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Next Steps

Our next steps are to formally define our problem:

▶ introduce a mathematical model for planning tasks:
transition systems
⇝ Chapter B1

▶ introduce compact representations for planning tasks
suitable as input for planning algorithms
⇝ Chapter B2
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B1.1 Transition Systems

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 5 / 27



B1. Transition Systems and Propositional Logic Transition Systems

Transition System Example

Transition systems are often depicted as directed arc-labeled
graphs with decorations to indicate the initial state and goal states.
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c(ℓ1) = 1, c(ℓ2) = 1, c(ℓ3) = 5, c(ℓ4) = 0
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B1. Transition Systems and Propositional Logic Transition Systems

Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = ⟨S , L, c ,T , s0, S⋆⟩ where
▶ S is a finite set of states,

▶ L is a finite set of (transition) labels,

▶ c : L → R+
0 is a label cost function,

▶ T ⊆ S × L× S is the transition relation,

▶ s0 ∈ S is the initial state, and

▶ S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s ′⟩ if ⟨s, ℓ, s ′⟩ ∈ T .

We also write this as s
ℓ−→ s ′, or s → s ′ when not interested in ℓ.

Note: Transition systems are also called state spaces.
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Deterministic Transition Systems

Definition (Deterministic Transition System)

A transition system is called deterministic if for all states s

and all labels ℓ, there is at most one state s ′ with s
ℓ−→ s ′.

Example: previously shown transition system
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B1. Transition Systems and Propositional Logic Transition Systems

Transition System Terminology (1)

We use common terminology from graph theory:

▶ s ′ successor of s if s → s ′

▶ s predecessor of s ′ if s → s ′
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B1. Transition Systems and Propositional Logic Transition Systems

Transition System Terminology (2)

We use common terminology from graph theory:

▶ s ′ reachable from s if there exists a sequence of transitions

s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn s.t. s0 = s and sn = s ′

▶ Note: n = 0 possible; then s = s ′

▶ s0, . . . , sn is called (state) path from s to s ′

▶ ℓ1, . . . , ℓn is called (label) path from s to s ′

▶ s0
ℓ1−→ s1, . . . , sn−1 ℓn−→ sn is called trace from s to s ′

▶ length of path/trace is n
▶ cost of label path/trace is

∑n
i=1 c(ℓi )
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Transition System Terminology (3)

We use common terminology from graph theory:

▶ s ′ reachable (without reference state) means
reachable from initial state s0

▶ solution or goal path from s: path from s to some s ′ ∈ S⋆
▶ if s is omitted, s = s0 is implied

▶ transition system solvable if a goal path from s0 exists
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B1.2 Example: Blocks World
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B1. Transition Systems and Propositional Logic Example: Blocks World

Running Example: Blocks World

▶ Throughout the course, we occasionally use
the blocks world domain as an example.

▶ In the blocks world, a number of different blocks
are arranged on a table.

▶ Our job is to rearrange them according to a given goal.
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B1. Transition Systems and Propositional Logic Example: Blocks World

Blocks World Rules (1)

Location on the table does not matter.

≡

Location on a block does not matter.

≡
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B1. Transition Systems and Propositional Logic Example: Blocks World

Blocks World Rules (2)

At most one block may be below a block.

At most one block may be on top of a block.
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B1. Transition Systems and Propositional Logic Example: Blocks World

Blocks World Transition System for Three Blocks

Labels omitted for clarity. All label costs are 1. Initial/goal states not marked.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 16 / 27



B1. Transition Systems and Propositional Logic Example: Blocks World

Blocks World Computational Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

blocks states
10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921
17 26846616451246353
18 588633468315403843

▶ Finding solutions is possible in linear time
in the number of blocks: move everything onto the table,
then construct the goal configuration.

▶ Finding a shortest solution is NP-complete
given a compact description of the problem.
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B1. Transition Systems and Propositional Logic Example: Blocks World

The Need for Compact Descriptions

▶ We see from the blocks world example that transition systems
are often far too large to be directly used as inputs
to planning algorithms.

▶ We therefore need compact descriptions of transition systems.

▶ For this purpose, we will use propositional logic,
which allows expressing information about 2n states
as logical formulas over n state variables.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 18 / 27



B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

B1.3 Reminder: Propositional Logic
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B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

More on Propositional Logic

Need to Catch Up?
▶ This section is a reminder. We assume you are already

well familiar with propositional logic.

▶ If this is not the case, we recommend Chapters D1–D4
of the Discrete Mathematics in Computer Science course:
https://dmi.unibas.ch/en/studies/
computer-science/courses-in-fall-semester-2023/
lecture-discrete-mathematics-in-computer-science/
▶ Videos for these chapters are available on request.
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Syntax of Propositional Logic

Definition (Logical Formula)

Let A be a set of atomic propositions.

The logical formulas over A are constructed
by finite application of the following rules:

▶ ⊤ and ⊥ are logical formulas (truth and falsity).

▶ For all a ∈ A, a is a logical formula (atom).

▶ If φ is a logical formula, then so is ¬φ (negation).

▶ If φ and ψ are logical formulas, then so are
(φ ∨ ψ) (disjunction) and (φ ∧ ψ) (conjunction).
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B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Syntactical Conventions for Propositional Logic

Abbreviations:

▶ (φ→ ψ) is short for (¬φ ∨ ψ) (implication)

▶ (φ↔ ψ) is short for ((φ→ ψ) ∧ (ψ → φ)) (equijunction)
▶ parentheses omitted when not necessary:

▶ (¬) binds more tightly than binary connectives
▶ (∧) binds more tightly than (∨),

which binds more tightly than (→),
which binds more tightly than (↔)
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B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Semantics of Propositional Logic

Definition (Interpretation, Model)

An interpretation of propositions A is a function I : A → {T,F}.

Define the notation I |= φ (I satisfies φ; I is a model of φ;
φ is true under I ) for interpretations I and formulas φ by

▶ I |= ⊤
▶ I ̸|= ⊥
▶ I |= a iff I (a) = T (for all a ∈ A)

▶ I |= ¬φ iff I ̸|= φ

▶ I |= (φ ∨ ψ) iff (I |= φ or I |= ψ)

▶ I |= (φ ∧ ψ) iff (I |= φ and I |= ψ)

Note: Interpretations are also called valuations

Note:

or truth assignments.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 23 / 27



B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Propositional Logic Terminology (1)

▶ A logical formula φ is satisfiable
if there is at least one interpretation I such that I |= φ.

▶ Otherwise it is unsatisfiable.

▶ A logical formula φ is valid or a tautology
if I |= φ for all interpretations I .

▶ A logical formula ψ is a logical consequence
of a logical formula φ, written φ |= ψ,
if I |= ψ for all interpretations I with I |= φ.

▶ Two logical formulas φ and ψ are logically equivalent,
written φ ≡ ψ, if φ |= ψ and ψ |= φ.

Question: How to phrase these in terms of models?
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B1. Transition Systems and Propositional Logic Reminder: Propositional Logic

Propositional Logic Terminology (2)

▶ A logical formula that is a proposition a or a negated
proposition ¬a for some atomic proposition a ∈ A is a literal.

▶ A formula that is a disjunction of literals is a clause.
This includes unit clauses ℓ consisting of a single literal
and the empty clause ⊥ consisting of zero literals.

▶ A formula that is a conjunction of literals is a monomial.
This includes unit monomials ℓ consisting of a single literal
and the empty monomial ⊤ consisting of zero literals.

Normal forms:

▶ negation normal form (NNF)

▶ conjunctive normal form (CNF)

▶ disjunctive normal form (DNF)
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B1.4 Summary
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B1. Transition Systems and Propositional Logic Summary

Summary

▶ Transition systems are (typically huge) directed graphs
that encode how the state of the world can change.

▶ Propositional logic allows us to compactly describe
complex information about large sets of interpretations
as logical formulas.
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