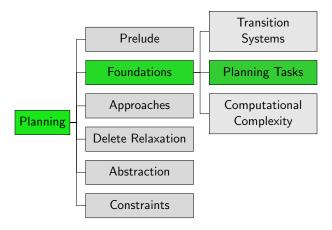
Planning and Optimization B2. Introduction to Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

September 25, 2024

Content of the Course



Introduction

The State Explosion Problem

- We saw in blocks world: *n* blocks \rightsquigarrow number of states exponential in *n*
- same is true everywhere we look
- known as the state explosion problem

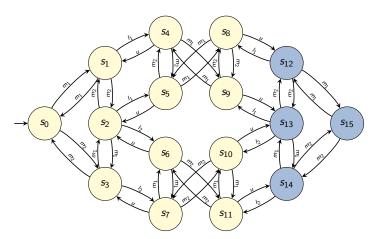
To represent transitions systems compactly, need to tame these exponentially growing aspects:

states

Introduction

- goal states
- transitions

Running Example: Transition System



 $c(m_1) = 5$, $c(m_2) = 5$, $c(l_1) = 1$, $c(l_2) = 1$, c(u) = 1

Compact Descriptions of Transition Systems

How to specify huge transition systems without enumerating the states?

- represent different aspects of the world in terms of different (propositional) state variables
- individual state variables are atomic propositions → a state is an interpretation of state variables
- \blacksquare n state variables induce 2^n states → exponentially more compact than "flat" representations

Example: n^2 variables suffice for blocks world with n blocks

Blocks World State with Propositional Variables

Example

$$s(A-on-B) = \mathbf{F}$$

 $s(A-on-C) = \mathbf{F}$
 $s(A-on-table) = \mathbf{T}$
 $s(B-on-A) = \mathbf{T}$
 $s(B-on-C) = \mathbf{F}$
 $s(B-on-table) = \mathbf{F}$
 $s(C-on-A) = \mathbf{F}$
 $s(C-on-B) = \mathbf{F}$

s(C-on-table) = T

State Variables 0000000

 \rightarrow 9 variables for 3 blocks

Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.

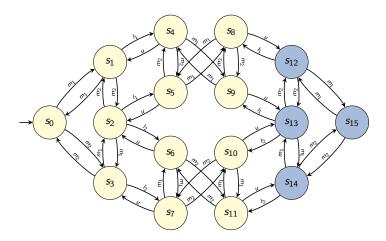
Let V be a finite set of propositional state variables.

A state s over V is an interpretation of V, i.e., a truth assignment $s: V \to \{T, F\}$.

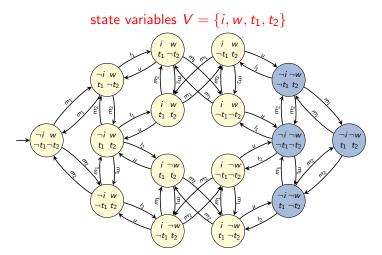
Running Example: Compact State Descriptions

■ In the running example, we describe 16 states with 4 propositional state variables ($2^4 = 16$).

Running Example: Opaque States



Running Example: Using State Variables



states shown by true literals example: $\{i \mapsto \mathsf{T}, w \mapsto \mathsf{F}, t_1 \mapsto \mathsf{T}, t_2 \mapsto \mathsf{F}\} \rightsquigarrow i \neg w \ t_1 \neg t_2$

Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R transition labels:

- m_1/m_2 : move first/second truck
- I_1/I_2 : load package into first/second truck
- u: unload package from a truck

state variables:

- t_1 true if first truck is at location L (else at R)
- t₂ true if second truck is at location L (else at R)
- i true if package is inside a truck
- w encodes where exactly the package is:
 - if i is true, w true if package in first truck
 - if i is false, w true if package at location L

State Formulas

Representing Sets of States

How do we compactly represent sets of states, for example the set of goal states?

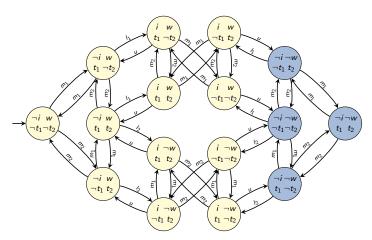
Idea: formula φ over the state variables represents the models of φ .

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using Vas the set of atomic propositions.

Running Example: Representing Goal States



goal formula $\gamma = \neg i \land \neg w$ represents goal states S_{\star}

Operators and Effects

How do we compactly represent transitions?

- most complex aspect of a planning task
- central concept: operators

Idea: one operator o for each transition label ℓ , describing

- in which states s a transition $s \stackrel{\ell}{\to} s'$ exists (precondition)
- how state s' differs from state s (effect)
- what the cost of \(\ell \) is

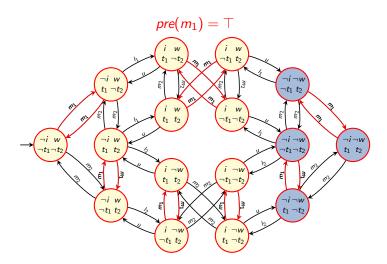
Definition (Operator)

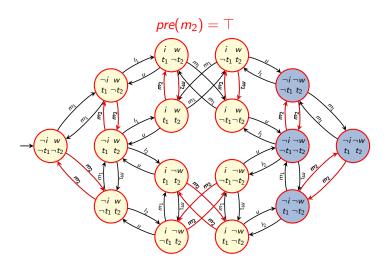
An operator o over state variables V is an object with three properties:

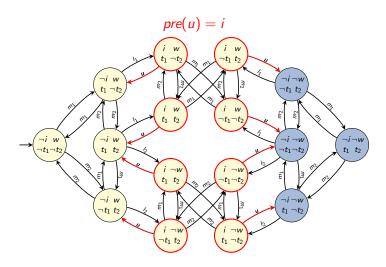
- \blacksquare a precondition pre(o), a formula over V
- an effect eff(o) over V, defined later in this chapter
- \blacksquare a cost cost(o) $\in \mathbb{R}_0^+$

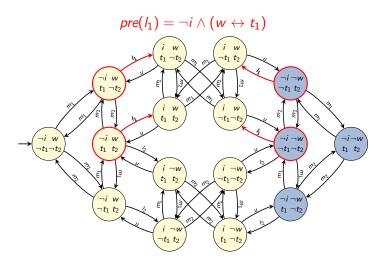
Notes:

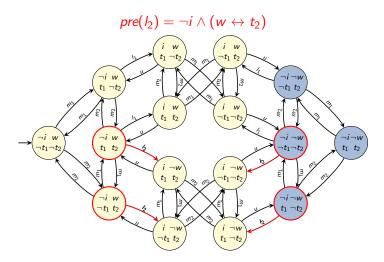
- Operators are also called actions.
- Operators are often written as triples $\langle pre(o), eff(o), cost(o) \rangle$.
- This can be abbreviated to pairs $\langle pre(o), eff(o) \rangle$ when the cost of the operator is irrelevant.











Syntax of Effects

Definition (Effect)

Effects over propositional state variables Vare inductively defined as follows:

- T is an effect (empty effect).
- If $v \in V$ is a propositional state variable, then v and $\neg v$ are effects (atomic effect).
- If e and e' are effects, then $(e \wedge e')$ is an effect (conjunctive effect).
- If χ is a formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect (conditional effect).

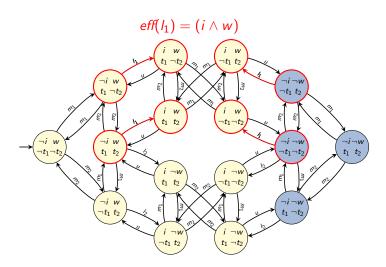
We may omit parentheses when this does not cause ambiguity.

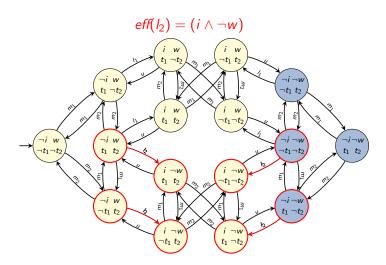
Example: we will later see that $((e \land e') \land e'')$ behaves identically to $(e \wedge (e' \wedge e''))$ and will write this as $e \wedge e' \wedge e''$.

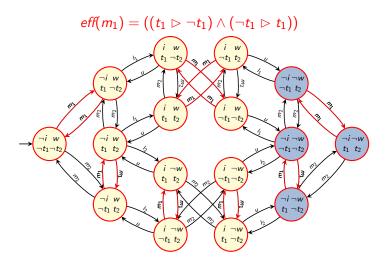
Effects: Intuition

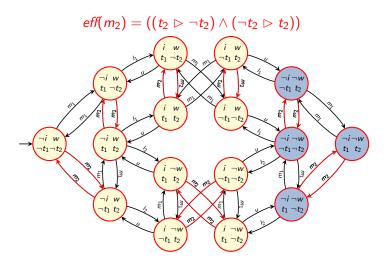
Intuition for effects:

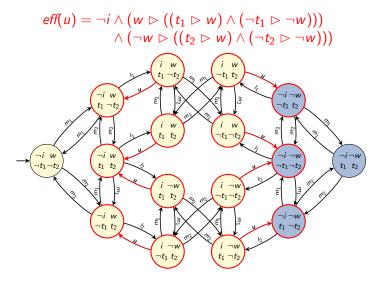
- The empty effect T changes nothing.
- Atomic effects can be understood as assignments that update the value of a state variable.
 - \mathbf{v} means " $\mathbf{v} := \mathbf{T}$ "
 - $\neg v$ means " $v := \mathbf{F}$ "
- A conjunctive effect $e = (e' \land e'')$ means that both subeffects e and e' take place simultaneously.
- A conditional effect $e = (\chi \triangleright e')$ means that subeffect e' takes place iff χ is true in the state where e takes place.











Summary

Summary

Summary

- Propositional state variables let us compactly describe properties of large transition systems.
- A state is an assignment to a set of state variables.
- Sets of states are represented as formulas over state variables.
- Operators describe when (precondition), how (effect) and at which cost the state of the world can be changed.
- Effects are structured objects including empty, atomic, conjunctive and conditional effects.