Π with minimal cost among all plans for Π ,

or **unsolvable** if no plan for Π exists

B3. Formal Definition of Planning Summary

B3.3 Summary

Summary

- Planning tasks compactly represent transition systems and are suitable as inputs for planning algorithms.
- ▶ A planning task consists of a set of state variables and an initial state, operators and goal over these state variables.
- We gave formal definitions for these concepts.
- In satisficing planning, we must find a solution for a planning task (or show that no solution exists).
- ▶ In optimal planning, we must additionally guarantee that generated solutions are of minimal cost.